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Abstract: In this paper we present a new theoretical model to find out

an optimal weight associated with a soccer player under the presence of a

stochastic goal dynamics by using Feynman path integral method, where

the action of a player is on
√

8/3-Liouville Quantum Gravity surface. Before

determine the optimal weight we first establish an Infinitary logic which can

deal with infinite variables on the strategy space then, a quantum formula of

this logic has been developed and finally, based on this we are able show the

existence of a Lefschetz-Hopf fixed point of this game. As in a competitive

tournament, all possible standard strategies to score goals are known to the

opposition team, a player’s action is stochastic in nature and they would

have some comparative advantage to score goals. Furthermore, conditions

like uncertainties due to rain, dribbling and passing skill of a player, whether

the match is a day match or a day-night match, advantages of having home

crowd and asymmetric information of action profiles have been considered

on the way to determine the optimal weight.
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1. Introduction

Soccer is one of the most popular sports of the world because of its simplistic
rules. Three major tournaments of this game are The World Cup, The Euro
Cup and The Copa America out of them The World Cup is the most popular
tournament. Following Santos (2014) we know, after early 1990s Fédération
Internationale de Football Association (FIFA) had been worried about that all
the teams become defensive in terms of scoring goals. As a result, total number of
goals have been falling which eventually leads to a fall in interest on this game. If
we consider 2006 men’s soccer World champion Italy and 2010 champion Spain,
they only allowed two goals in their entire seven matches in the tournament
(Santos, 2014). On March 17, 1994 in USA Today, FIFA clearly specified its
objective as encourage attacking and high scoring match. Since then we can see
some changes in objectives of some teams like the 2014 World Cup semifinal
between Brazil and Germany where Germany scores five goals in the first half.
Furthermore, in 2018 men’s soccer World cup we see France chose some offensive
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strategies. Furthermore, if we look at the French national team of 2018 men’s
World cup, we see there are no big names (like Lionel Messi, Cristiano Ronaldo,
Romelu Lukaku etc.) and their average age is lower compare to other big teams.
Therefore, all the players played without any pressure to win the World Cup
and, if some team has a big name, that means that player is in the game for a
long time and opposition teams have strategies to stop him to score goals.

In this paper we present a new theoretical approach to find out an optimal
weight associated with a soccer player under the presence of a stochastic goal
dynamics by using Feynman path integral method, where the actions of every
player of both the teams are on

√
8/3-Liouville Quantum Gravity (LQG) sur-

face (Feynman, 1949; Fujiwara, 2017; Pramanik, 2020; Pramanik and Polansky,
2020a; Pramanik, 2021a,b,c). This surface is continuous but not differentiable.
Furthermore, at

√
8/3 this behaves like a Brownian surface (Miller and Sheffield,

2015, 2016; Hua, Polansky and Pramanik, 2019; Pramanik and Polansky, 2019,
2020b; Polansky and Pramanik, 2021; Pramanik and Polansky, 2021; Pramanik,
2021d). Furthermore, this approach can be used to obtain a solution for stabil-
ity of an economy after pandemic crisis (Ahamed, 2021a), determine an opti-
mal bank profitability (Islam, Alam and Chowdhury; Alam, Sultan and Afrin;
Mohammad and Mohammad, 2010; Alam, Khondker and Molla, 2013; Hossain and Ahamed,
2015; Pramanik, 2016; ALAM and HOSSAIN, 2018; Ahamed, 2021b; Alam,
2021a,b). This approach can be used in population dynamics problems such
as Minar (2018), Minar (2019), Minar and Halim (2021) and Minar. In a very
competitive tournament like a soccer World Cup, all possible standard strate-
gies to score goals are known to the opposition teams. In this environment if
a player’s action is stochastic in nature then he would have some comparative
advantage which is also known to the opposition team but, they do not know
what type stochastic action is going to take place and his complete stochastic
action profile is unknown to the opposition team. Apart from that, the condi-
tions like uncertainties due to rain, dribbling and passing skill of a player, type
of match (i.e. day match or a day-night match), and advantages of having home
crowd have been considered as stochastic component of the goal dynamics on
the way to determine the optimal weight.

Recent literature talks about whether a soccer team should choose offensive
or defensive strategies (Santos, 2014). Some studies say that, relatively new
“Three point” rule and “Golden goal” do not necessarily create to brake a tie
and score goals (Brocas and Carrillo, 2004; Santos, 2014) and if asymmetry be-
tween two teams is big then these two rules induce the weaker team to play
more defensively (Guedes and Machado, 2002). There are some other studies
combined them give mixed results on these two rules (Dilger and Geyer, 2009;
Garicano and Palacios-Huerta, 2005; Moschini, 2010; Santos, 2014). Therefore,
we do not include these two rules in our analysis. On the other hand, as scoring
a goal on a given condition of a match is purely stochastic, a discounted re-
ward on a player’s dynamic objective function can give them more incentive to
score which is a common dynamic reward phenomenon in the animal kingdom
(Kappen, 2007).
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2. Construction of the problem

In this section we construct a forward stochastic goal dynamics under a Liouville-
like quantum gravity action space with a conditional expected dynamic objective
function. The objective function gives an expected number of goals of a match
based on total number of goals scored by a team at the beginning of each time
interval. For example at the beginning of a match both of the teams start with
0 goals. Therefore, the initial condition is Z0 = 0, where Z0 represents total
number of goals scored by a team at time 0 of the interval [0, t]. The objective
of player i ∈ I at the beginning of (M + 1)th game is :

OBi
α : Z

i

α(W, s)

= hi∗0 + max
Wi∈W

E0

{∫ t

0

I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s)]

∣∣∣∣FZ
0

}
ds,

(1)

where Wi is the strategy of player i (control variable), αi ∈ R is constant
weight, I is total number of players in a team including those at the reserve
bench, ρis ∈ (0, 1) is a stochastic discount rate for player i with w ∈ RI′

+ and

z ∈ RI′

+ are time s ≥ 0 dependent all possible controls and goals available to
them, hi∗0 ≥ 0 is the initial condition of the function hi0 and FZ

0 is the filtration
process of goal dynamics starting at the beginning of the game. Therefore, for
player i the difference between Wi and w is that strategy Wi is the subset of all
possible strategies w available to them at time s before (M + 1)th game starts.
Furthermore, we assume hi0 is a known objective function to player i, which is
partly unknown to the opposition team because of incomplete and imperfect
information of them.

Suppose, the stochastic differential equation corresponding to goal dynamics
is

dZ(s,W) = µ[s,W(s),Z(s,W)]ds+ σ[s, σ̂,W(s),Z(s,W)]dB(s), (2)

where WI×I′(s) ⊆ W ⊂ RI×I′

+ is the control space and ZI×I′(s) ⊆ Z ⊂ RI×I′

+

is space of scoring goals under the soccer rules such that z ∈ Z, Bp×1(s) is a p-
dimensional Brownian motion, µI×1 > 0 is the drift coefficient and the positive
semidefinite matrix σI×p ≥ 0 is the diffusion coefficient such that

lim
s↓∞

Eµ[s,W(s),Z(s,W)] = Z∗ ≥ 0.

Above argument states that, if enough time is allowed for a match then, Z∗

number of goals would be achieved which turns out to be a stable solution of
this system. Finally,

σ[s, σ̂,W(s),Z(s,W)] = γσ̂ + σ∗[s,W(s),Z(s,W)], (3)

where σ̂ > 0 comes from the strategies of the opposition team with the coeffi-
cient γ > 0 and σ∗ > 0 comes from the weather conditions, venues, popularity
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of a club or a team before starting of (M + 1)th game. The forward stochastic
differential Equation (3) is the core of our analysis. We use all possible important
conditions during a game.

3. Definitions and Assumptions

Assumption 1. For t > 0, let µ(s,W,Z) : [0, t]×RI×I′ ×RI×I′ → RI×I′

and
σ(s, σ̂,W,Z) : [0, t]× S(I×I′)×t × RI×I′ × RI×I′ → RI×I′

be some measurable
function with (I×I ′)×t-dimensional two-sphere S(I×I′)×t and, for some positive
constant K1, W ∈ RI×I′

and, Z ∈ RI×I′

we have linear growth as

|µ(s,W,Z)|+ |σ(s, σ̂,W,Z)| ≤ K1(1 + |Z|),

such that, there exists another positive, finite, constant K2 and for a different
score vector Z̃(I×I′)×1 such that the Lipschitz condition,

|µ(s,W,Z)− µ(s,W, Z̃)|+ |σ(s, σ̂,W,Z)− σ(s, σ̂,W, Z̃)| ≤ K2 |Z− Z̃|,

Z̃ ∈ RI×I′

is satisfied and

|µ(s,W,Z)|2 + ‖σ(s, σ̂,W,Z)‖2 ≤ K2
2 (1 + |Z̃|2),

where ‖σ(s, σ̂,W,Z)‖2 =
∑I

i=1

∑I
j=1 |σij(s, σ̂,W,Z)|2.

Assumption 2. There exists a probability space (Ω,FZ
s ,P) with sample space

Ω, filtration at time s of goal Z as {FZ

s } ⊂ Fs, a probability measure P and
a p-dimensional {Fs} Brownian motion B where the measure of valuation of
players W is an {FZ

s } adapted process such that Assumption 1 holds, for the
feedback control measure of players there exists a measurable function h such
that h : [0, t] × C([0, t]) : RI×I′ → W for which W(s) = h[Z(s, w)] such that
Equation (2) has a strong unique solution (Ross, 2008).

Assumption 3. (i). Z ⊂ RI×I′

such that a soccer player i cannot go beyond
set Zi ⊂ Z because of their limitations of skills. This immediately implies set
Zi is different for different players.
(ii). The function hi0 : [0, t] × R2I′ → RI′

. Therefore, all players in a team at
the beginning of (M +1)th match have the objective function h0 : [0, t]×RI×I′ ×
RI×I′ → RI×I′

such that hi0 ⊂ h0 in functional spaces and both of them are
concave which is equivalent to Slater condition (Marcet and Marimon, 2019).
(iii). There exists an ε > 0 such that for all (W,Z) and i = 1, 2, ..., I such that

E0

{∫ t

0

I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s)]

∣∣∣∣FZ
0

}
ds ≥ ε.

