On rooted k-connectivity problems in quasi-bipartite digraphs

Zeev Nutov

Received: date / Accepted: date

Abstract

We consider the directed Min-Cost Rooted Subset k-EdgeConnection problem: given a digraph $G=(V, E)$ with edge costs, a set $T \subseteq V$ of terminals, a root node r, and an integer k, find a min-cost subgraph of G that contains k edge disjoint $r t$-paths for all $t \in T$. The case when every edge of positive cost has head in T admits a polynomial time algorithm due to Frank [9, and the case when all positive cost edges are incident to r is equivalent to the k-Multicover problem. Chan et al. [2] gave an LP-based $O(\ln k \ln |T|)$ approximation algorithm for quasi-bipartite instances, when every edge in G has an end (tail or head) in $T \cup\{r\}$. We give a simple combinatorial algorithm with the same ratio for a more general problem of covering an arbitrary T intersecting supermodular set function by a minimum cost edge set, and for the case when only every positive cost edge has an end in $T \cup\{r\}$.

Keywords min-cost rooted k-edge-connection • quasi-bipartite digraphs • T-intersecting supermodular set functions • approximation algorithms

1 Introduction

All graphs considered here are directed, unless stated otherwise. We consider the following problem (a.k.a. k-Edge-Connected Directed Steiner Tree):

```
Min-Cost Rooted Subset }k\mathrm{ -Edge-Connection
Input: A directed (multi-)graph G=(V,E) with edge costs {c(e):e\inE },
a set T\subsetV of terminals, a root node r 
Output: A min-cost subgraph that has k edge disjoint rt-paths for all t\inT.
```

Preliminary version in CSR 2021: 339-348.
Z. Nutov

The Open University of Israel
E-mail: nutov@openu.ac.il

The case when every edge of positive cost has head in T admits a polynomial time algorithm due to Frank [9]. When all positive cost edges are incident to r we get the Min-Cost Multicover problem. The case when all positive cost edges are incident to the same node admits approximation ratio $O(\ln n)$ [24]. More generally, a graph (or an edge set) is called quasi-bipartite if every edge has at least one end (tail or head) in $T \cup\{r\}$.

In the augmentation version of the problem - Min-Cost Rooted Subset $\left(k_{0}, k\right)$-Edge-Connection Augmentation, the input graph G contains a subgraph $G_{0}=\left(V, E_{0}\right)$ of cost zero that has k_{0}-edge disjoint $r t$-paths for all $t \in T$. Recently, Chan, Laekhanukit, Wei, \& Zhang [2] obtained approximation ratio $O\left(\ln \left(k-k_{0}+1\right) \ln |T|\right)$ for the case when G is quasi-bipartite. We provide a simple proof for a more general setting.

An integer valued set function f on a groundset V is intersecting supermodular if any $A, B \subseteq V$ that intersect satisfy the supermodular inequality $f(A)+f(B) \leq f(A \cap B)+f(A \cup B)$; if this holds whenever $A \cap B \cap T \neq \emptyset$ for a given set $T \subseteq V$ of terminals, then f is T-intersecting supermodular. We say that $A \subseteq V$ is an f-positive set if $f(A)>0 . f$ is positively T-intersecting supermodular if the supermodular inequality holds whenever $A \cap B \cap T \neq \emptyset$ and $f(A), f(B)>0$. A typical way to create a positively intersecting supermodular function is to take the "non-negative part" of an intersecting supermodular one, which means replacing each negative value by zero; namely, if g is T-intersecting supermodular then $f(A)=\max \{g(A), 0\}$ is positively T intersecting supermodular, see [9].

An edge e covers a set A if it enters A, namely, if its head is in A and tail is not in A. For an edge set/graph J let $d_{J}(A)$ denote the number of edges in J that cover A. We say that J covers f or that J is a cover of f if $d_{J}(A) \geq f(A)$ for all $A \subseteq V$. We consider the following generic problem.

Min-Cost Set Function Edge Cover
 Input: A digraph $G=(V, E)$ with edge costs and a set function f on V.
 Output: A min-cost edge subset $J \subseteq E$ that covers f.

Here f may not be given explicitly, and for a polynomial time implementation of algorithms we need that certain queries related to f can be answered in polynomial time. For an edge set I, the residual function f^{I} of f is defined by $f^{I}(A)=\max \left\{f(A)-d_{I}(A), 0\right\}$. It is known that if f is positively T-intersecting supermodular then so is f^{I}, c.f. [9]; to see this, note that $g(A)=f(A)-d_{I}(A)$ is positively T-intersecting supermodular (since $g(A)>0$ implies $f(A)>0$ and since $-d(A)$ is supermodular), and thus the positive part $\max \{g(A), 0\}$ of g is also positively T-intersecting supermodular.

Let $\max (f)=\max \{f(A): A \subseteq V\}$ denote the maximum f-value taken over all sets. An inclusion minimal member of a set-family \mathcal{F} is called an \mathcal{F} core, or simply a core, if \mathcal{F} is clear from the context. Let $\mathcal{C}_{\mathcal{F}}$ denote the family of \mathcal{F}-cores. We will assume the following.

