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Abstract We consider the directed Min-Cost Rooted Subset k-Edge-
Connection problem: given a digraph G = (V,E) with edge costs, a set
T ⊆ V of terminals, a root node r, and an integer k, find a min-cost subgraph of
G that contains k edge disjoint rt-paths for all t ∈ T . The case when every edge
of positive cost has head in T admits a polynomial time algorithm due to Frank
[9], and the case when all positive cost edges are incident to r is equivalent to
the k-Multicover problem. Chan et al. [2] gave an LP-based O(ln k ln |T |)-
approximation algorithm for quasi-bipartite instances, when every edge in G
has an end (tail or head) in T ∪{r}. We give a simple combinatorial algorithm
with the same ratio for a more general problem of covering an arbitrary T -
intersecting supermodular set function by a minimum cost edge set, and for
the case when only every positive cost edge has an end in T ∪ {r}.

Keywords min-cost rooted k-edge-connection · quasi-bipartite digraphs ·
T -intersecting supermodular set functions · approximation algorithms

1 Introduction

All graphs considered here are directed, unless stated otherwise. We con-
sider the following problem (a.k.a. k-Edge-Connected Directed Steiner
Tree):

Min-Cost Rooted Subset k-Edge-Connection
Input: A directed (multi-)graph G = (V,E) with edge costs {c(e) : e ∈ E},
a set T ⊂ V of terminals, a root node r ∈ V \ T , and an integer k.
Output: A min-cost subgraph that has k edge disjoint rt-paths for all t ∈ T .
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The case when every edge of positive cost has head in T admits a polyno-
mial time algorithm due to Frank [9]. When all positive cost edges are incident
to r we get the Min-Cost Multicover problem. The case when all positive
cost edges are incident to the same node admits approximation ratio O(lnn)
[24]. More generally, a graph (or an edge set) is called quasi-bipartite if every
edge has at least one end (tail or head) in T ∪ {r}.

In the augmentation version of the problem – Min-Cost Rooted Subset
(k0, k)-Edge-Connection Augmentation, the input graph G contains a
subgraph G0 = (V,E0) of cost zero that has k0-edge disjoint rt-paths for all
t ∈ T . Recently, Chan, Laekhanukit, Wei, & Zhang [2] obtained approximation
ratio O(ln(k−k0+1) ln |T |) for the case when G is quasi-bipartite. We provide
a simple proof for a more general setting.

An integer valued set function f on a groundset V is intersecting super-
modular if any A,B ⊆ V that intersect satisfy the supermodular inequali-
ty f(A) + f(B) ≤ f(A∩B) + f(A∪B); if this holds whenever A∩B ∩ T ̸= ∅
for a given set T ⊆ V of terminals, then f is T -intersecting supermodu-
lar. We say that A ⊆ V is an f-positive set if f(A) > 0. f is positively
T -intersecting supermodular if the supermodular inequality holds when-
ever A ∩ B ∩ T ̸= ∅ and f(A), f(B) > 0. A typical way to create a positively
intersecting supermodular function is to take the “non-negative part” of an
intersecting supermodular one, which means replacing each negative value by
zero; namely, if g is T -intersecting supermodular then f(A) = max{g(A), 0}
is positively T intersecting supermodular, see [9].

An edge e covers a set A if it enters A, namely, if its head is in A and tail
is not in A. For an edge set/graph J let dJ(A) denote the number of edges
in J that cover A. We say that J covers f or that J is a cover of f if
dJ(A) ≥ f(A) for all A ⊆ V . We consider the following generic problem.

Min-Cost Set Function Edge Cover
Input: A digraph G = (V,E) with edge costs and a set function f on V .
Output: A min-cost edge subset J ⊆ E that covers f .

Here f may not be given explicitly, and for a polynomial time implemen-
tation of algorithms we need that certain queries related to f can be answered
in polynomial time. For an edge set I, the residual function f I of f is
defined by f I(A) = max{f(A) − dI(A), 0}. It is known that if f is posi-
tively T -intersecting supermodular then so is f I , c.f. [9]; to see this, note that
g(A) = f(A)−dI(A) is positively T -intersecting supermodular (since g(A) > 0
implies f(A) > 0 and since −d(A) is supermodular), and thus the positive part
max{g(A), 0} of g is also positively T -intersecting supermodular.