Definition 1. Suppose Z(s,W) is a non-homogeneous Fellerian semigroup on
time in RI×I′

. The infinitesimal generator A of Z(s,W) is defined by,

Ah(z) = lim
s↓0

Es[h(Z(s,W))] − h(Z(W))

s
,
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for Z ∈ RI×I′

+ where h : RI×I′

+ → R+ is a C2
0 (R

I×I′

+ ) function, Z has a compact
support, and at Z(W) > 0 the limit exists where Es represents the soccer team’s
conditional expectation of scoring goals Z at time s. Furthermore, if the above
Fellerian semigroup is homogeneous on times, then Ah is the Laplace operator.

Definition 2. For a Fellerian semigroup Z(s,W) for all ε > 0, the time interval
[s, s+ε] with ε ↓ 0, define a characteristic-like quantum operator starting at time
s is defined as

Ah(Z) = lim
ε↓0

logEs[ε
2 h(Z(s,W))] − log[ε2h(Z(W))]

logEs(ε2)
,

for Z ∈ RI×I′

+ , where h : RI×I′ → R is a C2
0

(
RI×I′

+

)
function, Es represents

the conditional expectation of goal dynamics Z at time s, for ε > 0 and a fixed
h we have the sets of all open balls of the form Bε(h) contained in B (set of all
open balls) and as ε ↓ 0 then logEs(ε

2) → ∞.

Definition 3. Following Frick, Iijima and Strzalecki (2019) a dynamic condi-
tional expected objective function explained in Equation (1) on the goal dynamics
Z ∈ {Z0,Z1, ...,Zt} is a tuple

(
s,αi, {OBi

α(Wi), τWi}Wi∈w

)
where

(i). w is a finite strategy space where player i can choose strategy Wi and αi is
all probabilities available to them from where they can choose αi.
(ii). For each strategy Wi ∈ w, OBi

α ∈ RZ is constrained objective function of
soccer player i such that Definition 2 holds.
(iii). For each strategy Wi ∈ w, define the rain or other environmental random
factors which leads to a stoppage or termination of game M + 1 at time s as
τWi , which is a finitely-additive probability measure on the Borel σ-algebra on
RZ and is proper.

Following Hellman and Levy (2019), two main types of logic are used in game
theory: First-order Logic and Infinitary Logic. First-order mathematical logic is
built on finite base language based on the connective symbols such as conjunc-
tion, negation, conversion, inversion and contrapositivity; countable collection
of variables, quantifier symbols, constant symbols, predicate symbols and func-
tion symbols (Hellman and Levy, 2019). Quantum formulae are of the form of
h(0, ..., t) such that the game operates in a quantum field with the characteristic-
like quantum generator defined in Definition 2. Comparing this statement with
the interpretation of Atomic formulae in Hellman and Levy (2019) we can say
h is a functional predicate symbol on terms 0, ..., t. Our Quantum formulae are
more generalized version of Atomic formulae in the sense that, Quantum formu-
lae consider improper differentiability on 2-sphere continuous strategy available
for all the players in both of the teams.

The problem of constructing a First-order logic is that, it can only handle
expressions of finite variables. Dealing with infinite variables in strategy space
is the primary objective in our paper. When player i tries to score a goal, they
change their actions based on the strategies of the opposition team and on their
skills. If player i is a senior player, then opposition team has more informa-
tion about that player’s strength or weakness which is also known to player i.
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Therefore, at time s of match M + 1 player i’s action is mixed. Furthermore,
we assume each player’s strategy set is a convex polygon with each side has
the length of unity. The reason is that, probability of choosing a strategy is in
between 0 and 1. Therefore, if a player has three strategies, their strategy set is
a equilateral triangle with each side of length unity.

To get more generalized result we extend the standard First-order logic to
Infinitary logic (Hellman and Levy, 2019). This logic considers mixed actions
with infinite possible strategies such that for each player is able to play a com-
bination of infinitely many strategies at infinite number of states. For example,
a striker i gets the ball at time s either from their team mate or by a result of a
missed pass from an opponent. As striker i’s objective is to kick the ball through
the goal, their strategy depends on to total number of opponents between them
and the goal. Therefore, striker i plays a mixed action or striker i places weight
αi on scoring strategy ai at total number of goal scored Zs at time s. For a
countable collection of objective functions {OBi

α}∞i=1 such that
∧∞

i=1 OBi
α and∨∞

i=1 OBi
α exist, converges to Zα in real numbers via the formula

OBα

(
{Zi

α}Ii=1,Zα

)
= ∀ε

[
ε > 0 →

∨

I∈N

∧

i>I

(
Z
i

α − Zα

)2
< ε2

]

or, without the quantifier the above statement becomes

OBα

(
{Zi

α}Ii=1,Zα

)
=
∧

K∈N

∨

I∈N

∧

i>I

K2
(
Z

i

α − Zα

)2
< 1.

3.1.
√
8/3 Liouville quantum gravity surface

Following Gwynne and Miller (2016) we know, a Liouville quantum gravity
(LQG) surface is a random Riemann surface parameterized by a domain D ⊂
S(I×I′)×t with Riemann metric tensor eγk(l)dZ ⊗ dẐ, where γ ∈ (0, 2), k is
some variant of the Gaussian free field (GFF) on D, l is some number com-

ing from 2-sphere S(I×I′)×t and dZ ⊗ dẐ is Euclidean metric tensor. In this
paper we consider the case where γ =

√
8/3 because, it corresponds to a uni-

formly random planer maps. Because of incomplete and imperfect information
the strategy space is quantum in nature and each player’s decision is a point
on a dynamic convex strategy polygon of that quantum strategy space. Fur-
thermore, k : S(I×I′)×t → RI×I′

is a distribution such that each player’s action
which can be represented different shots to the goal including dribbling and
passing. Although the strategy set is deterministic, the action on this space is
stochastic.

Definition 4. An equivalence relation E on S is smooth if there is another 2-
sphere S′ and a distribution function with a conformal map k′ : S → S′ such
that for all l1, l2 ∈ S, we have l1El2 ⇐⇒ k(l1) = k(l2).
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Now if E is the equivalence relation of each player’s action, the smooth distri-
bution function k′ is an auxiliary tool which helps determining whether l1 and
l2 are in the same action component which occurs iff k(l1) = k(l2).

Example 1. Suppose SI = CI , where CI represents a complex space. The
relation given l1 ∼E l2 if and only if l1 − l2 ∈ S′ is smooth as the distribution
k : CI → [0, 1)I is defined by k(l1, ..., lI) = (l1 −⌊l1⌋, ..., lI −⌊lI⌋), where ⌊lm⌋ =
max{l∗ ∈ S ′|l∗ > lm} is the integer part of lm, then k(l1) = k(l2) iff l1El2.

Furthermore,
√
8/3-LQG surface is an equivalence class of action on 2-sphere

(D, k) such that D ⊂ S(I×I′)×t is open and k is a distribution function which
is some variant of a GFF (Gwynne and Miller, 2016). Action pairs (D, k) and

(D̃, k̃) are equivalent if there exists a conformal map ζ : D̃ → D such that,
k̃ = k◦ζ+Q log |ζ′|, where Q = 2/γ+γ/2 =

√
3/2+

√
2/3 (Gwynne and Miller,

2016).
Suppose, I be a non-empty finite set of players, FZ

s be the filtration of goal
Z, Ω be a sample space. There for each player i ∈ I an equivalence relationship
Ei ∈ E on 2-sphere, called player i’s quantum knowledge. Therefore,

√
8/3-LQG

player knowledge space at time s is (Ω,FZ

s , S, I, E). Given a
√
8/3-LQG player

knowledge space (Ω,FZ

s , S, I, E) the equivalence relationship E is the transitive
closure of

⋃
i∈I Ei.

Definition 5. A knowledge space (Ω,FZ

s , S, I, E) such that i ∈ I, each equivalent

class of Ei with Riemann metric tensor e
√

8/3k(l)dZ ⊗ dẐ is finite, countably
infinite or uncountable is defined as purely

√
8/3-LQG knowledge space which is

purely quantum in nature (for detailed discussion about purely atomic knowledge
see Hellman and Levy (2019)).

Definition 6. For a fixed quantum knowledge space (Ω,FZ
s , S, I, E), for player

i a dribbling and passing function pi is a mapping pi : Ω× S → ∆(Ω× S) which
is σ-measurable and the equivalence relationship has some measure in 2-sphere.

Therefore, dribbling and passing space is a tuple (Ω,FZ

s , S, I, p) which is a
type of

√
8/3-LQG knowledge space. There are other skills needed to score a

goal such as power, speed, agility, shielding, tackling, trapping and shooting
but we assume only dribbling and passing function is directly related to the
quantum knowledge. Rest of the uncertainties are coming from the stochastic
part of the goal dynamics. The dribbling and passing space of player i implicitly
defines quantum knowledge relationship Ei of dribbling and passing functions.
Hence, (z, l)Ei(z′, l′) iff piz,l = piz′,l′ , where z is the goal situation according to
player i’s perspective and l is player i’s action on 2-sphere at time s.

Definition 7. For player i ∈ I and for all z ∈ Ω, l ∈ S dribbling and passing
space tuple (Ω,FZ

s , S, I, p) has a function piz,l which is purely quantum. There-
fore, this space is purely quantum dribbling and passing space.

Definition 8. For (Ω,FZ
s , S, I, p) if piz,l[z, l] > 0 for all i ∈ I, z ∈ Ω and

l ∈ S then it is positive. Furthermore, the dribbling and passing space is purely
quantum and positive, then the knowledge space is

√
8/3-LQG.
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Definition 9. A purely quantum space (Ω,FZ
s , S, I, p) is smooth if Ω, the 2-

sphere S and the common quantum knowledge equivalence relation E is smooth.
As k is a version of GFF the quantum space is not smooth at the vicinity of the
singularity and for time being we exclude those point to make dribbling and the
passing space smooth.

Example 2. Suppose, a male soccer team has three strikers A, B and C such
that player A is a left wing, B is a center-forward and C is a right wing. Fur-
thermore, at time s player B faces an opposition center defensive midfielder
(CDM) with at least one of the center backs (left or right) and decides to pass
the ball either of players A and C as they have relatively unmarked positions.
Player A knows, if B passes him, based on goal condition z1 based on his judg-
ment he will take an attempt to score a goal either by taking a long distance
shot with conditional probability u(u1|z1) or by running with the ball closer to
the goal post with probability u(u2|z1), where for k = 1, 2, uk takes the value 1
when player A is able to score by using any of the two approaches. As the drib-
bling and passing space is purely quantum, player A’s expected payoff to score

is u(u1|z1)e
√

8/3k1(l1) + u(u2|z1)e
√

8/3k1(l2), where lk is the kth point observed
on player A’s 2-sphere S. Similarly, player C has the payoff of scoring a goal is

u(u3|z2)e
√

8/3k2(l3)+u(u4|z2)e
√

8/3k2(l4), where u3 and u4 are the probabilities of
taking a direct shot to goal and running closer to goal post and score. However,
player B’s decision tends to be somewhat scattered, as he has to make a choice
of passing either of A or C or mixes up the calculation and decides to goal by
himself. Consider player B mixes up strategy and decides to goal by himself with
probability v or he passes either of A and C with probability (1 − v), which is
know to players A and C.