Assumption 1. The cores of the set family $\mathcal{F}=\left\{A: f^{I}(A)=\max \left(f^{I}\right)\right\}$ can be found in polynomial time for any edge set I.

Given a set function f on V and a set $T \subseteq V$ of terminals, we say that a graph $G=(V, E)$ is f-quasi-bipartite if every its edge has an end (tail or head) v such that $v \in T$ or such that v does not belong to any f-positive set. Let E_{0} be the set of zero cost edges of G. By Menger's Theorem, Min-Cost Rooted Subset k-Edge-Connection Augmentation is equivalent to the problem of finding a min-cost edge set $J \subseteq E \backslash E_{0}$ that covers the function f defined by

$$
f(A)= \begin{cases}\max \left\{k-d_{G_{0}}(A), 0\right\} & \text { if } A \cap T \neq \emptyset, r \notin A \\ 0 & \text { otherwise }\end{cases}
$$

This f is positively T-intersecting supermodular, see 9 . Since r does not belong to any f-positive set, if G is quasi-bipartite then $G \backslash E_{0}$ is f-quasibipartite. Assumption 1 holds for this f, since the cores as in Assumption 1 can be found by computing for every $t \in T$ the closest to t minimum rt-cut of $G_{0}+I$, c.f. 9, 28. Under Assumption 1, we prove the following.

Theorem 1 The Min-Cost Set Function Edge Cover problem with positively T-intersecting supermodular f and f-quasi-bipartite G admits approximation ratio $4 H(\max (f)) \cdot(1+\ln |T|)$, where $H(k)=\sum_{i=1}^{k} 1 / i$ denotes the k th Harmonic number.

Theorem 1 implies the following extension of the result of Chan et al. [2].
Corollary 1 The Min-Cost Rooted Subset (k_{0}, k)-Edge-Connection AugMEntation problem admits approximation ratio $4 H\left(k-k_{0}\right) \cdot(1+\ln |T|)$ if the set of positive cost edges of G is quasi-bipartite.

As far as we can see, Corollary 1 cannot be deduced from the work of Chan et al. [2]. Our approach is motivated by an earlier result of Frank [9, who showed that Min-Cost Rooted Subset k-Edge-Connection can be solved in polynomial time provided that every positive cost edge has head in T. For this, he proved that Min-Cost Set Function Edge Cover with positively T-intersecting supermodular f can be solved in polynomial time provided that every positive cost edge has head in T. While our approximation ratio is asymptotically similar to the one of [2] - $O(\ln k \cdot \ln |T|)$, our constant hidden in the $O(\cdot)$ term is smaller and the proof (of a more general result) is substantially simpler. Moreover, our algorithm is combinatorial and thus is much faster than the one of [2], that repeatedly solves linear programs and rounds LP solutions. Chan et al. [2] do not specify how the LPs are solved, but one can easily see that they can be solved using the ellipsoid algorithm.

We use a method initiated by the author in [28], that extends the KleinRavi [21] algorithm for the Node Weighted Steiner Tree problem, to high connectivity problems. It was applied later in [29,30] also for node weighted problems, and the same method is used in [2]; a restricted version of this method appeared earlier in [22] and later in [7]. The method was further developed by Fukunaga 11 and Chekuri, Ene, and Vakilian 4 for prizecollecting connectivity problems.

In the rest of this section we briefly survey some literature on rooted connectivity problems. The Directed Steiner Tree problem admits approximation ratio $O\left(\ell^{3}|T|^{2 / \ell}\right)$ in time $O\left(|T|^{2 \ell} n^{\ell}\right)$ for any integer ℓ, see [33|3, 25, 18, and also a tight quasi-polynomial time approximation $O\left(\log ^{2}|T| / \log \log |T|\right)$ [16, 13]; see also a survey in [6. For similar results for Min-Cost Rooted Subset 2-Edge-Connection see [15]. Directed Steiner Tree is $\Omega\left(\log ^{2} n\right)$ hard to approximate even on very special instances [17] that arise from the Group Steiner Tree problem on trees; the latter problem admits a tight approximation ratio $O\left(\log ^{2} n\right)$ [12]. The (undirected) Steiner Tree problem was also studied extensively, c.f. [1,14] and the references therein. The study of quasi-bipartite instances was initiated for undirected graphs in the 90's 32, while the directed version was shown to admits approximation ratio $O(\ln |T|)$ in (10, 19 .

Rooted k-connectivity problems were studied for both directed and undirected graphs, edge-connectivity and node-connectivity, and various types of graphs and costs; c.f. a survey [31. For undirected graphs the problem admits approximation ratio 2 [20], but for digraphs it has approximation threshold $\max \left\{k^{1 / 2-\epsilon},|T|^{1 / 4-\epsilon}\right\}$ [26]. For the undirected node connectivity version, the currently best known approximation ratio is $O(k \ln k)$ 30 and threshold $\max \left\{k^{0.1-\epsilon},|T|^{1 / 4-\epsilon}\right\}[26]$. However, the augmentation version when any edge can be added by a cost of 1 is just Set Cover hard and admits approximation ratios $O(\ln |T|)$ for digraphs and $\min \left\{O\left(\ln |T|, O\left(\ln ^{2} k\right)\right\}\right.$ for graphs 23]; a similar result holds when positive cost edges form a star [24].