Let max(f) = max{f(A) : A ⊆ V } denote the maximum f -value taken
over all sets. An inclusion minimal member of a set-family F is called an F-
core, or simply a core, if F is clear from the context. Let CF denote the family
of F-cores. We will assume the following.

Assumption 1. The cores of the set family F = {A : f I(A) = max(f I)} can
be found in polynomial time for any edge set I.
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Given a set function f on V and a set T ⊆ V of terminals, we say that a
graph G = (V,E) is f-quasi-bipartite if every its edge has an end (tail or
head) v such that v ∈ T or such that v does not belong to any f -positive set.
Let E0 be the set of zero cost edges of G. By Menger’s Theorem, Min-Cost
Rooted Subset k-Edge-Connection Augmentation is equivalent to the
problem of finding a min-cost edge set J ⊆ E \ E0 that covers the function f
defined by

f(A) =

{
max{k − dG0

(A), 0} if A ∩ T ̸= ∅, r /∈ A
0 otherwise

This f is positively T -intersecting supermodular, see [9]. Since r does not
belong to any f -positive set, if G is quasi-bipartite then G \ E0 is f -quasi-
bipartite. Assumption 1 holds for this f , since the cores as in Assumption 1
can be found by computing for every t ∈ T the closest to t minimum rt-cut of
G0 + I, c.f. [9,28]. Under Assumption 1, we prove the following.

Theorem 1 The Min-Cost Set Function Edge Cover problem with
positively T -intersecting supermodular f and f -quasi-bipartite G admits ap-
proximation ratio 4H(max(f)) · (1 + ln |T |), where H(k) =

∑k
i=1 1/i denotes

the kth Harmonic number.

Theorem 1 implies the following extension of the result of Chan et al. [2].

Corollary 1 The Min-Cost Rooted Subset (k0, k)-Edge-Connection
Augmentation problem admits approximation ratio 4H(k − k0) · (1 + ln |T |)
if the set of positive cost edges of G is quasi-bipartite.

As far as we can see, Corollary 1 cannot be deduced from the work of
Chan et al. [2]. Our approach is motivated by an earlier result of Frank [9],
who showed that Min-Cost Rooted Subset k-Edge-Connection can be
solved in polynomial time provided that every positive cost edge has head in
T . For this, he proved that Min-Cost Set Function Edge Cover with
positively T -intersecting supermodular f can be solved in polynomial time
provided that every positive cost edge has head in T . While our approximation
ratio is asymptotically similar to the one of [2] – O(ln k · ln |T |), our constant
hidden in the O(·) term is smaller and the proof (of a more general result)
is substantially simpler. Moreover, our algorithm is combinatorial and thus is
much faster than the one of [2], that repeatedly solves linear programs and
rounds LP solutions. Chan et al. [2] do not specify how the LPs are solved,
but one can easily see that they can be solved using the ellipsoid algorithm.

We use a method initiated by the author in [28], that extends the Klein-
Ravi [21] algorithm for the Node Weighted Steiner Tree problem, to high
connectivity problems. It was applied later in [29,30] also for node weighted
problems, and the same method is used in [2]; a restricted version of this
method appeared earlier in [22] and later in [7]. The method was further
developed by Fukunaga [11] and Chekuri, Ene, and Vakilian [4] for prize-
collecting connectivity problems.
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In the rest of this section we briefly survey some literature on rooted con-
nectivity problems. The Directed Steiner Tree problem admits approxi-
mation ratio O(ℓ3|T |2/ℓ) in time O(|T |2ℓnℓ) for any integer ℓ, see [33,3,25,18],
and also a tight quasi-polynomial time approximation O(log2 |T |/ log log |T |)
[16,13]; see also a survey in [6]. For similar results for Min-Cost Rooted
Subset 2-Edge-Connection see [15].Directed Steiner Tree isΩ(log2 n)-
hard to approximate even on very special instances [17] that arise from the
Group Steiner Tree problem on trees; the latter problem admits a tight
approximation ratio O(log2 n) [12]. The (undirected) Steiner Tree problem
was also studied extensively, c.f. [1,14] and the references therein. The study
of quasi-bipartite instances was initiated for undirected graphs in the 90’s [32],
while the directed version was shown to admits approximation ratio O(ln |T |)
in [10,19].