Let us model the quantum knowledge space as of these three players as Ω =
R+ ×R+ ×R+ and S = R+ ×R+ ×R+. Once, the payoff left wing A and right
wing C has been revealed, player B calculates the ratio of of two expected payoffs.
Therefore, player A knows that, player B is is giving him a pass if

u(u1|z1)e
√

8/3k1(l1) + u(u2|z1)e
√

8/3k1(l2)

u(u3|z2)e
√

8/3k2(l3) + u(u4|z2)e
√

8/3k2(l4)
> 1

with probability (1− v) and with probability v player B decides to score himself
if the ratio is less than equal to 1. As both of the wing players calculate the ratio
of their expected payoffs, it is enough to define Ω = R+ ×R+ and S = R+ ×R+

for two wing players without losing any information. The quantum equivalent
classes EA which is player A’s knowledge can be represented as

[(
0,
u(u1|z1)e

√
8/3k1(l1) + u(u2|z1)e

√
8/3k1(l2)

u(u3|z2)e
√

8/3k2(l3) + u(u4|z2)e
√

8/3k2(l4)
> 1

)
,

(
0,
u(u1|z1)e

√
8/3k1(l1) + u(u2|z1)e

√
8/3k1(l2)

u(u3|z2)e
√

8/3k2(l3) + u(u4|z2)e
√

8/3k2(l4)
≤ 1

)]

(zk∈R+,lk∈R+, for all k = 1, 2)

,
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and player B’s knowledge corresponding to the equivalent class EB is

[(
u(u3|z2)e

√
8/3k2(l3) + u(u4|z2)e

√
8/3k2(l4)

u(u1|z1)e
√

8/3k1(l1) + u(u2|z1)e
√

8/3k1(l2)
> 1, 0

)
,

(
u(u3|z2)e

√
8/3k2(l3) + u(u4|z2)e

√
8/3k2(l4)

u(u1|z1)e
√

8/3k1(l1) + u(u2|z1)e
√

8/3k1(l2)
≤ 1, 0

)]

(zk∈R+,lk∈R+, for all k = 1, 2)

.

Therefore, the belief of player A is

pAz,l[z, l] = pA
[u(u1|z1)e

√
8/3k1(l1),u(u2|z1)e

√
8/3k1(l2)]

[z, l]

=





1− v if u(u1|z1)e
√

8/3k1(l1)+u(u2|z1)e
√

8/3k1(l2)

u(u3|z2)e
√

8/3k2(l3)+u(u4|z2)e
√

8/3k2(l4)
> 1,

v if u(u1|z1)e
√

8/3k1(l1)+u(u2|z1)e
√

8/3k1(l2)

u(u3|z2)e
√

8/3k2(l3)+u(u4|z2)e
√

8/3k2(l4)
≤ 1,

0 otherwise,

and similarly for the right wing B,

pBz,l[z, l] = pB
u(u3|z2)e

√
8/3k2(l3),u(u4|z2)e

√
8/3k2(l4)

[z, l]

=





1− v if u(u3|z2)e
√

8/3k2(l3)+u(u4|z2)e
√

8/3k2(l4)

u(u1|z1)e
√

8/3k1(l1)+u(u2|z1)e
√

8/3k1(l2)
> 1,

v if u(u3|z2)e
√

8/3k2(l3)+u(u4|z2)e
√

8/3k2(l4)

u(u1|z1)e
√

8/3k1(l1)+u(u2|z1)e
√

8/3k1(l2)
≤ 1,

0 otherwise.

3.2.
√
8/3 Liouville quantum gravity metric

For domain D ⊂ S(I×I′)×t and for a variant of GFF the distribution k sup-
pose, (D, k) is a

√
8/3-LQG action surface. As k is a variant of GFF, k induces

a metric ωk on D and furthermore, if (D, k) is a quantum sphere, the metric
space (D,ωk) is isometric to the Brownian map with two additional properties:
a Brownian disk is obtained if (D, k) is a quantum disk and a Brownian plane
is obtained if (D, k) is a

√
8/3-quantum cone (Bettinelli and Miermont, 2017;

Curien and Le Gall, 2014; Gwynne and Miller, 2016). Following Gwynne and Miller
(2016) we know that,

√
8/3-LQG surface can be represented as a Brownian sur-

face with conformal structure. We assume the strategy space where the action is
taken has the property like

√
8/3-LQG surface because, each soccer player has

radius r around themselves such that, if an opponent player comes in this radius
he would be able to tackle. Furthermore, if r → 0, the player has a complete
control over the opponent under no mistakes and same skill level. Therefore, the
strategy space closer to the player (i.e. r = 0) bends towards himself in such
a way that, the surface can be approximated to a surface on a 2-sphere and
furthermore, as the movement on this space is stochastic in nature, it behaves
like a Brownian surface with its convex strategy polygon changes its shape at
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every time point based on the condition of the game. At r = 0 the surface hits
essential singularity and the player has infinite power to control over the ball.

The
√
8/3-LQG metric will be constructed on a 2-sphere (S, k) which is also

quantum in nature. Based on the distribution function k suppose, Ci be the
collection of i.i.d. locations of player i on the strategy space sampled uniformly
from the area of their convex dynamic polygon βki . Furthermore, consider inside
a polygon with area measure βki , player i’s action at time s is ais and at time
τ is aiτ such that, for ε > 0 we define τ = s + ε. Therefore, ais, a

i
τ ∈ Ci is a

Quantum Loewner Evolution growth process {Gai
s,a

i
τ

s̃ }s̃≥0 starting from ais and
ending at aiτ for all s̃ ∈ [s, τ ].

Let there are two growth processes {Gai
s,a

i
τ

s̃ }s̃≥0 and {Gai
s,a

i
τ

∗s̃ }s̃≥0 where both
of them starts at ais and ends at aiτ . We will show on this surface they are
homotopic in nature. Suppose {p0i , p1i , ..., pMi } are M -partitions on player i’s

finite convex strategy polygon βki on S(I×I′)×t. Hence, each of βk ∈ βki can

be uniquely represented by βk =
∑M

n=0 θn(βk)p
n
i , where θn(βk) ∈ [0, 1] for all

n = 0, ...,M and
∑M

n=0 θn(βk) = 1. Thus,

θn(βk) =

{
barycentric coordinate of βk relative to pni if pni is a vertex of βki ,

0 otherwise.

Therefore, θn(βk) 6= 0 are barycentric coordinates of βk. Furthermore, as θn is
identically equal to zero or the barycentric function of βki relative to the vertex
pni , θn : βki → I is continuous, where I is the range of pni which takes the value

between 0 and 1. Now assume the growth process has the map {Gai
s,a

i
τ

s̃ }s̃≥0 :
Yi → βki , where Yi is an arbitrary topological space and it has a unique

expression {Gai
s,a

i
τ

s̃ }s̃≥0(Yi) =
∑M

n=0 θn ◦ pni {G
ai
s,a

i
τ

s̃ }s̃≥0. As this growth process

is a Quantum Loewner Evolution, it is continuous. Therefore, θn ◦ {Gai
s,a

i
τ

s̃ }s̃≥0 :
Yi → I is continuous.

Lemma 1. Let βki be a finite convex strategy polygon of player i in S(I×I′)×t

such that the vertices are {p0i , ..., pMi }. Suppose Yi be an arbitrary topological

space and let {Gai
s,a

i
τ

n,s̃ }s̃≥0 : Yi → I be a family of growth processes, one for each

vertex pni , with
∑M

n=0 p
n
i {G

ai
s,a

i
τ

n,s̃ (yi)}s̃≥0 ∈ βki for each yi ∈ Yi. Then yi 7→
∑M

n=0 p
n
i {G

ai
s,a

i
τ

n,s̃ (yi)}s̃≥0 ∈ βki is a continuous map {Gai
s,a

i
τ

s̃ }s̃≥0 : Yi → βki as

{Gai
s,a

i
τ

s̃ }s̃≥0 is a Quantum Loewner Evolution.

Proof. As {Gai
s,a

i
τ

s̃ }s̃≥0 is a Quantum Loewner Evolution, it is continuous. Fur-

thermore, as {Gai
s,a

i
τ

s̃ }s̃≥0(Yi) ⊂ βki ⊂ S(I×I′)×t, the continuity of {Gai
s,a

i
τ

s̃ }s̃≥0

as a map of Yi into βki follows.

Lemma 2. Let βki be a finite convex strategy polygon of player i in S(I×I′)×t.

Suppose, Yi be an arbitrary space such that, {Gai
s,a

i
τ

s̃ }s̃≥0, {Gai
s,a

i
τ

∗s̃ }s̃≥0 : Yi →
βki is a Quantum Loewner Evolution. For each yi ∈ Yi suppose there is a
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smaller finite convex strategy polygon ρ ∈ βki containing both {Gai
s,a

i
τ

s̃ (yi)}s̃≥0

and {Gai
s,a

i
τ

∗s̃ (yi)}s̃≥0. Then these two growth processes {Gai
s,a

i
τ

s̃ }s̃≥0 and {Gai
s,a

i
τ

∗s̃ }s̃≥0

are homotopic.

Proof. For each yi ∈ Yi the line joining two growth process {Gai
s,a

i
τ

s̃ (yi)}s̃≥0 and

{Gai
s,a

i
τ

∗s̃ (yi)}s̃≥0 is in ρ. Therefore, this line segment is definitely inside βki . The
representation of this segment is

S(yi, U) =

M∑

n=0

[
Uθn

(
{Gai

s,a
i
τ

s̃ (yi)}s̃≥0

)
+ (1− U)θn

(
{Gai

s,a
i
τ

∗s̃ (yi)}s̃≥0

)]
.

Furthermore, as the mapping Uθn ◦ {Gai
s,a

i
τ

s̃ }s̃≥0 + (1 − U)θn ◦ {Gai
s,a

i
τ

∗s̃ }s̃≥0 :
Yi × I → I is continuous, the function S : Yi × I → I is continuous. This is
enough to show homotopy.