In digraphs, node connectivity can be reduced to edge-connectivity by a folklore reduction of "splitting" each node v into two nodes $v^{\text {in }}, v^{\text {out }}$. However, this reduction does not preserve quasi-bipartiteness. The reductions of [27] that transfers undirected connectivity problems into directed ones, and a reduction of [5] that reduces general connectivity requirements to rooted requirements, also do not preserve quasi-bipartiteness.

2 Covering T-intersecting supermodular functions (Theorem 1)

A set family \mathcal{F} is a T-intersecting family if $A \cap B, A \cup B \in \mathcal{F}$ whenever $A \cap B \cap T \neq \emptyset$. It is known that if f is (positively) T-intersecting supermodular then the family $\mathcal{F}=\{A \subseteq V: f(A)=\max (f)\}$ is T-intersecting, see [9]. We say that an edge set I covers \mathcal{F} if $d_{I}(A) \geq 1$ for all $A \in \mathcal{F}$. Recall that inclusion minimal members of \mathcal{F} are called \mathcal{F}-cores, and that $\mathcal{C}_{\mathcal{F}}$ denotes the family of \mathcal{F}-cores. For $C \in \mathcal{C}_{\mathcal{F}}$ let $\mathcal{F}(C)$ denote the family of sets in \mathcal{F} that contain no core distinct from C; for $\mathcal{C} \subseteq \mathcal{C}_{\mathcal{F}}$ let $\mathcal{F}(\mathcal{C})=\cup_{C \in \mathcal{C}} \mathcal{F}(C)$.

An analogue of the following lemma was proved in [28, Lemma 3.3] for intersecting families, and the proof for T-intersecting families is similar.

Lemma 1 Let \mathcal{F} be a T-intersecting family. If an edge set S covers $\mathcal{F}(\mathcal{C})$ for $\mathcal{C} \subseteq \mathcal{C}_{\mathcal{F}}$ then $\nu(\emptyset)-\nu(S) \geq|\mathcal{C}| / 2$, where $\nu(S)$ denotes the number of cores of the residual family $\mathcal{F}^{S}=\left\{A \in \mathcal{F}: d_{S}(A)=0\right\}$.

Proof The \mathcal{F}^{S}-cores are T-disjoint, and each of them contains some \mathcal{F}-core. Every \mathcal{F}^{S}-core that contains a core from \mathcal{C} contains at least two \mathcal{F}-cores. Thus the number of \mathcal{F}^{S}-cores that contain exactly one \mathcal{F}-core is at most $\nu(\emptyset)-|\mathcal{C}| / 2$. Consequently, $\nu(S) \leq \nu(\emptyset)-|\mathcal{C}| / 2$.

Consider an instance of the Min-Cost Set Function Edge Cover problem with positively T-intersecting supermodular f and f-quasi-bipartite G, and optimal solution value τ_{f}. Let $\mathcal{F}=\{A \subseteq V: f(A)=\max (f)\}$, and for $I \subseteq E$ let $\nu_{f}(I)$ denote the number of \mathcal{F}^{I}-cores. In the next section we will prove the following.

Lemma 2 There exists a polynomial time algorithm that finds $\emptyset \neq \mathcal{C} \subseteq \mathcal{C}_{\mathcal{F}}$ and a cover $S \subseteq E$ of $\mathcal{F}(\mathcal{C})$ such that

$$
\frac{c(S)}{|\mathcal{C}|} \leq \frac{2}{\max (f)} \cdot \frac{\tau_{f}}{\left|\mathcal{C}_{\mathcal{F}}\right|}=\frac{2}{\max (f)} \cdot \frac{\tau_{f}}{\nu_{f}(\emptyset)}
$$

Now let $I \subseteq E$ be an edge set such that $\nu_{f}(I) \geq 1$, and note that then $\max \left(f^{I}\right)=\max (f)$. Applying Lemmas 1 and 2 on the residual function $g=f^{I}$ we get that we can find in polynomial time an edge set $S \subseteq E \backslash I$ such that

$$
\frac{c(S)}{\nu_{g}(\emptyset)-\nu_{g}(S)} \leq \frac{c(S)}{|\mathcal{C}| / 2} \leq \frac{4}{\max (g)} \cdot \frac{\tau_{g}}{\nu_{g}(\emptyset)} .
$$

Observing that $\nu_{g}(\emptyset)=\nu(I), \nu_{g}(S)=\nu_{f}(I \cup S)$, and $\tau_{g} \leq \tau_{f}$ we get:
Corollary 2 There exists a polynomial time algorithm that given $I \subseteq E$ with $\nu_{f}(I) \geq 1$ finds an edge set $S \subseteq E \backslash I$ such that

$$
\frac{c(S)}{\nu_{f}(I)-\nu_{f}(I \cup S)} \leq \frac{4}{\max (f)} \cdot \frac{\tau_{f}}{\nu_{f}(I)}
$$

From Corollary 2 it is a routine to deduce the following corollary, c.f. [21] and [29, Theorem 3.1]; we provide a proof for completeness of exposition.