Rooted k-connectivity problems were studied for both directed and undi-
rected graphs, edge-connectivity and node-connectivity, and various types of
graphs and costs; c.f. a survey [31]. For undirected graphs the problem ad-
mits approximation ratio 2 [20], but for digraphs it has approximation thresh-
old max{k1/2−ϵ, |T |1/4−ϵ} [26]. For the undirected node connectivity version,
the currently best known approximation ratio is O(k ln k) [30] and threshold
max{k0.1−ϵ, |T |1/4−ϵ} [26]. However, the augmentation version when any edge
can be added by a cost of 1 is just Set Cover hard and admits approxima-
tion ratios O(ln |T |) for digraphs and min{O(ln |T |, O(ln2 k)} for graphs [23];
a similar result holds when positive cost edges form a star [24].

In digraphs, node connectivity can be reduced to edge-connectivity by a
folklore reduction of “splitting” each node v into two nodes vin, vout. However,
this reduction does not preserve quasi-bipartiteness. The reductions of [27] that
transfers undirected connectivity problems into directed ones, and a reduction
of [5] that reduces general connectivity requirements to rooted requirements,
also do not preserve quasi-bipartiteness.

2 Covering T-intersecting supermodular functions (Theorem 1)

A set family F is a T -intersecting family if A ∩ B,A ∪ B ∈ F whenever
A∩B∩T ̸= ∅. It is known that if f is (positively) T -intersecting supermodular
then the family F = {A ⊆ V : f(A) = max(f)} is T -intersecting, see [9]. We
say that an edge set I covers F if dI(A) ≥ 1 for all A ∈ F . Recall that
inclusion minimal members of F are called F-cores, and that CF denotes the
family of F-cores. For C ∈ CF let F(C) denote the family of sets in F that
contain no core distinct from C; for C ⊆ CF let F(C) = ∪C∈CF(C).

An analogue of the following lemma was proved in [28, Lemma 3.3] for
intersecting families, and the proof for T -intersecting families is similar.

Lemma 1 Let F be a T -intersecting family. If an edge set S covers F(C) for
C ⊆ CF then ν(∅) − ν(S) ≥ |C|/2, where ν(S) denotes the number of cores of
the residual family FS = {A ∈ F : dS(A) = 0}.
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Proof The FS-cores are T -disjoint, and each of them contains some F-core.
Every FS-core that contains a core from C contains at least two F-cores. Thus
the number of FS-cores that contain exactly one F-core is at most ν(∅)−|C|/2.
Consequently, ν(S) ≤ ν(∅)− |C|/2. ⊓⊔

Consider an instance of theMin-Cost Set Function Edge Cover prob-
lem with positively T -intersecting supermodular f and f -quasi-bipartite G,
and optimal solution value τf . Let F = {A ⊆ V : f(A) = max(f)}, and for
I ⊆ E let νf (I) denote the number of FI -cores. In the next section we will
prove the following.

Lemma 2 There exists a polynomial time algorithm that finds ∅ ̸= C ⊆ CF
and a cover S ⊆ E of F(C) such that

c(S)

|C|
≤ 2

max(f)
· τf
|CF |

=
2

max(f)
· τf
νf (∅)

.

Now let I ⊆ E be an edge set such that νf (I) ≥ 1, and note that then
max(f I) = max(f). Applying Lemmas 1 and 2 on the residual function g = f I

we get that we can find in polynomial time an edge set S ⊆ E \ I such that

c(S)

νg(∅)− νg(S)
≤ c(S)

|C|/2
≤ 4

max(g)
· τg
νg(∅)

.

Observing that νg(∅) = ν(I), νg(S) = νf (I ∪ S), and τg ≤ τf we get:

Corollary 2 There exists a polynomial time algorithm that given I ⊆ E with
νf (I) ≥ 1 finds an edge set S ⊆ E \ I such that

c(S)

νf (I)− νf (I ∪ S)
≤ 4

max(f)
· τf
νf (I)

.

From Corollary 2 it is a routine to deduce the following corollary, c.f. [21]
and [29, Theorem 3.1]; we provide a proof for completeness of exposition.

Corollary 3 There exists a polynomial time algorithm that computes a cover
I of F = {A ⊆ V : f(A) = max(f)} of cost c(I) ≤ 4

max(f) · (1 + ln νf (∅)) · τf .