Corollary 3. Let βki be a finite convex strategy polygon of player i in S(I×I′)×t.

Suppose, {Gai
s,a

i
τ

s̃ }s̃≥0, {Gai
s,a

i
τ

∗s̃ }s̃≥0 : βki → βki is a Quantum Loewner Evolution.
For each βk ∈ βki suppose there is a smaller finite convex strategy polygon

ρ ∈ βki containing both {Gai
s,a

i
τ

s̃ (βk)}s̃≥0 and {Gai
s,a

i
τ

∗s̃ (βk)}s̃≥0. Then these two

growth processes {Gai
s,a

i
τ

s̃ }s̃≥0 and {Gai
s,a

i
τ

∗s̃ }s̃≥0 are homotopic.

From above Corollary it is clear that, any growth process in the interval
[ais, a

i
τ ] inside the finite strategy polygon βki is homotopic. Therefore, without

any other further restriction a soccer player can follow any path without ham-
pering their payoff.

Definition 10. A collection k = {k(I×I′)×t} which are assumed to be homo-

morphisms k(I×I′)×t : C
(I×I′)×t(βki) → C(I×I′)×t(β̂ki), one for each dimension

(I × I ′) × t ≥ 0, and such that ∂[(I+1)×(I′+1)]×(t+1) ◦ k[(I+1)×(I′+1)]×(t+1) =
k(I×I′)×t ◦ ∂[(I+1)×(I′+1)]×(t+1) is called a chain transformation or chain map

on S where, β̂ki is a convex strategy polygon of player i other than βki .

For a finite convex polygon βki we take the chains over 2-sphere S and the
chain transformation k of C∗(βki ; S) into itself. Then the following relationship
of trace is going to hold.

Lemma 4. (Hopt trace theorem, Granas and Dugundji (2003)) Suppose, the
dimension of player i’s strategy polygon βki has the dimension of (I × I ′) × t,
and the collection of distribution function which follows

k∗ : C∗(βki , S) → C∗(βki , S),

by any chain transformation. Then

(I×I′)×t∑

m=0

(−1)mtr(km) =

(I×I′)×t∑

m=0

(−1)mtr(km∗),

where tr(.) represents trace of the argument.
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For a finite convex strategy polygon βki in
√
8/3-LQG consider the map

k̂ : βki → βki . Using rational points on the surface Q as coefficients, then

each induced homomorphism k̂
(I×I′)×t
∗ : H(I×I′)×t(βki ;Q) → H(I×I′)×t(βki ;Q)

is an endomorphism, where k̂∗ is the linear transformation of the vector space.

Following Granas and Dugundji (2003) each k̂
(I×I′)×t
∗ has a trace tr

[
k̂
(I×I′)×t
∗

]
.

Definition 11. For the strategy polygon of player i with dim(βki) ≤ (I× I ′)× t
and the endomorphic map k̂ : βki → βki , the Lefschetz number ø(k̂) is

ø(k̂) =

(I×I′)×t∑

m=0

(−1)mtr[k̂m∗,Hm(βki ;Q)].

Lemma 5. (Granas and Dugundji, 2003) For a strategy polygon βki if k̂ : βki →
βki is continuous then, ø(k̂) depends on the homotopy class of k̂. Furthermore,

the Lefschetz number ø(k̂) is an integer irrespective of any
√
8/3-LQG field

characteristics.

Proposition 1. (Lefschetz-Hopf fixed point theorem on
√
8/3-LQG surface) If

player i has a finite strategy polygon βki on S with the map k̂ : βki → βki then,

k̂ has a fixed point for all Lefschetz number ø(k̂) 6= 0.

Proof. We will prove this theorem by contradiction. Let k̂ has no fixed points. As
player i’s strategy polygon βki compact, for all βk ∈ βki there ∃ε > 0 such that

the measure d[k̂(βk), βk] ≥ ε. In this proof a repeated barycentric subdivision
of βki will be used with a fixed quadragulation of mesh < ε/ni, where ni ∈ N.

Let β
(m)
ki

is mth barrycentric subdivision of βki such that the mapping ψ :

β
(m)
ki

→ βki be a simplicical approximation of k̂. Define mth barrycentric subdi-

vision’s map when chain characteristic is present in subm : C∗(βki) → C∗(β
(m)
ki

).
It is enough to determine the trace of ψsubm : Cq(βki ;Q) → Cq(βki ;Q) for each
oriented q-sided smaller finite strategy polygons inside βki , where Cq(βki ;Q)
is the chain characteristic on q-sided smaller strategy polygon. To determine
trace we would use the Hopf trace theorem explained above. Suppose, for each
Cq(βki ;Q) there exists a basis {ρql } of all oriented q-sided smaller strategy poly-
gons in βki . Expressing ψsub

m in terms of the basis function would be,

submρql =
∑

αll′k
q
l′ , αll′ = 0,±1, kql′ ∈ β

(m)
ki

, kql′ ⊂ ρql .

Hence,

ψsubmρql =
∑

αll′ψ(k
q
l′) =

∑
γll′ρ

q
l′ ,

where γll′ is another basis. Now suppose, ν is the vertex of any kql′ ⊂ ρql . Define

ν∗ := βki \
⋃{ρ ∈ βki |ν /∈ ρ}. Then for vertex ν we have k̂(ν) ∈ k̂(ν∗) ⊂ ψ∗(ν)

such that d[k̂(ν), ψ(ν)] < ε/ni, where ψ∗ := βki \ {ρ ∈ βki |ψ /∈ ρ}. Clearly,

d[ν, ψ(ν)] ≥ d[ν, k̂(ν)]− d[k̂(ν), ψ(ν)] ≥ 2ε/ni,
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such that if ψ(ν) belongs to ρql then, δ(ρ
q
l ) ≥ 2ε/ni, which is the contradiction of

our argument that quadragulation is < ε/ni. Therefore, tr[ψsub
m,Cq(βki ;Q)] =

0 for each q-sided finite smaller strategy space. Finally, by Hopf trace theorem
we can say that Lefschetz number ø(k̂) = 0. This completes the proof.

According to Gwynne and Miller (2016) it is a continuum analog of the first
passage percolation on a random planner map. Suppose, for τ > 0 and let ητs be a
whole plane of a Schramm-Loewner Evolution with the central charge 6 (SLE6)
from ais to aiτ which is sampled independent with respect to k. Now the plane
ητs has been run by terminal time interval τ such that ∀ ε > 0 and determine it

by k. For ε > 0 and s̃ ∈ [s, τ ], suppose Gai
s,a

i
τ ,τ

s̃ := ητs ([s, τ ∧hτs ]), where hτs is the
first time ητs hits aiτ when the player i starts the process at ais and going towards
aiτ (Gwynne and Miller, 2016). Following Miller and Sheffield (2015) we know

that, for ε ↓ 0 a growing family of sets {Gai
s,a

i
τ

s̃ }s̃≥0 in the action interval [ais, a
i
τ ]

can be found by taking almost sure limits of an appropriate chosen subsequence,
which Gwynne and Miller (2016) calls as Quantum Loewner Evolution defined

on
√
8/3-quantum sphere (QLE(8/3, 0)). For ε ≥ 0, suppose Mai

s,a
i
τ

s̃ (Z,W)

be some length of the boundary of the connected set S \ Gai
s,a

i
τ

s̃ , such that it
contains the terminal action aiτ , where Z be all possible the goals, W be all
possible control strategies available to player i at time s. Furthermore, assume

the stopping time due to reach action aiτ is σ
ai
s,a

i
τ

M > 0 define a measure M ≥ 0
such that

M(Z,W) =

∫ σ
ai
s,ai

τ
M

s

1

Mai
s,a

i
τ

s̃ (Z,W)
ds̃.

Define
̂Gai

s,a
i
τ

M := Gai
s,a

i
τ

σ
ai
s,ai

τ
M

. Then following Gwynne and Miller (2016)
√
8/3-LQG

distance of [ais, a
i
τ ] is defined as

ωk(a
i
s, a

i
τ ) := inf

{
M(Z,W) ≥ 0; aiτ ∈ ̂Gai

s,a
i
τ

M

}
.

Finally, by Gwynne and Miller (2016) and Miller and Sheffield (2016), for all
r̂i ∈ R the construction of this metric for k + r̂i yields a scaling property such
as

ωk+r̂i(a
i
s, a

i
τ ) = e

(√
8/3

)
r̂i/4ωk(a

i
s, a

i
τ ).

3.3. Interpretation of the diffusion part of goal dynamics

Equation (3) talks about two components of the diffusion part, σ̂ which comes
from the strategies from the opposition team and σ∗ consists of the venue, the
percentage of attendance of the home crowd, the type of match (i.e. day or
day-night match), the amount of dew on the field and the speed of wind (which
gives advantage to those free kickers who like make swings due to wind).
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Firstly, consider the situation where a team is playing abroad. In this case
the players have harder time scoring a goal than in their home environment.
For example if an Argentine or a Brazilian player plays in an European club
tournament it is extremely hard to score in European environment as the playing
style is very different than their native land of Latin America. This thing is also
true for World Cup where only Brazilian male soccer team is the only team
from Latin America is able to win the cup in Europe (1958 FIFA World Cup in
Sweden). As playing abroad would create extra mental pressure on the players,
assume that pressure is a non-negative C2 function p(s,Z) : [0, t]×R(I×I′)×t →
R

(I×I′)×t
+ at match M + 1 such that if Zs−1 < Es−1(Z) then p takes a very

high positive value. In other words, if actual number of goals at time s− 1 (i.e.,
Zs−1) is less than the expected number of goals at that time then, the pressure
to score a goal at s is very high.

Secondly, percentage of home crowd in the total crowd of the stadium matters
in the sense that, if it is a home match for a team, then players get extra support
from their fans and are motivated to score more. If a team has a mega-star,
they will access more crowd. Generally, mega stars have fans all over the world,
and therefore they might get more crowd from the opposition team than their
team mates. Define a positive finite C2 function A(u,W) : [0, t]× R(I×I′)×t →
R

(I×I′)×t
+ with ∂A/∂W > 0 and ∂A/∂s R 0 depends on if at time s, player i

with valuation Wi ∈ W is still playing, or is out of the field due to injury or
other reasons.