Corollary 3 There exists a polynomial time algorithm that computes a cover I of $\mathcal{F}=\{A \subseteq V: f(A)=\max (f)\}$ of cost $c(I) \leq \frac{4}{\max (f)} \cdot\left(1+\ln \nu_{f}(\emptyset)\right) \cdot \tau_{f}$.

Proof Start with $I=\emptyset$ an while $\nu_{f}(I) \geq 1$ add to I an edge set S as in Corollary 2, Let I_{j} be the partial solution at the end of iteration j, where $I_{0}=\emptyset$, and let S_{j} be the set added at iteration j; thus $I_{j}=I_{j-1} \cup S_{j}$, $j=1, \ldots, q$. Let $\nu_{j}=\nu_{f}\left(I_{j}\right)$, so $\nu_{0}=\nu_{f}(\emptyset), \nu_{q}=0$, and $\nu_{q-1} \geq 1$. Let $\rho=\frac{4}{\max (f)}$. Then

$$
\frac{c_{j}}{\nu_{j-1}-\nu_{j}} \leq \rho \cdot \frac{\tau_{f}}{\nu_{j-1}} \quad j=1, \ldots, q
$$

This implies $c_{q} \leq \rho \tau_{f}$ and

$$
\nu_{j} \leq \nu_{j-1}\left(1-\frac{c_{j}}{\rho \tau_{f}}\right) \quad j=1, \ldots, q
$$

Unraveling we get

$$
\frac{\nu_{q-1}}{\nu_{0}} \leq \prod_{j=1}^{q-1}\left(1-\frac{c_{j}}{\rho \tau_{f}}\right)
$$

Taking natural logarithms and using the inequality $\ln (1+x) \leq x$, we obtain

$$
\rho \cdot \tau_{f} \cdot \ln \left(\frac{\nu_{0}}{\nu_{q-1}}\right) \geq \sum_{j=1}^{q-1} c_{j} .
$$

Since $c_{q} \leq \rho \tau_{f}$ and $\nu_{q-1} \geq 1$, we get $c(I) \leq c_{q}+\sum_{j=1}^{q-1} c_{j} \leq \rho \tau_{f}\left(1+\ln \nu_{0}\right)$.
To see that Corollary 3implies Theorem 1, consider the following algorithm that uses the so called "backward augmentation" method.

```
Algorithm 1: Backward-Augmentation \((f, G=(V, E), c)\)
    \(I \leftarrow \emptyset\)
    for \(\ell=\max (f)\) downto 1 do
        Compute a cover \(I_{\ell}\) of \(\mathcal{F}_{\ell}=\left\{A \subseteq V: f^{I}(A)=\ell\right\}\) as in Corollary 3
        \(I \leftarrow I \cup I_{\ell}\)
    return \(I\)
```

At iteration ℓ we have $c\left(I_{\ell}\right) / \tau_{f} \leq 4(1+\ln |T|) / \ell$, hence the overall approximation ratio is $4(1+\ln |T|) \cdot \sum_{\ell=\max (f)}^{1} 1 / \ell=4 H(\max (f)) \cdot(1+\ln |T|)$, as required in Theorem1. It remains only to prove Lemma 2 which is done in the next section, where we also describe a simple polynomial time implementation of our algorithm.

3 Proof of Lemma 2

Let $\langle G=(V, E), c, T, f\rangle$ be an instance of Min-Cost Set Function Edge Cover with positively T-intersecting supermodular f and f-quasi-bipartite G, and an optimal solution value $\tau=\tau_{f}$. Let us denote $p=\max (f)$ and let $\mathcal{F}=\{A \subseteq V: f(A)=p\}$. Recall that $\mathcal{F}(C)$ denotes the family of sets in \mathcal{F} that contain no core distinct from C, and that $\mathcal{F}(\mathcal{C})=\cup_{C \in \mathcal{C}} \mathcal{F}(C)$ for $\mathcal{C} \subseteq \mathcal{C}_{\mathcal{F}}$. We need to show that there exists a subfamily of cores $\mathcal{C} \subseteq \mathcal{C}_{\mathcal{F}}$ and a cover $S \subseteq E$ of $\mathcal{F}(\mathcal{C})$ such that

$$
\begin{equation*}
\frac{c(S)}{|\mathcal{C}|} \leq \frac{1}{p} \cdot \frac{\tau}{\left|\mathcal{C}_{\mathcal{F}}\right|} \tag{1}
\end{equation*}
$$

We also need to design a polynomial time algorithm that finds such \mathcal{C}, S.

Fig. 1 (a) A 3-cover I of $\mathcal{F}\left(\left\{C, C^{\prime}, C^{\prime \prime}\right\}\right)$; here $e_{C^{\prime \prime}}^{2}, e_{C^{\prime \prime}}^{3}$ have cost 3 each, $e, e_{C}^{2}, e_{C^{\prime}}^{2}$ have cost 2 each, and all other edges have cost 1 . (b) The auxiliary graph \mathcal{H}. The star $S_{\mathcal{H}}$ with center e and leaf set $\mathcal{C}=\left\{C, C^{\prime}, C^{\prime \prime}\right\}$ has ratio $\frac{c\left(S_{\mathcal{H}}\right)}{|\mathcal{C}|}=\frac{6}{3}=2$ (the same ratio 2 is achieved by the star $S_{\mathcal{H}} \backslash\{C\}$). The edge subset S of I that corresponds to $S_{\mathcal{H}}$ is $I_{C}^{3} \cup I_{C^{\prime}}^{1} \cup I_{C^{\prime \prime}}^{1}$. Here $c(I)=26$ and $c(\mathcal{H})=29$. Note that $e_{C^{\prime}}^{1}=e=e_{C^{\prime \prime}}^{1}$, and that $e \in I_{C}^{3}$ but $e \neq e_{C}^{3}$.