Proof Start with I = ∅ an while νf (I) ≥ 1 add to I an edge set S as in
Corollary 2. Let Ij be the partial solution at the end of iteration j, where
I0 = ∅, and let Sj be the set added at iteration j; thus Ij = Ij−1 ∪ Sj ,
j = 1, . . . , q. Let νj = νf (Ij), so ν0 = νf (∅), νq = 0, and νq−1 ≥ 1. Let
ρ = 4

max(f) . Then

cj
νj−1 − νj

≤ ρ · τf
νj−1

j = 1, . . . , q .

This implies cq ≤ ρτf and

νj ≤ νj−1

(
1− cj

ρτf

)
j = 1, . . . , q .
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Unraveling we get

νq−1

ν0
≤

q−1∏
j=1

(
1− cj

ρτf

)
.

Taking natural logarithms and using the inequality ln(1 + x) ≤ x, we obtain

ρ · τf · ln
(

ν0
νq−1

)
≥

q−1∑
j=1

cj .

Since cq ≤ ρτf and νq−1 ≥ 1, we get c(I) ≤ cq +
∑q−1

j=1 cj ≤ ρτf (1 + ln ν0). ⊓⊔

To see that Corollary 3 implies Theorem 1, consider the following algorithm
that uses the so called “backward augmentation” method.

Algorithm 1: Backward-Augmentation(f,G = (V,E), c)

1 I ← ∅
2 for ℓ = max(f) downto 1 do
3 Compute a cover Iℓ of Fℓ = {A ⊆ V : f I(A) = ℓ} as in Corollary 3
4 I ← I ∪ Iℓ

5 return I

At iteration ℓ we have c(Iℓ)/τf ≤ 4(1+ln |T |)/ℓ, hence the overall approxi-
mation ratio is 4(1 + ln |T |) ·

∑1
ℓ=max(f) 1/ℓ = 4H(max(f)) · (1 + ln |T |), as

required in Theorem 1. It remains only to prove Lemma 2, which is done in the
next section, where we also describe a simple polynomial time implementation
of our algorithm.

3 Proof of Lemma 2

Let ⟨G = (V,E), c, T, f⟩ be an instance of Min-Cost Set Function Edge
Cover with positively T -intersecting supermodular f and f -quasi-bipartite
G, and an optimal solution value τ = τf . Let us denote p = max(f) and let
F = {A ⊆ V : f(A) = p}. Recall that F(C) denotes the family of sets in F
that contain no core distinct from C, and that F(C) = ∪C∈CF(C) for C ⊆ CF .
We need to show that there exists a subfamily of cores C ⊆ CF and a cover
S ⊆ E of F(C) such that

c(S)

|C|
≤ 1

p
· τ

|CF |
. (1)

We also need to design a polynomial time algorithm that finds such C, S.
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Fig. 1 (a) A 3-cover I of F({C,C′, C′′}); here e2
C′′ , e

3
C′′ have cost 3 each, e, e2C , e2

C′ have
cost 2 each, and all other edges have cost 1. (b) The auxiliary graph H. The star SH with

center e and leaf set C = {C,C′, C′′} has ratio
c(SH)
|C| = 6

3
= 2 (the same ratio 2 is achieved

by the star SH \ {C}). The edge subset S of I that corresponds to SH is I3C ∪ I1
C′ ∪ I1

C′′ .

Here c(I) = 26 and c(H) = 29. Note that e1
C′ = e = e1

C′′ , and that e ∈ I3C but e ̸= e3C .

3.1 Roadmap of the proof

Here is a roadmap of the proof of Lemma 2. To make this roadmap a complete
proof we just need to describe a polynomial time implementation and to prove
formally three Lemmas 4, 5, and 6 mentioned in this roadmap; this is done in
Sections 3.2 and 3.3, respectively.

We say that I ⊆ E is a p-cover of F if dI(A) ≥ p for all A ∈ F , and I
is F-quasi-bipartite if every edge in I has an end (tail or head) v such that
v ∈ T or such that v does not belong to any set in F . Fix an optimal solution
I ⊆ E, so I is a cover of f of cost c(I) = τ . Note that I is a p-cover of F
(since f(A) = p for all A ∈ F) and that I is F-quasi-bipartite (since G is
f -quasi-bipartite and since I ⊆ E).

(A) For every C ∈ CF fix some inclusion minimal p-cover IC ⊆ I of F(C). In
Lemma 4 we show the following:
(i) Each IC partitions into p inclusion minimal 1-covers I1C , . . . , I

p
C of F(C).