Thirdly, if the match is a day match, then both teams have comparative
advantage in better visibility due to the sun. On the other hand, if the match
is a day-night match then a team’s objective is to choose the side of the field in
such a way that they get a better visibility and get advantage by scoring more
goals. Therefore, in this game a team who lose the toss clearly has disadvantage
in terms of the position of the field. Furthermore, because of the dew the ball
becomes wet and heavier at night and, it would be harder to grip from a goal-
keeper’s point of view as well as move the ball and score from a striker’s point of
view. Therefore, if the toss winning team scores some goals in the first half, that
team surely has some comparative advantage to win the game. Hence, winning
the toss is important. Furthermore, if a team loses the toss, then its decision
to score in the either of two halves depends on its opposition. Hence, define a

function B(Z) ∈ R
(I×I′)×t
+ such that,

B(Z) = 1
2 [

1
2E0(Z

2
D) + 1

2 E0(Z
1
DN )] + 1

2 [
1
2E0(Z

1
D) + 1

2E0(Z
2
DN )], (4)

where for i = 1, 2, E0(Z
i
D) is the conditional expectation of goal of a team

before the starting of the day match M + 1 with total number of goals at ith

half Zi
D, and E0(Z

i
DN ) is the conditional expectation of the goal before starting

a day-night match M + 1. Furthermore, if a team wins the toss, then it will go
for the payoff 1

2

[
1
2E0(Z

2
D) + 1

2E0(Z
1
DN )

]
, and the later part of the Equation (4)

otherwise.
Finally, we consider the dew point measure and the speed of wind at time s as

an important factor in scoring a goal. As these two are natural phenomena and
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represent ergodic behavior, we assume this can be represented by a Weierstrass
function Ze : [0, t] → R (Falconer, 2004) defined as,

Ze(s) =

∞∑

α=1

(λ1 + λ2)
(s−2)α sin [(λ1 + λ2)

αu] , (5)

where s ∈ (1, 2) is a penalization constant of weather at over u, λ1 is the dew

point measure defined by the vapor pressure 0.6108∗exp
{

17.27Td

Td+237.3

}
, where dew

point temperature Td in defined in Celsius and λ2 is the speed of wind such that
(λ1 + λ2) > 1.

Assumption 4. σ∗(s,W,Z) is a positive, finite part of the diffusion component
in Equation (2) which satisfies Assumptions 1 and 2 and is defined as

σ∗(s,W,Z) = p(s,Z) +A(s,W) +B(Z) + Ze(s)

+ ρ1p
T (s,Z)A(s,W) + ρ2A

T (s,W)B(Z) + ρ3B
T (Z)p(s,Z), (6)

where ρj ∈ (−1, 1) is the jth correlation coefficient for j = 1, 2, 3, and AT ,BT

and pT are the transposition of A,B and p which satisfy all conditions with
Equations (4) and (5). As the ergodic function Ze comes from nature, a team
does not have any control on it and its correlation coefficient with other terms
in Equation (6) are assumed to be zero.

The randomness σ̂ of Equation (3) comes from type of skill of a soccer star
of the opposition team. There are mainly two main types of players: dribblers
and tacklers, and free kickers. Free kickers have two components, the speed of

the ball after their kick s ∈ R
(I×I′)×t
+ in miles per hour and the curvature of

the bowl path measure by the dispersion from the straight line connecting the

goal keeper and the striker measured by x ∈ R
(I×I′)×t
+ inches. Define a payoff

function A1(s, x,G) : R
(I×I′)×t
+ × R

(I×I′)×t
+ × [0, 1] → R2(I×I′)×t such that, at

time s the expected payoff after guessing a ball right is EsA1(s, x,G), where G
is a guess function such that, if a player i guesses the curvature and speed of
the ball after an opposition player kicks then G = 1 and if player i does not
then G = 0, and if player i partially guesses then, G ∈ (0, 1).

On the other hand, there is a payoff function A2 for a dribbler such that

A2(s, x, θ1, G) : R
(I×I′)×t
+ ×R

(I×I′)×t
+ × [−kπ, kπ]× [0, 1] → R2(I×I′)×t, where θ1

is the angle between the beginning and end points when an opposition player
start dribbling and end it after player i gets the ball and k ∈ N. The ex-
pected payoff to score a goal at time s when the opposition player is a dribbler
is EsA2(s, x, θ1, G). Finally, an tackler’s payoff function is A3(s, x, θ1, θ2, G) :

R
(I×I′)×t
+ × R

(I×I′)×t
+ × [−kπ, kπ] × [−k, kπ] × [0, 1] → R2(I×I′)×t, where θ2 is

the allowable tackle movement in terms of angle when they do either of block,
poke, slide tackles at time s as EsA3(s, x, θ1, θ2, G). If θ2 is more than kπ,
the opposition player gets a foul or a yellow card. As player i does not know
who is what type of opposition they are going to face at a certain time during
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a game, their total expected payoff function at time s is A(s, x, θ1, θ2, G) =
℘1EsA1(s, x,G) + ℘2EsA2(s, x, θ1, G) + ℘3EsA3(s, x, θ1, θ2, G), where for j ∈
{1, 2, 3}, ℘j is the probability of each of a dribbler, a tackler and a free kicker

with ℘1 + ℘2 + ℘3 = 1. Therefore, A(s, x, θ1, θ2, G) : R
(I×I′)×t
+ × R

(I×I′)×t
+ ×

[−kπ, kπ]× [−k, kπ]× [0, 1] → R2(I×I′)×t.

4. Main results

The components of stochastic differential games under
√
(8/3)-LQG with a

continuum of states with dibbling and the passing function with finite actions
are following:

• I be a non-empty finite set of players, FZ

s be the filtration of goal Z with
the sample space Ω.

• A finite set of actions at time s for player i such that ais ∈ Ai for all i ∈ I.
• A discount rate ρis ∈ (0, 1) for player i ∈ I with the constant weight
αi ∈ R.

• The bounded objective function OBi
α expressed in Equation (1) is Borel

measurable. Furthermore, the system has a goal dynamics expressed in
the Equation (2).

• The game must be on a
√
8/3-LQG surface on 2-sphere S(I×I′)×t with the

Riemann metric tensor e
√

8/3k(l)dZ⊗ dẐ, where k is some variant of GFF
such that k : S(I×I′)×t → RI×I′

.
• For ε > 0 there exists a transition function from time s to s+ ε expressed

as Ψi
s,s+ε(Z) : Ω × S × RI×I′

+ × ∏iA
i → ∆(Ω × S × RI×I′

+ ) which is
Borel-measurable.

• For a fixed quantum knowledge space (Ω,FZ
s , S, I, E), for player i a drib-

bling and passing function pi is a mapping pi : Ω× S → ∆(Ω × S) which
is σ-measurable and the equivalence relationship has some measure in 2-
sphere.

The game is played in continuous time. If ZI×I′ ⊂ Z ⊂ (Ω × S) be the goal
condition after the start of (M +1)th game and player i select an action profile
at time s such that ais ∈ ∏iA

i, then for ε > 0, Ψs,s+ε(Z, a
i
s) is the conditional

probability distribution of the next stage of the game. A stable strategy for a
soccer player i is a behavioral strategy that depends on the goal condition at
time s. Therefore, we can say it is Borel measurable mapping associates with
each goal Z ⊂ Ω a probability distribution on the set Ai.

Definition 12. A stochastic differential game is purely quantum if it has count-
able orbits on 2-sphere. In other words,

• For each goal condition ZI×I′ ⊂ Z ⊂ (Ω×S), every action profile of player
i starts at time s, ais ∈ Ai with the

√
8/3-LQG measure for a very small

space on S defined as e
√

8/3k(l), ith player’s transition function Ψi
s,s+ε(Z)
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is a purely quantum measure. Define

Q(Z) :=
{
Z′ ∈ (Ω× S)

∣∣∃ais ∈ Ai, e
√

8/3k(l) 6= 0,Ψs,s+ε(Z
′|Z, ais) > 0

}
.

• For each goal condition ZI×I′ ⊂ Z ⊂ (Ω× S), the set

Q−1(Z) :=
{
Z′ ∈ (Ω× S)

∣∣∃ais ∈ Ai, e
√

8/3k(l) 6= 0,Ψs,s+ε(Z
′|Z, ais) > 0

}

is countable.

For purely atomic games see Hellman and Levy (2019).

Proposition 2. A purely quantum game on S with the objective function ex-
pressed in the Equation (1) subject to the goal dynamics expressed in the Equa-
tion (2) in which the orbit equivalence relation is smooth admits a measurable
stable equilibrium.

We know a soccer game stops if rainfall is so heavy that it restricts the vision
of the player, making it dangerous or the pitch becomes waterlogged due to the
heavy rain. After a period of stoppage, the officials will determine the conditions
with tests using the ball while the players wait off the field. Suppose, a match
stops after time t̃ because of the rain. After that there are two possibilities:
first, if the rain is heavy, the game will not resume; secondly, if the rain is not
so heavy and stops after certain point of time then, after getting water out of
the field, the match might be resumed. Based on the severity of the rain and
the equipment used to get the water out from the field, the match resumes for
(t̃, t − ε] where ε ≥ 0. The importance of ε is that, if the rain is very heavy,
ε = t − t̃ and on the other hand, for the case of very moderate rain, ε = 0.
Therefore, ε ∈ [0, t− t̃].

Definition 13. For a probability space (Ω,FZ
s ,P) with sample space Ω, filtra-

tion at time s of goal condition Z as {FZ

s } ⊂ Fs, a probability measure P and a
Brownian motion for rain Bs with the form B−1

s (E) such that for s ∈ [t̃, t− ε],
E ⊆ R is a Borel set. If t̃ is the game stopping time because of rain and b ∈ R
is a measure of rain in millimeters then t̃ := inf{s ≥ 0| Bs > b}.
Definition 14. Let δs : [t̃, t − ε] → (0,∞) be a C2(s ∈ [t̃, t − ε]) time-process
of a match such that, it replaces stochastic process by Itô’s Lemma. Then δs
is a stochastic gauge of that match if t̃ := s + δs is a stopping time for each
s ∈ [t̃, t− ε] and Bs > b, where s is the new time after resampling the stochastic
interval [t̃, t− ε] on

√
8/3-LQG surface.

Definition 15. Given a stochastic time interval of the soccer game Î = [t̃, t−
ε] ⊂ R, a stochastic tagged partition of that match is a finite set of ordered pairs
D = {(si, Îi) : i = 1, 2, ..., p} such that Îi = [xi−1, xi] ⊂ [t̃, t − ε], si ∈ Îi,
∪p
i=1Îi = [t̃, t − ε] and for i 6= j we have Îi ∩ Îj = {∅}. The point si is the tag

partition of the stochastic time-interval Îi of the game.