3.1 Roadmap of the proof

Here is a roadmap of the proof of Lemma 2. To make this roadmap a complete proof we just need to describe a polynomial time implementation and to prove formally three Lemmas 4, 5, and 6 mentioned in this roadmap; this is done in Sections 3.2 and 3.3, respectively.

We say that $I \subseteq E$ is a p-cover of \mathcal{F} if $d_{I}(A) \geq p$ for all $A \in \mathcal{F}$, and I is \mathcal{F}-quasi-bipartite if every edge in I has an end (tail or head) v such that $v \in T$ or such that v does not belong to any set in \mathcal{F}. Fix an optimal solution $I \subseteq E$, so I is a cover of f of $\operatorname{cost} c(I)=\tau$. Note that I is a p-cover of \mathcal{F} (since $f(A)=p$ for all $A \in \mathcal{F}$) and that I is \mathcal{F}-quasi-bipartite (since G is f-quasi-bipartite and since $I \subseteq E$).
(A) For every $C \in \mathcal{C}_{\mathcal{F}}$ fix some inclusion minimal p-cover $I_{C} \subseteq I$ of $\mathcal{F}(C)$. In Lemma 4 we show the following:
(i) Each I_{C} partitions into p inclusion minimal 1-covers $I_{C}^{1}, \ldots, I_{C}^{p}$ of $\mathcal{F}(C)$.
(ii) Each $\mathcal{F}(C)$ has a unique inclusion maximal set M_{C} and each I_{C}^{j} has a unique edge e_{C}^{j} that covers M_{C}, which we call the prime edge of I_{C}^{j}.
(B) In Lemma 5 we show that for distinct $C, C^{\prime} \in \mathcal{C}_{\mathcal{F}}$ and any $1 \leq j, j^{\prime} \leq p$, if $I_{C}^{j} \cap I_{C^{\prime}}^{j^{\prime}} \neq \emptyset$ then $I_{C}^{j} \cap I_{C^{\prime}}^{j^{\prime}}=\left\{e_{C}^{j}\right\}$ or $I_{C}^{j} \cap I_{C^{\prime}}^{j^{\prime}}=\left\{e_{C^{\prime}}^{j^{\prime}}\right\}$, see Fig. 1(a); this property is since I is \mathcal{F}-quasi-bipartite. Consequently, for every $e \in I$ there is at most one set I_{C}^{j} such that $e \in I_{C}^{j}$ and $e \neq e_{C}^{j}$.
(C) Construct an auxiliary bipartite graph \mathcal{H} with node- and edge-costs as follows, see Fig. 1 (b) The node parts of \mathcal{H} are the prime edges and $\mathcal{C}_{\mathcal{F}}$. Each node e of \mathcal{H} that is a prime edge inherits its cost $c(e)$ in G, and is connected to each $C \in \mathcal{C}_{\mathcal{F}}$ such that $e \in I_{C}^{j}$ for some j by an edge of cost $c\left(I_{C}^{j}\right)-c(e)$ (this edge represents the set I_{C}^{j}). Since for every $e \in I$ at most one set I_{C}^{j} contains e as a non-prime edge, and since the sets I_{C}^{j} are pairwise disjoint, the total cost of \mathcal{H} is at most 2 times the cost of I.
(D) Every node $C \in \mathcal{C}_{\mathcal{F}}$ of \mathcal{H} has at least p neighbors in \mathcal{H} (the prime edges of the sets $I_{C}^{1}, \ldots, I_{C}^{p}$). In Lemma 6 we show that \mathcal{H} contains a star $S_{\mathcal{H}}$ with leaf set $\mathcal{C} \subseteq \mathcal{C}_{\mathcal{F}}$ such that $\frac{c\left(S_{\mathcal{H}}\right)}{|\mathcal{C}|} \leq \frac{1}{p} \cdot \frac{c(\mathcal{H})}{\left|\mathcal{C}_{\mathcal{F}}\right|} \leq \frac{2}{p} \cdot \frac{\tau}{\left|\mathcal{C}_{\mathcal{F}}\right|}$. Then the edge subset $S \subseteq I$ that corresponds to $S_{\mathcal{H}}$ covers $\mathcal{F}(\mathcal{C})$, and S, \mathcal{C} satisfy inequality (1).
(E) To find $\emptyset \neq \mathcal{C} \subseteq \mathcal{C}_{\mathcal{F}}$ and a cover S of $\mathcal{F}(\mathcal{C})$ that satisfies (11), we make a similar construction: now \mathcal{H} has node set $E \cup \mathcal{C}$, every node $e \in E$ of \mathcal{H} has cost equal to the cost of e in G, and in \mathcal{H} each node $C \in \mathcal{C}_{\mathcal{F}}$ is connected to each node $e \in E$ by an edge of cost being the minimum cost of an edge set S such that $S \cup\{e\}$ covers $\mathcal{F}(C)$. In such a graph \mathcal{H} we can find a star $S_{\mathcal{H}}$ with leaf set \mathcal{C} that minimizes $\frac{c\left(S_{\mathcal{H}}\right)}{|\mathcal{C}|}$ using the method of Klein \& Ravi [21]; see also step 3 of the implementation discussed in the next section.