(ii) Each F(C) has a unique inclusion maximal set MC and each IjC has a

unique edge ejC that covers MC , which we call the prime edge of IjC .
(B) In Lemma 5 we show that for distinct C,C ′ ∈ CF and any 1 ≤ j, j′ ≤ p,

if IjC ∩ Ij
′

C′ ̸= ∅ then IjC ∩ Ij
′

C′ = {ejC} or IjC ∩ Ij
′

C′ = {ej
′

C′}, see Fig. 1(a);
this property is since I is F-quasi-bipartite. Consequently, for every e ∈ I
there is at most one set IjC such that e ∈ IjC and e ̸= ejC .

(C) Construct an auxiliary bipartite graph H with node- and edge-costs as
follows, see Fig. 1(b) The node parts of H are the prime edges and CF .
Each node e of H that is a prime edge inherits its cost c(e) in G, and is
connected to each C ∈ CF such that e ∈ IjC for some j by an edge of cost

c(IjC) − c(e) (this edge represents the set IjC). Since for every e ∈ I at

most one set IjC contains e as a non-prime edge, and since the sets IjC are
pairwise disjoint, the total cost of H is at most 2 times the cost of I.
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(D) Every node C ∈ CF of H has at least p neighbors in H (the prime edges of
the sets I1C , . . . , I

p
C). In Lemma 6 we show that H contains a star SH with

leaf set C ⊆ CF such that c(SH)
|C| ≤

1
p ·

c(H)
|CF | ≤

2
p ·

τ
|CF | . Then the edge subset

S ⊆ I that corresponds to SH covers F(C), and S, C satisfy inequality (1).
(E) To find ∅ ≠ C ⊆ CF and a cover S of F(C) that satisfies (1), we make a

similar construction: now H has node set E∪C, every node e ∈ E of H has
cost equal to the cost of e in G, and in H each node C ∈ CF is connected
to each node e ∈ E by an edge of cost being the minimum cost of an edge
set S such that S ∪ {e} covers F(C). In such a graph H we can find a star

SH with leaf set C that minimizes c(SH)
|C| using the method of Klein & Ravi

[21]; see also step 3 of the implementation discussed in the next section.

3.2 Implementation

Here we briefly discuss a simple implementation of the entire algorithm. We
start with the particular case of the Min-Cost Rooted Subset (k0, k)-
Edge-Connection Augmentation problem. In what follows let n = |V |
and m = |E|. As a pre-processing step, we assign unit capacities to edges in
E and compute a k0-flow from the root r to each t ∈ T . This can be done in
O(km|T |) time using the Ford-Fulkerson algorithm. Let us consider iteration
ℓ of Algorithm 1, when max(f) = k− ℓ. We will assume that we already have
a flow on zero cost edges of value k − ℓ − 1 to each t ∈ T , and perform the
following steps.

1. We increase the flow by 1 to each t ∈ T , and discard terminals for which
the flow can be further increased by 2. This can be done in O(m|T |) time.

2. To compute the cost of an edge of H between nodes C and e, we add a
“dummy” edge of cost 0 from r to some terminal in every core distinct
from C, set the cost of e to 0, and compute a minimum cost edge set that
increases the rC-flow by 1; the later problem admits a linear time reduction
to the shortest path problem and thus can be implemented in O(n2) time.
The number of edges in H is O(m|T |), hence H can be constructed in
O(n2m|T |) time.

3. We can sort the edges of H by increasing cost in O(m|T | log n) time. Then
finding a (nontrivial) star Se in H with a specific center e that minimizes
c(Se)
|C| can be done in time linear in the degree of e in H as follows. We take

the lowest cost edge incident to e into Se and then add edges incident to
e one by one in increasing cost order until reaching a local minimum of
c(Se)
|C| ; see [21]. The overall time for computing all stars Se is O(mn log n),

which is dominated by the time O(n2m|T |) of the construction of H.
4. At iteration ℓ we need to construct the graph H at most |T | times, hence

the overall time per iteration ℓ is O(n2m|T |2). And since we have k − k0
iterations, the overall running time is (k − k0) ·O(n2m|T |2) = O(kn6).