Definition 16. If D = {(si, Îi) : i = 1, 2, ..., p} is a tagged partition of stochastic
time-interval of the match Î and δs is a stochastic gauge on Î, then D is a
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stochastic δ-fine if Îi ⊂ δs(si) for all i = 1, 2, ..., p, where δ(s) = (s − δs(s), s+
δs(s)).

For a tagged partition D in a stochastic time-interval Î, as defined in Defini-
tions 15 and 16, and a function f̃ : [t̃, t − ε] × R2(I×I′)×t̂ × Ω × S → R(I×I′)×t̂

the Riemann sum of D is defined as

S(f̃ ,D) = (Dδ)
∑

f̃(s, Î,W,Z) =

p∑

i=1

f̃(si, Îi,W,Z),

whereDδ is a δ-fine division ofR(I×I′)×Û with point-cell function f̃(si, Îi,W,Z) =
f̃(si,W,Z)ℓ(Îi), where ℓ is the length of the over interval and t̂ = (t − ε) − t̃
(Kurtz and Swartz, 2004; Muldowney, 2012).

Definition 17. An integrable function f̃(s, Î,W,Z) on R(I×I′)×t̂, with integral

a =

∫ t−ε

t̃

f̃(s, Î ,W,Z)

is stochastic Henstock-Kurzweil type integrable on Î if, for a given vector ε̂ > 0,
there exists a stochastic δ-gauge in [t̃, t− ε] such that for each stochastic δ-fine

partition Dδ in R(I×I′)×t̂ we have,

Es

{∣∣∣a− (Dδ)
∑

f̃(s, Î ,W,Z)
∣∣∣
}
< ε̂,

where Es is the conditional expectation on goal Z at sample time s ∈ [t̃, t− ε] of
a non-negative function f̃ after the rain stops.

Proposition 3. Define

h = exp

{
−ε̃Es

[∫
s+ε̃

s

f̃(s, Î ,W,Z)

]}
Ψs(Z)dZ.

If for a small sample time interval [s, s+ ε̃],

1

Ns

∫

R2(I×I′)×t̂×I

h

exists for a conditional gauge γ = [δ, ω(δ)], then the indefinite integral of h,

H(R2(I×I′)×t̂×I) =
1

Ns

∫

R2(I×I′)×t̂×I

h

exists as Stieltjes function in E([s, s+ ε̃]×R2(I×I′)×t̂×Ω×S×RI) for all Ns > 0.

Corollary 6. If h is integrable on R2(I×I′)×t̂×I as in Proposition 3, then for a
given small continuous sample time the interval [s, s′] with ε̃ = s′ − s > 0, there

exists a γ-fine division Dγ in R2(I×I′)×t̂×I such that,

|(Dγ)h[s, Î , Î(Z),W,Z] −H(R2(I×I′)×t̂×I)| ≤ 1
2 |s− s′| < ε̃,
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where Î(Z) is the interval of goal Z in R2(I×I′)×t̂×I . This integral is a stochastic
Itô-Henstock-Kurtzweil-McShane-Feynman-Liouville type path integral in goal
dynamics of a sample time after the beginning of a match after rain interruption.

As after the rain stops, the environment of the field changes, giving rise to

a different probability space (Ω,F Ẑ

s
,P), where F Ẑ

s
is the new filtration process

at time s after rain. The objective function after rain becomes,

OB
i

α : Ẑi
α(W, s)

= hi∗t̃ + max
Wi∈W

Et̃

{∫ t−ε

t̃

I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s)]

∣∣∣∣F Ẑ

s

}
ds.

(7)

Furthermore, if the match starts at time t̃ after the stoppage of the match due to
rain then Liouville like action function on goal dynamics after the match starts
after the rain is

Lt̃,t−ε(Z) =

∫ t−ε

t̃

Es

{
I∑

i=1

M∑

m=1

exp(−ρi
s
m)αiWi(s)h

i
0[s, w(s), z(s)]

+ λ1[∆Z(s,W) − µ[s,W(s),Z(s,W)]ds− σ[s, σ̂,W(s),Z(s,W)]dB(s)]

+ λ2e
√

8/3k(l(s))ds

}
. (8)

The stochastic part of the Equation (2) becomes σ as λ̂1 > λ1. Equation (8)
follows Definition 17 such that a = Lt̃,t−ε(Z) and it is integrable according to
Corollary 6.

Proposition 4. If a team’s objective is to maximize Equation (7) subject to the
goal dynamics expressed in the Equation (2) on the

√
8/3-LQG surface, such

that Assumptions 1- 4 hold with Propositions 1-3 and Corollary 6, then after a
rain stoppage under a continuous sample time, the weight of player i is found
by solving

I∑

i=1

M∑

m=1

exp(−ρism)αihi0[s, w(s), z(s)]

+ gZ[s,Z(s,W)]
∂{µ[s,W(s),Z(s,W)]}

∂W

∂W

∂Wi

+ 1
2

I∑

i=1

I∑

j=1

∂σij [s, σ̂,W(s),Z(s,W)]

∂W

∂W

∂Wi
gZiZj [s,Z(s,W)] = 0,

with respect to αi, where the initial condition before the first kick on the soccer
ball after the rain stops is Zs̃. Furthermore, when αi = αj = α∗ for all i 6= j we
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get a closed form solution of the player weight as

α∗ = −
[

I∑

i=1

M∑

m=1

exp(−ρi
s
m)αihi0[s, w(s), z(s)]

]−1

×
[
∂g[s,Z(s,W)]

∂Z

∂{µ[s,W(s),Z(s,W)]}
∂W

∂W

∂Wi

+ 1
2

I∑

i=1

I∑

j=1

∂σij [s, σ̂,W(s),Z(s,W)]

∂W

∂W

∂Wi

∂2g[s,Z(s,W)]

∂Zi∂Zj


 ,

where function g [s,Z(s,W)] ∈ C2
0

(
[t̃, t− ε]× R2(I×I′)×t̂ × RI

)
with Y(s) =

g [s,Z(s,W)] is a positive, non-decreasing penalization function vanishing at
infinity which substitutes for the goal dynamics such that, Y(s) is an Itô process.

5. Proofs

5.1. Proof of Proposition 2

Consider a stochastic differential game
[
Ω× S, k, (αi)i∈I , (ρ

i
s)i∈I ,

(
Ψi

s,s+ε

)
i∈I

,

(pi)i∈I

]
. Let us define the goal space Z is a countable set such that all common

knowledge equivalence relations can be represented cardinally in Z. First we
define a quantifier free formula whose free variables are beliefs, payoffs of a
player, actions based on the goal condition at time s of stochastic differential
game on 2-sphere with goal space Z such that at time s for a given goal condition
Zs and beliefs, the strategy polygon βki has a Lefschetz-Hopf fixed point on√
8/3-LQG action space. Assume z1, z2, z3, z4 are indices in Z, i, j are players

in I, ais is player i’s action at time s in Ai, and the action profile at time s
defined as as :=

(
as1(p

i), as2(p
i), ..., asκ(p

i)
)
in
∏

iA
i, where pi is the dribbling

and passing function.
For j ∈ I, pj : Ω × S → ∆(Ω × S) and z3, z4 ∈ Z the variable ηjz3,z4,pj (s)

is player j’s belief about the goal condition z3 at time s + ε while at the goal

condition z4 at time s. For j ∈ I, z2 ∈ Z, B(Z) ∈ R
(I×I′)×t
+ and as ∈

∏
j A

j , the

variable ωj
z2,as,B

(s) is defined as player j’s payoff at time s with goal condition
z2 given their action profile and the expectation of goals based on whether
their team is playing a day match or a day-night match defined by the function
B in the Equation (4) in the previous section. Finally, For j ∈ I, z2 ∈ Z,
Ze : [0, t] → R and ajs ∈ Aj , the variable αj

z2,a
j
s,Ze

(s) is the weight of player

j puts at time s on their action ajs when the goal condition is z2 and at dew
condition on the field Ze defined in the Equation (5).

For i ∈ I and for a mixed action αai
s
∈ ∆Ai define a function

τ i(αai
s
) =


 ∑

ai
s∈Ai

αai
s
= 1


 ∧

ai
s∈Ai

(αai
s
≥ 0),
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and for z1, z2 ∈ Z define

γjz1,z2,pj

[(
ηjz3,z4,pj (s)

)
z3,z4,pj

]
=
∧

z3,pj

[
ηjz3,z1,pj (s) = ηjz3,z2,pj (s)

]
,

where the above argument means for a given dribbling and passing function pj

player j has the same belief at both goal condition z1 and z2. Therefore, the
function

τ
{[
αi
z2,ai

s,Ze
(s)
]
,
[
ηiz3,z4,pi(s)

]}

=

{
∧

i

∧

z2

τ i
[
αi
z2,ai

s,Ze
(s)
]}∧

{
∧

i

∧

z1,z2

γiz1,z2,pi

[(
ηjz3,z4,pj (s)

)
z3,z4,pj

]

→
∧

ai
s

[
αi
z1,ai

s,Ze
(s) = αi

z2,ai
s,Ze

(s)
]


 ,

exists iff mixed actions are utilized at every goal condition (i.e.
∧

i

∧
z2
τ i[αi

z2,ai
s,Ze

(s)]),

and strategies are measurable with respect to player i’s knowledge of the game.
Now for a transition function of player i in the time interval [s, s+ ε] defined as
Ψi

s,s+ε(Z) with the payoff of them at the beginning of time s is vis ≥ 0. For k
on S define a state function

Ẑ
{
vis, ω

i
z2,as,B(s), αi

z2,ai
s,Ze

(s),Ψi
s,s+ε(Z)

}

=
∧

i

∧

z1

[
vis =

∑

as

(
∏

i∈I

αi
z1,ai

s,Ze
(s)

)
(
ωi
z2,as,B(s) + (1− θ)Ψi

s,s+ε(Z)v
i
s+ε

)
]
,

(9)

such that for the goal condition z1 ∈ Z, the payoffs under mixed action profile of
the game is vis, where θ ∈ (0, 1) is a discount factor of this game. Furthermore, if
we consider the objective function expressed in the Equation (1) subject to the
goal dynamics expressed in the Equation (2) on the