3.2 Implementation

Here we briefly discuss a simple implementation of the entire algorithm. We start with the particular case of the Min-Cost Rooted $\operatorname{Subset}\left(k_{0}, k\right)$ -Edge-Connection Augmentation problem. In what follows let $n=|V|$ and $m=|E|$. As a pre-processing step, we assign unit capacities to edges in E and compute a k_{0}-flow from the root r to each $t \in T$. This can be done in $O(k m|T|)$ time using the Ford-Fulkerson algorithm. Let us consider iteration ℓ of Algorithm 1. when $\max (f)=k-\ell$. We will assume that we already have a flow on zero cost edges of value $k-\ell-1$ to each $t \in T$, and perform the following steps.

1. We increase the flow by 1 to each $t \in T$, and discard terminals for which the flow can be further increased by 2 . This can be done in $O(m|T|)$ time.
2. To compute the cost of an edge of \mathcal{H} between nodes C and e, we add a "dummy" edge of cost 0 from r to some terminal in every core distinct from C, set the cost of e to 0 , and compute a minimum cost edge set that increases the $r C$-flow by 1 ; the later problem admits a linear time reduction to the shortest path problem and thus can be implemented in $O\left(n^{2}\right)$ time. The number of edges in \mathcal{H} is $O(m|T|)$, hence \mathcal{H} can be constructed in $O\left(n^{2} m|T|\right)$ time.
3. We can sort the edges of \mathcal{H} by increasing cost in $O(m|T| \log n)$ time. Then finding a (nontrivial) star S^{e} in \mathcal{H} with a specific center e that minimizes $\frac{c\left(S^{e}\right)}{|\mathcal{C}|}$ can be done in time linear in the degree of e in \mathcal{H} as follows. We take the lowest cost edge incident to e into S^{e} and then add edges incident to e one by one in increasing cost order until reaching a local minimum of $\frac{c\left(S^{e}\right)}{|\mathcal{C}|}$; see [21]. The overall time for computing all stars S^{e} is $O(m n \log n)$, which is dominated by the time $O\left(n^{2} m|T|\right)$ of the construction of \mathcal{H}.
4. At iteration ℓ we need to construct the graph \mathcal{H} at most $|T|$ times, hence the overall time per iteration ℓ is $O\left(n^{2} m|T|^{2}\right)$. And since we have $k-k_{0}$ iterations, the overall running time is $\left(k-k_{0}\right) \cdot O\left(n^{2} m|T|^{2}\right)=O\left(k n^{6}\right)$.
We note that while the running time of the described implementation is somewhat high, it is still much lower than that of Chan et al. [2].

The implementation of steps 1,3,4 for the Min-Cost Set Function Edge Cover problem under Assumption 1 is similar. For step 2, for any $C \in \mathcal{C}_{\mathcal{F}}$ and $e \in E \backslash I$ we need to find in polynomial time a min-cost edge set $S=S(e, C)$ such that $S \cup\{e\}$ covers $\mathcal{F}(C)$. For this, it is sufficient to find a min-cost cover of $\mathcal{F}(C)$ after resetting the cost of e to zero. The family $\mathcal{F}(C)$ is a T-intersecting family that has a unique core; such a family is called a ring. It is known that a min-cost edge-cover of a ring can be found in polynomial time under Assumption 1 (c.f. [9,28), by a standard primal dual algorithm.

3.3 Proofs of Lemmas

Now we turn to formal proofs of Lemmas 45 and 6 mentioned in our roadmap. At each step we will specify the part of our roadmap that is proved.

A T-intersecting family \mathcal{R} that has a unique core C is called a ring. Then C is the intersection of all sets in \mathcal{R}, and \mathcal{R} also has a unique inclusion maximal set M which is the union of all sets in \mathcal{R}. The following lemma is a folklore.

Lemma 3 If \mathcal{F} is a T-intersecting family then $\mathcal{F}(C)$ is a ring family for any $C \in \mathcal{C}_{\mathcal{F}}$; thus $\mathcal{F}(C)$ also has a unique inclusion maximal set M_{C}. Furthermore, $M_{C} \cap M_{C^{\prime}} \cap T=\emptyset$ for any distinct $C, C^{\prime} \in \mathcal{C}_{\mathcal{F}}$.

The next lemma gives two additional known properties of rings; c.f. [8] for the first property and [28, Lemma 2.6 and Corollary 2.7] for the second. These two properties imply part (A).