We note that while the running time of the described implementation is some-
what high, it is still much lower than that of Chan et al. [2].
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The implementation of steps 1, 3, 4 for the Min-Cost Set Function
Edge Cover problem under Assumption 1 is similar. For step 2, for any
C ∈ CF and e ∈ E \ I we need to find in polynomial time a min-cost edge set
S = S(e, C) such that S ∪ {e} covers F(C). For this, it is sufficient to find a
min-cost cover of F(C) after resetting the cost of e to zero. The family F(C) is
a T -intersecting family that has a unique core; such a family is called a ring.
It is known that a min-cost edge-cover of a ring can be found in polynomial
time under Assumption 1 (c.f. [9,28]), by a standard primal dual algorithm.

3.3 Proofs of Lemmas

Now we turn to formal proofs of Lemmas 4,5 and 6 mentioned in our roadmap.
At each step we will specify the part of our roadmap that is proved.

A T -intersecting family R that has a unique core C is called a ring. Then
C is the intersection of all sets inR, andR also has a unique inclusion maximal
set M which is the union of all sets in R. The following lemma is a folklore.

Lemma 3 If F is a T -intersecting family then F(C) is a ring family for any
C ∈ CF ; thus F(C) also has a unique inclusion maximal set MC . Furthermore,
MC ∩MC′ ∩ T = ∅ for any distinct C,C ′ ∈ CF .

The next lemma gives two additional known properties of rings; c.f. [8] for
the first property and [28, Lemma 2.6 and Corollary 2.7] for the second. These
two properties imply part (A).

Lemma 4 Let R be a ring with minimal member C and maximal member M .

(i) Any p-cover of R is a union of p edge disjoint covers of R.
(ii) Let I be an inclusion minimal cover of R. Then there is an ordering

e1, e2, . . . , eq of I and a nested family C = C1 ⊂ C2 · · · ⊂ Cq = M of
sets in R such that for every j = 1, . . . , q, ej is the unique edge in I that
enters Cj (namely, ej has head in Cj and tail not in Cj).

Lemmas 3 and 4(i) imply the following lemma that implies parts (B,C).

Lemma 5 Let I be an F-quasi-bipartite cover of a T -intersecting family F .
For C ∈ CF let IC ⊆ I be an inclusion minimal cover of F(C), and let eC
be the unique (by Lemma 4(i)) edge in IC that covers MC . Let C,C

′ ∈ CF be
distinct and let e ∈ IC ∩ IC′ . Then e = {eC} or e = {eC′}.

Proof Suppose that e ̸= eC and we will show that then e = eC′ . Note that e
does not cover MC , hence e has both ends in MC , by the minimality of IC
and Lemma 4(ii). Since I is F-quasi-bipartite, e has an end t in MC ∩ T . By
Lemma 3, t /∈MC′ , hence by the minimality of IC′ we must have e = eC′ . ⊓⊔

The next lemma implies part (D).
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Lemma 6 Let H = (A∪B,E) be a bipartite graph with edge- and node- costs
{c(e) : e ∈ E} ∪ {c(a) : a ∈ A} and let S be the set of stars in H with center
in A and leaves in B. If the degree of every b ∈ B is at least p then there is

S∗ ∈ S such that c(S∗)
|L(S∗)| ≤

1
p ·

c(G)
|B| , where L(S∗) is the set of leaves of S∗.

Proof For S ∈ S let cS denote the cost of S and let c = {cS : S ∈ S} be a
vector of costs of the stars. For an integer q let L(q) be the following set of
linear constraints: ∑

L(S)∋b

xS ≥ q ∀b ∈ B

0 ≤ xS ≤ 1 ∀S ∈ S

Note that the characteristic vector x of the inclusion maximal stars in S satis-
fies the set of constraints L(p) and that c ·x = c(H). Thus the vector y = x/p

satisfies L(1) and c · y = c(H)/p. Let S∗ = argmaxS∈S
|L(S)|
c(S) . Then

|L(S∗)|
c(S∗)

(c·y) ≥
∑
S∈S

|L(S)|
cS

cSyS =
∑
S∈S
|L(S)|yS =

∑
b∈B

∑
L(S)∋b

yS ≥
∑
b∈B

1 = |B| .

The first inequality is by the choice of S∗ and the second inequality is since y
satisfies L(1).

From this we get that |L(S∗)|
c(S′) ≥

|B|
c·y , so

c(S∗)
|L(S∗)| ≤

c·y
|B| =

c·x/p
|B| = 1

p ·
c(H)
|B| . ⊓⊔

This concludes the proof of Lemma 2, and thus also the proofs Theorem 1
and Corollary 1 are complete.
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