√
8/3-LQG action space,

the function defined in Equation (9) in time interval [s, s+ ε] would be

Ẑs,s+ε

{
vis, α

i
z2,ai

s,Ze
(s),Ψi

s,s+ε(Z)
}

=
∧

i

∧

z1

{
vis =

∑

as

(
∏

i∈I

αi
z1,ai

s,Ze
(s)

)

[
Es

∫ s+ε

s

( I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s)]

+λ1[∆Z(ν,W) − µ[ν,W(ν),Z(ν,W)]dν − σ[ν, σ̂,W(ν),Z(ν,W)]dB(ν)]

+λ2e
√

8/3k(l)dν

)]}
,
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where the expression inside the bracket [.] is the quantum Lagrangian with
two non-negative time independent Lagrangian multipliers λ1 and λ2 where the
second stands for

√
8/3-LQG surface. Define

Z̃
{
vis, ω

i
z2,as,B(s), αi

z2,ai
s,Ze

(s),Ψi
s,s+ε(Z)

}

=
∧

i

∧

z1

∧

d∈Ai


vis ≥

∑

z2

∑

as


∏

j 6=i

αj

z1,a
j
s,Ze

(s)




×
(
ωj
z2,d,as,B

(s) + (1− θ)Ψj
s,s+ε(Z)v

j
s+ε

)]
, (10)

a goal condition z1 ∈ Z such that with no deviation in the game with con-
tinuation payoff vjs+ε gets the payoff no more than the payoff at time s or vis.
Therefore, for time interval [s, s+ ε] the goal condition should be,

Z̃s,s+ε

{
vis, α

i
z2,ai

s,Ze
(s),Ψi

s,s+ε(Z)
}

=
∧

i

∧

z1

∧

d∈Ai

{
vis ≥

∑

z2

∑

as



∏

j 6=i

αj

z1,d,a
j
s,Ze

(s)




[
Es

∫ s+ε

s

( I∑

i=1

M∑

m=1

exp(−ρjsm)αjWj(s)h
j
0[s, w(s), z(s)]

+λ1[∆Z(ν,W) − µ[ν,W(ν),Z(ν,W)]dν − σ[ν, σ̂,W(ν),Z(ν,W)]dB(ν)]

+λ2e
√

8/3k(l)dν

)]}
.

Finally, define

Z̃∗
s,s+ε

{
vis, ω

i
z2,as,B(s), αi

z2,ai
s,Ze

(s),Ψi
s,s+ε(Z)

}

=
∧

j∈I

∧

z1∈Z
τ i
[
αi
z2,ai

s,Ze
(s)
]
∧ Ẑs,s+ε

{
vis, α

i
z2,ai

s,Ze
(s),Ψi

s,s+ε(Z)
}

∧ Z̃s,s+ε

{
vis, α

i
z2,ai

s,Ze
(s),Ψi

s,s+ε(Z)
}
,

such that each player is playing a probability distribution in each goal condition
subject to a goal dynamics, dew condition of the field, whether the match is
a day or day-night match, and the strategy profiles in goal condition z1 ∈ Z
give the right payoff using equilibrium strategies on

√
8/3-LQG action space.

By Parthasarathy, Theorems and Applications (1972) we know that, a stochas-
tic game with countable states has a stationary equilibrium and by Theorem
4.7 of Hellman and Levy (2019) we conclude that, the system admits a stable
equilibrium under 2-sphere. �
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5.2. Proof of Proposition 3

Define a gauge γ = [δ, ω(δ)] for all possible combinations of a δ gauge in [t̃, t−ε]×
R2(I×I′)×t̂×Ω and ω(δ)-gauge in R2(I×I′)×t̂×I such that it is a cell in [t̃, t− ε]×
R2(I×I′)×t̂×Ω×S×R2(I×I′)×t̂×I , where ω(δ) : R2(I×I′)×t̂×I → (0,∞)2(I×I′)×t̂×I

is at least a C1 function. The reason behind considering ω(δ) as a function of δ
is because, after rain stops, if the match proceeds on time s then we can get a
corresponding sample time s and a player has the opportunity to score a goal.
Let Dγ be a stochastic γ-fine in cell E in [t̃, t− ε]×R2(I×I′)×t̂×Ω×S×RI . For

any ε > 0 and for a δ-gauge in [t̃, t− ε]×R2(I×I′)×t̂ ×Ω× S and ω(δ)-gauge in

R2(I×I′)×t̂×I choose a γ so that
∣∣∣∣
1

Ns

(Dγ)
∑

h−H(R2(I×I′)×t̂×I)

∣∣∣∣ <
1
2 |s− s′|,

where s′ = s+ ε̃. Assume two disjoint sets Ea and Eb = [s, s+ ε̃]×R2(I×I′)×t̂×
Ω× S × {RI \ Ea} such that Ea ∪ Eb = E . As the domain of f̃ is a 2-sphere,
Theorem 3 in Muldowney (2012) implies there is a gauge γa for set Ea and a
gauge γb for set E

b with γa ≺ γ and γb ≺ γ, so that both the gauges conform in
their respective sets. For every δ-fine in [s, s′]×R2(I×I′)×t̂×Ω×S and a positive
ε̃ = |s− s′|, if a γa-fine division Dγa is of the set Ea and γb-fine division Dγb

is
of the set Eb, then by the restriction axiom we know that Dγa ∪Dγb

is a γ-fine
division of E. Furthermore, as Ea ∩ Eb = ∅

1
Ns

(Dγa ∪Dγb
)
∑

h = 1
Ns

[
(Dγa)

∑
h+ (Dγb

)
∑

h
]
= α+ β.

Let us assume that for every δ-fine we can subdivide the set Eb into two disjoint
subsets Eb

1 and E
b
2 with their γb-fine divisions given by D1

γb
andD2

γb
, respectively.

Therefore, their Riemann sum can be written as β1 = 1
Ns

(D1
γb
)
∑

h and β2 =
1
Ns

(D2
γb
)
∑

h, respectively. Hence, for a small sample time interval [s, s′],

∣∣α+ β1 −H(R2(I×I′)×t̂×I)
∣∣ ≤ 1

2 |s− s′|

and ∣∣α+ β2 −H(R2(I×I′)×t̂×I)
∣∣ ≤ 1

2 |s− s′|.
Therefore,

|β1 − β2| =
∣∣∣
[
α+ β1 −H(R2(I×I′)×t̂×I)

]
−
[
α+ β2 −H(R2(I×I′)×t̂×I)

]∣∣∣

≤
∣∣∣α+ β1 −H(R2(I×I′)×t̂×I)

∣∣∣+
∣∣∣α+ β2 −H(R2(I×I′)×t̂×I)

∣∣∣
≤ |s− s′|. (11)

Equation (11) implies that the Cauchy integrability of h is satisfied, and

H(R2(I×I′)×t̂×I) =
1

Ns

∫

R2(I×I′)×t̂×I

h.
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Now consider two disjoint setM1 and M2 in R2(I×I′)×t̂×I such that M =M1∪
M2 with their corresponding integrals H(M1),H(M2), and H(M). Suppose γ-
fine divisions of M1 and M2 are given by Dγ1 and Dγ2 , respectively, with their
Riemann sums for h are m1 and m2. Equation (11) implies,

∣∣m1 −H(M1)
∣∣ ≤∣∣s − s′

∣∣ and
∣∣m2 −H(M2)

∣∣ ≤
∣∣s − s′

∣∣. Hence, Dγ1 ∪ Dγ2 is a γ-fine division of

M . Let m = m1 +m2 then Equation (11) implies
∣∣m−H(M)

∣∣ ≤ |s− s′| and

|[H(M1) +H(M2)]−H(M)| ≤ |m−H(M)|+ |m1 −H(M1)|+
|m2 −H(M2)|

≤ 3|s− s′|.

Therefore, H(M) = H(M1) +H(M2) and it is Stieljes. �

5.3. Proof of Proposition 4

For a positive Lagrangian multipliers λ1 and λ2, with initial goal condition Zt̃

the goal dynamics are expressed in Equation (2) such that such that Definition
17, Propositions 1-3 and Corollary 6 hold. Subdivide [t̃, t − ε] into n equally
distanced small time-intervals [s, s′] such that ε̃ ↓ 0, where s′ = s + ε̃. For any
positive ε̃ and normalizing constant Ns > 0, define a goal transition function as

Ψs,s+ε̃(Z) =
1

Ns

∫

R2(I×I′)×t̂×I

exp

{
− ε̃Ls,s+ε̃(Z)

}
Ψs(Z)dZ,

where Ψt(Z) is the goal transition function at the beginning of t, Ns
−1dZ is a

finite Riemann measure which satisfies Proposition 3, and for kth sample time
interval a goal transition function of [t̃, t− ε] is,

Ψt̃,t−ε̃(Z) =
1

(Ns)n

∫

R2(I×I′)×t̂×I×n

exp

{
− ε̃

n∑

k=1

Lk
s,s+ε̃(Z)

}
Ψ0(Z)

n∏

k=1

dZk,

with finite measure (Ns)
−n∏n

k=1 dZ
k satisfying Corollary 6 with its initial goal

transition function after the rain stops as Ψt̃(Z) > 0 for all n ∈ N. Define
∆Z(ν) = Z(ν + dν) − Z(ν), then Fubuni’s Theorem for the small interval of
time [s, s′] with ε̃ ↓ 0 yields,

Ls,s′(Z) =

∫
s
′

s

Eν

{
I∑

i=1

M∑

m=1

exp(−ρiνm)αiWi(ν)h
i
0[ν, w(ν), z(ν)]

+ λ1[∆Z(ν,W)− µ[ν,W(ν),Z(ν,W)]dν − σ[ν, σ̂,W(ν),Z(ν,W)]dB(ν)]

+ λ2e
√

8/3k(l(ν))dν

}
.

As we assume the goal dynamics have drift and diffusion parts, Z(ν,W) is an
Itô process and W is a Markov control measure of players. Therefore, there

imsart-generic ver. 2014/10/16 file: soccer.tex date: August 3, 2021



P. Pramanik and A. M. Polansky/Soccer game 25

exists a smooth function g[ν,Z(ν,W)] ∈ C2
(
[t̃, t− ε]× R2(I×I′)×t̂ × RI

)
such

that Y(ν) = g[ν,Z(ν,W)] with Y(ν) being an Itô’s process. Assume

g [ν +∆ν,Z(ν,W) + ∆Z(ν,W)] =

λ1[∆Z(ν,W)− µ[ν,W(ν),Z(ν,W)]dν − σ[ν, σ̂,W(ν),Z(ν,W)]dB(ν)]

+ λ2e
√

8/3k(l(ν))dν.