Lemma 4 Let \mathcal{R} be a ring with minimal member C and maximal member M.
(i) Any p-cover of \mathcal{R} is a union of p edge disjoint covers of \mathcal{R}.
(ii) Let I be an inclusion minimal cover of \mathcal{R}. Then there is an ordering $e_{1}, e_{2}, \ldots, e_{q}$ of I and a nested family $C=C_{1} \subset C_{2} \cdots \subset C_{q}=M$ of sets in \mathcal{R} such that for every $j=1, \ldots, q, e_{j}$ is the unique edge in I that enters C_{j} (namely, e_{j} has head in C_{j} and tail not in C_{j}).

Lemmas 3 and 4 (i) imply the following lemma that implies parts (B,C).
Lemma 5 Let I be an \mathcal{F}-quasi-bipartite cover of a T-intersecting family \mathcal{F}. For $C \in \mathcal{C}_{\mathcal{F}}$ let $I_{C} \subseteq I$ be an inclusion minimal cover of $\mathcal{F}(C)$, and let e_{C} be the unique (by Lemma 4(i)) edge in I_{C} that covers M_{C}. Let $C, C^{\prime} \in \mathcal{C}_{\mathcal{F}}$ be distinct and let $e \in I_{C} \cap I_{C^{\prime}}$. Then $e=\left\{e_{C}\right\}$ or $e=\left\{e_{C^{\prime}}\right\}$.

Proof Suppose that $e \neq e_{C}$ and we will show that then $e=e_{C^{\prime}}$. Note that e does not cover M_{C}, hence e has both ends in M_{C}, by the minimality of I_{C} and Lemma 4 (ii). Since I is \mathcal{F}-quasi-bipartite, e has an end t in $M_{C} \cap T$. By Lemma 3, $t \notin M_{C^{\prime}}$, hence by the minimality of $I_{C^{\prime}}$ we must have $e=e_{C^{\prime}}$.

The next lemma implies part (D).

Lemma 6 Let $H=(A \cup B, E)$ be a bipartite graph with edge- and node- costs $\{c(e): e \in E\} \cup\{c(a): a \in A\}$ and let \mathcal{S} be the set of stars in H with center in A and leaves in B. If the degree of every $b \in B$ is at least p then there is $S^{*} \in \mathcal{S}$ such that $\frac{c\left(S^{*}\right)}{\left|L\left(S^{*}\right)\right|} \leq \frac{1}{p} \cdot \frac{c(G)}{|B|}$, where $L\left(S^{*}\right)$ is the set of leaves of S^{*}.

Proof For $S \in \mathcal{S}$ let c_{S} denote the cost of S and let $\mathbf{c}=\left\{c_{S}: S \in \mathcal{S}\right\}$ be a vector of costs of the stars. For an integer q let $\mathcal{L}(q)$ be the following set of linear constraints:

$$
\begin{array}{ll}
\sum_{L(S) \ni b} x_{S} \geq q & \forall b \in B \\
0 \leq x_{S} \leq 1 & \forall S \in \mathcal{S}
\end{array}
$$

Note that the characteristic vector \mathbf{x} of the inclusion maximal stars in \mathcal{S} satisfies the set of constraints $\mathcal{L}(p)$ and that $\mathbf{c} \cdot \mathbf{x}=c(H)$. Thus the vector $\mathbf{y}=\mathbf{x} / p$ satisfies $\mathcal{L}(1)$ and $\mathbf{c} \cdot \mathbf{y}=c(H) / p$. Let $S^{*}=\arg \max _{S \in \mathcal{S}} \frac{|L(S)|}{c(S)}$. Then
$\frac{\left|L\left(S^{*}\right)\right|}{c\left(S^{*}\right)}(\mathbf{c} \cdot \mathbf{y}) \geq \sum_{S \in \mathcal{S}} \frac{|L(S)|}{c_{S}} c_{S} y_{S}=\sum_{S \in \mathcal{S}}|L(S)| y_{S}=\sum_{b \in B} \sum_{L(S) \ni b} y_{S} \geq \sum_{b \in B} 1=|B|$.
The first inequality is by the choice of S^{*} and the second inequality is since \mathbf{y} satisfies $\mathcal{L}(1)$.

From this we get that $\frac{\left|L\left(S^{*}\right)\right|}{c\left(S^{\prime}\right)} \geq \frac{|B|}{\mathbf{c} \cdot \mathbf{y}}$, so $\frac{c\left(S^{*}\right)}{\left|L\left(S^{*}\right)\right|} \leq \frac{\mathbf{c} \cdot \mathbf{y}}{|B|}=\frac{\mathbf{c} \cdot \mathbf{x} / p}{|B|}=\frac{1}{p} \cdot \frac{c(H)}{|B|}$.
This concludes the proof of Lemma 2, and thus also the proofs Theorem 1 and Corollary 1 are complete.