For a very small sample over-interval around s with ε̃ ↓ 0 generalized Itô’s
Lemma gives,

ε̃Ls,s′(Z) = Es

{
I∑

i=1

M∑

m=1

ε̃ exp(−ρi
s
m)αiWi(s)h

i
0[s, w(s), z(s)]

+ ε̃g[s,Z(s,W)] + ε̃gs[s,Z(s,W)] + ε̃gZ[s,Z(s,W)]{µ[s,W(s),Z(s,W)]}
+ ε̃gZ[s,Z(s,W)]σ [s, σ̂,W(s),Z(s,W)]∆B(s)

+ 1
2 ε̃

I∑

i=1

I∑

j=1

σij [s, σ̂,W(s),Z(s,W)]gZiZj [s,Z(s,W)] + o(ε̃)



 ,

where σij [s, σ̂,W(s),Z(s,W)] represents {i, j}th component of the variance-
covariance matrix, gs = ∂g/∂s, gZ = ∂g/∂Z, gZiZj = ∂2g/(∂Zi∂Zj), ∆Bi∆Bj =
δij ε̃, ∆Biε̃ = ε̃∆Bi = 0, and ∆Zi(s)∆Zj(s) = ε̃, where δij is the Kronecker delta
function. As Es[∆B(s)] = 0, Es[o(ε̃)]/ε̃→ 0 and for ε̃ ↓ 0,

Ls,s′(Z) =

I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s)]

+ g[s,Z(s,W)] + gs[s,Z(s,W)] + gZ[s,Z(s,W)]{µ[s,W(s),Z(s,W)]}
+ gZ[s,Z(s,W)]σ [s, σ̂,W(s),Z(s,W)] ∆B(s)

+ 1
2

I∑

i=1

I∑

j=1

σij [s, σ̂,W(s),Z(s,W)]gZiZj [s,Z(s,W)] + o(1).

There exists a vector ξ(2(I×I′)×t̂×I)×1 so that

Z(s,W)(2(I×I′)×t̂×I)×1 = Z(s′,W)(2(I×I′)×t̂×I)×1 + ξ(2(I×I′)×t̂×I)×1.
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Assume |ξ| ≤ ηε̃[ZT (s,W)]−1, then

Ψs(Z) + ε̃
∂Ψs(Z)

∂s
+ o(ε̃) =

1

Ns

∫

R2(I×I′)×t̂×I

[
Ψs(Z) + ξ

∂Ψu(Z)

∂Z
+ o(ε̃)

]

× exp

{
−ε̃
[

I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s) + ξ]

+ g[s,Z(s′,W) + ξ] + gs[s,Z(s
′,W) + ξ]

+ gZ[s,Z(s
′,W) + ξ]{µ[s,W(s),Z(s′,W) + ξ]}

+ 1
2

I∑

i=1

I∑

j=1

σij [s, σ̂,W(s),Z(s′,W) + ξ]gZiZj [s,Z(s
′,W) + ξ]





 dξ+o(ε̃1/2).

Define a C2 function

f [s,W(s), ξ] =

I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s) + ξ]

+g[s,Z(s′,W) + ξ] + gs[s,Z(s
′,W) + ξ]

+gZ[s,Z(s
′,W) + ξ]{µ[s,W(s),Z(s′,W) + ξ]

+ 1
2

I∑

i=1

I∑

j=1

σij [s, σ̂,W(s),Z(s′,W) + ξ]

×gZiZj [s,Z(s
′,W) + ξ].

Hence,

Ψs(Z) + ε̃
∂Ψs(Z)

∂s
=

Ψs(Z)

Ns

∫

R2(I×I′)×t̂×I

exp{−ε̃f [s,W(s), ξ]}dξ +

1

Ns

∂Ψs(Z)

∂Z

∫

R2(I×I′)×t̂×I

ξ exp{−ε̃f [s,W(s), ξ]}dξ + o(ε̃1/2).

For ε̃ ↓ 0, ∆Z ↓ 0

f [s,W(s), ξ] = f [s,W(s),Z(s′,W)]

+

I∑

i=1

fZi [s,W(s),Z(s,W)][ξi − Zi(s,W)]

+ 1
2

I∑

i=1

I∑

j=1

fZiZj [s,W(s),Z(s′,W)][ξi − Zi(s
′,W)][ξj − Zj(s

′,W)] + o(ε̃).
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There exists a symmetric, positive definite and non-singular Hessian matrix
Θ[2(I×I′)×t̂×I]×[2(I×I′)×t̂×I] and a vector R(2(I×I′)×t̂×I)×1 such that,

∫

R2(I×I′)×t̂×I

exp{−ε̃f [s,W(s), ξ]}dξ =
√

(2π)2(I×I′)×t̂×I

ε̃|Θ| exp
{
−ε̃f [s,W(s),Z(s′,W)] + 1

2 ε̃R
TΘ−1R

}
,

where

∫

R2(I×I′)×t̂×I

ξ exp{−ε̃f [s,W(s), ξ]}dξ

=

√
(2π)2(I×I′)×t̂×I

ε̃|Θ| exp{−ε̃f [s,W(s),Z(s′,W)] + 1
2 ε̃R

TΘ−1R}

× [Z(s′,W) + 1
2 (Θ

−1R)].

Therefore

Ψs(Z) + ε̃
∂Ψs(Z)

∂s
=

1

Ns

√
(2π)2(I×I′)×t̂×I

ε̃|Θ|
× exp{−ε̃f [s,W(s),Z(s′,W)] + 1

2 ε̃R
TΘ−1R}

×
{
Ψs(Z) + [Z(s′,W) + 1

2 (Θ
−1R)]

∂Ψs(Z)

∂Z

}
+ o(ε̃1/2).

Assuming Ns =
√
(2π)2(I×I′)×t̂×I/ (ε|Θ|) > 0, we get Wick rotated Schrödinger

type equation as,

Ψs(Z) + ε̃
∂Ψs(Z)

∂s
=
{
1− ε̃f [s,W(s),Z(s′,W)] + 1

2 ε̃R
TΘ−1R

}

×
[
Ψs(Z) + [Z(s′,W) + 1

2 (Θ
−1R)]

∂Ψs(Z)

∂Z

]
+ o(ε̃1/2).

As Z(s,W) ≤ ηε̃|ξT |−1, there exists |Θ−1R| ≤ 2ηε̃|1− ξT |−1 such that for ε̃ ↓ 0
we have

∣∣Z(s′,W) + 1
2

(
Θ−1 R

) ∣∣ ≤ ηε̃ and hence,

∂Ψs(Z)

∂s
=
[
− f [s,W(s),Z(s′,W)] + 1

2R
TΘ−1R

]
Ψs(Z).

For |Θ−1R| ≤ 2ηε̃|1− ξT |−1 and at ε̃ ↓ 0,

∂Ψs(Z)

∂s
= −f [s,W(s),Z(s′,W)]Ψs(Z),

and

− ∂

∂Wi
f [s,W(s),Z(s′,W)]Ψs(Z) = 0. (12)
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In Equation (12), Ψs(Z) is the transition wave function and cannot be zero
therefore,

∂

∂Wi
f [s,W(s),Z(s′,W)] = 0.

We know, Z(s′,W) = Z(s,W) − ξ and for ξ ↓ 0 as we are looking for some
stable solution. Hence, Z(s′,W) can be replaced by Z(s,W) and,

f [s,W(s),Z(s,W)] =

I∑

i=1

M∑

m=1

exp(−ρism)αiWi(s)h
i
0[s, w(s), z(s)]

+ g[s,Z(s,W)] + gs[s,Z(s,W)]

+ gZ[s,Z(s,W)]{µ[s,W(s),Z(s,W)]}

+ 1
2

I∑

i=1

I∑

j=1

σij [s, σ̂,W(s),Z(s,W)] gZiZj [s,Z(s,W)],

so that

I∑

i=1

M∑

m=1

exp(−ρi
s
m)αihi0[s, w(s), z(s)]

+ gZ[s,Z(s,W)]
∂{µ[s,W(s),Z(s,W)]}

∂W

∂W

∂Wi

+ 1
2

I∑

i=1

I∑

j=1

∂σij [s, σ̂,W(s),Z(s,W)]

∂W

∂W

∂Wi
gZiZj [s,Z(s,W)] = 0. (13)

If in Equation (13) we solve for αi, we can get a solution of the weight attached
toWi(s). In order to get a closed form solution we have to assume αi = αj = α∗

for all i 6= j which yields,

α∗ = −
[

I∑

i=1

M∑

m=1

exp(−ρi
s
m)αihi0[s, w(s), z(s)]

]−1

×
[
∂g[s,Z(s,W)]

∂Z

∂{µ[s,W(s),Z(s,W)]}
∂W

∂W

∂Wi

+ 1
2

I∑

i=1

I∑

j=1

∂σij [s, σ̂,W(s),Z(s,W)]

∂W

∂W

∂Wi

∂2g[s,Z(s,W)]

∂Zi∂Zj


 . (14)

Expression in Equation (14) is a unique closed form solution. The sign of α∗

varies along with the signs of all the partial derivatives. �

6. Discussion

In this paper we obtain a weight α∗ for a soccer match with rain interruption.
This coefficient tells us how to select a player to score goals at a certain position
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based on the condition of that match. It is a common practice to hide a new
talented player until the 15-minutes of the game. As the player is new opposition
team has less information about them and as they are playing at the first time
of the game, they have more energy than a player who is playing for last 75
minutes. Our model will determine the weight associated with these players
under more generalized and realistic conditions of the game.

We use a Feynman path integral technique to calculate α∗. In the later part
of the paper we focus on the more volatile environment after the rain stops. We
assume that, after a rain stoppage the occurrence of each kick towards the goal
strictly depends on the amount of rain at that sample time. If it is more than
b ∈ R millimeters, then it is very hard to move with the ball on the field, and
it is extremely difficult for a goal keeper to grip the ball which results not to
resume the match again. Using Itô’s lemma we define a δs-gauge which generates
a sample time s instead of an actual time s is assumed to follow a Wiener
process. Furthermore, we assume the action space of a soccer player has a

√
8/3-

LQG surface and, we construct a stochastic Itô-Henstock-Kurzweil-McShane-
Feynman-Liouville type path integral to solve for the optimal weight associated
with them. As before rain, environment does not offer an extra moisture, a
technically sound player does not need to predict the behavior of an opponent
which is not true for the case of a match after a rain stoppage.
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