References

1. J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanitá. Steiner tree approximation via iterative randomized rounding. J. ACM, 60(1):6:1-6:33, 2013. Preliminary version in STOC 2010.
2. C-H. Chan, B. Laekhanukit, H-T. Wei, and Y. Zhang. Polylogarithmic approximation algorithm for k-connected directed Steiner tree on quasi-bipartite graphs. In $A P$ PROX/RANDOM, pages 63:1-63:20, 2020.
3. M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation algorithms for directed Steiner problems. J. Algorithms, 33(1):73-91, 1999. Preliminary version in SODA 1998.
4. C. Chekuri, A. Ene, and A. Vakilian. Prize-collecting survivable network design in node-weighted graphs. In APPROX-RANDOM, pages 98-109, 2012.
5. J. Cheriyan, B. Laekhanukit, G. Naves, and A. Vetta. Approximating rooted steiner networks. ACM Trans. Algorithms, 11(2):8:1-8:22, 2014. Preliminary version in SODA 2012.
6. G. Even. Recursive greedy methods. In T. F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics, Second Edition, Volume 1: Methologies and Traditional Applications, pages 71-84. Chapman \& Hall/CRC, 2018.
7. J. Fakcharoenphol and B. Laekhanukit. An $O\left(\log ^{2} k\right)$-approximation algorithm for the k-vertex connected spanning subgraph problem. SIAM J. Comput., 41(5):1095-1109, 2012. Preliminary version in STOC 2008.
8. A. Frank. Kernel systems of directed graphs. Acta Sci. Math.(Szeged), 41(1-2):63-76, 1979.
9. A. Frank. Rooted k-connections in digraphs. Discret. Appl. Math., 157(6):1242-1254, 2009.
10. Z. Friggstad, J. Könemann, and M. Shadravan. A logarithmic integrality gap bound for directed Steiner tree in quasi-bipartite graphs. In SWAT, pages 3:1-3:11, 2016.
11. T. Fukunaga. Spider covers for prize-collecting network activation problem. ACM Trans. Algorithms, 13(4):49:1-49:31, 2017. Preliminary version in SODA 2015.
12. N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem. J. Algorithms, 37(1):66-84, 2000. Preliminary version in SODA 1998.
13. R. Ghuge and V. Nagarajan. A quasi-polynomial algorithm for submodular tree orienteering in directed graphs. In $S O D A$, pages 1039-1048, 2020.
14. M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and integrality gaps for hypergraphic Steiner tree relaxations. In STOC, pages 1161-1176, 2012.
15. F. Grandoni and B. Laekhanukit. Surviving in directed graphs: a quasi-polynomial time polylogarithmic approximation for two-connected directed Steiner tree. In STOC, pages 420-428, 2017.
16. F. Grandoni, B. Laekhanukit, and S. Li. $O\left(\log ^{2} k / \log \log k\right)$-approximation algorithm for directed Steiner tree: a tight quasi-polynomial-time algorithm. In STOC, pages 253-264, 2019.
17. E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC, pages 585-594, 2003.
18. C. S. Helvig, G. Robins, and A. Zelikovsky. An improved approximation scheme for the group Steiner problem. Networks, 37(1):8-20, 2001.
19. T. Hibi and T. Fujito. Multi-rooted greedy approximation of directed Steiner trees with applications. Algorithmica, 74(2):778-786, 2016. Preliminary version in WG 2012.
20. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica, 21(1):39-60, 2001. preliminary version in FOCS 1998.
21. P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for nodeweighted steiner trees. J. Algorithms, 19(1):104-115, 1995. Preliminary version in IPCO 1993.
22. G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs. SIAM J. Comput., 35(1):247-257, 2005. Preliminary version in STOC 2004.
23. G. Kortsarz and Z. Nutov. Tight approximation algorithm for connectivity augmentation problems. J. Comput. Syst. Sci., 74(5):662-670, 2008. Preliminary version in ICALP 2006.
24. G. Kortsarz and Z. Nutov. Approximating source location and star survivable network problems. Theor. Comput. Sci., 674:32-42, 2017. Preliminary version in WG 2015, p. 203-218.
25. G. Kortsarz and D. Peleg. Approximating the weight of shallow Steiner trees. Discrete Appl. Math., 93(2-3):265-285, 1999. Preliminary version in SODA 1997.
26. B. Laekhanukit. Parameters of two-prover-one-round game and the hardness of connectivity problems. In $S O D A$, pages 1626-1643, 2014.
27. Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theor. Comput. Sci., 410(21-23):2122-2125, 2009. Preliminary version in APPROX-RANDOM 2008.
28. Z. Nutov. Approximating minimum power covers of intersecting families and directed edge-connectivity problems. Theor. Comput. Sci., 411(26-28):2502-2512, 2010. Preliminary version in APPROX-RANDOM 2006, p. 236-247.
29. Z. Nutov. Approximating Steiner networks with node-weights. SIAM J. Comput., 39(7):3001-3022, 2010. Preliminary version in LATIN 2008, p. 411-422.
30. Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies and spider-cover decompositions. ACM Trans. Algorithms, 9(1):1:1-1:16, 2012. Preliminary version in FOCS 2009, p. 417-426.
31. Z. Nutov. Node-connectivity survivable network problems. In T. F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics, Second Edition, Volume 2: Contemporary and Emerging Applications, chapter 13. Chapman \& Hall/CRC, 2018.
32. S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric Steiner tree problem. In $S O D A$, pages 742-751, 1999.
33. A. Zelikovsky. A series of approximation algorithms for the acyclic directed Steiner tree problem. Algorithmica, 18(1):99-110, 1997.
