Operations Research Forum (2024) 5:20
https://doi.org/10.1007/s43069-024-00301-3

ORIGINAL RESEARCH

n

Check for
updates

gym-flp: A Python Package for Training Reinforcement
Learning Algorithms on Facility Layout Problems

Benjamin Heinbach'® . Peter Burggrif' . Johannes Wagner'

Received: 27 March 2021 / Accepted: 29 January 2024 / Published online: 5 March 2024
© The Author(s) 2024

Abstract

Reinforcement learning (RL) algorithms have proven to be useful tools for combina-
torial optimisation. However, they are still underutilised in facility layout problems
(FLPs). At the same time, RL research relies on standardised benchmarks such as the
Arcade Learning Environment. To address these issues, we present an open-source
Python package (gym-flp) that utilises the OpenAI Gym toolkit, specifically designed
for developing and comparing RL algorithms. The package offers one discrete and
three continuous problem representation environments with customisable state and
action spaces. In addition, the package provides 138 discrete and 61 continuous prob-
lems commonly used in FLP literature and supports submitting custom problem sets.
The user can choose between numerical and visual output of observations, depending
on the RL approach being used. The package aims to facilitate experimentation with
different algorithms in a reproducible manner and advance RL use in factory planning.

Keywords Combinatorial optimisation - Artificial intelligence - OpenAl - Production
management - Factory planning - Simulation

1 Introduction

Facility layout problems (FLP) are an important class of optimisation problems in

operations research (OR). The FLP constitutes a fundamental aspect of operations
research and industrial engineering, addressing the strategic arrangement of compo-

B Benjamin Heinbach
benjamin.heinbach@uni-siegen.de

Peter Burggrif
peter.burggraef @uni-siegen.de

Johannes Wagner
johannes.wagner@uni-siegen.de

International Production Engineering and Management, University of Siegen, Siegener Strafle 152,
Kreuztal 57223, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-024-00301-3&domain=pdf
http://orcid.org/0000-0002-2552-2855

20 Page2of26 Operations Research Forum (2024) 5:20

nents within a facility to optimise efficiency, reduce costs, and amplify productivity.
The optimal layout design significantly impacts material flow, transportation costs,
and worker performance [1].

The FLP is NP-hard and has been tackled using an extensive array of modelling
and resolution techniques [1-4]. In recent years, the use of Machine Learning (ML)
techniques has experienced a surge for other important tasks in manufacturing, e.g.
[5-10]. Special consideration has been conveyed to Reinforcement Learning (RL),
a specific sub-class of ML, in manufacturing and supply chain research [11-14].
For combinatorial optimisation problems, provided sufficient training resources and
a supervised initialisation, RL approaches bear the potential to generalise on new
instances if the training was performed on a small distribution of the problem to
exploit its structure [15].

Building upon these insights, we infer that facility layout planning systems based on
RL will achieve a level of proficiency comparable to that of human layout planners.
A fundamental premise to consider is that the distinctive attributes of DRL, such
as the potent feature extraction and function approximation capabilities offered by
Convolutional Neural Networks (CNN), can potentially be harnessed and extended to
the realm of facility layout planning. Thus, when being trained on a sufficiently large
distribution of FLPs, the definition of which is yet to be made, trained DRL agents
might be able to make proposals for factory layouts while eliminating the need for
training new RL agents and modelling problems, thus facilitating and speeding up
facility layout planning.

To address this, we introduce an open-source Python package providing a stan-
dardised interface that allows researchers to leverage commonly used FLP benchmark
problems for training and testing RL algorithms in a comparable and reproducible
manner. Its purpose is not to compete with existing heuristics in FLP research but
to provide a curated set of both discrete and continuous well-studied FLP problems
known in literature to decrease the up-front modelling effort and to make it accessible
to an FLP research community interested in investigating the practical utility of RL
approaches in facility layout design.

The contribution of this paper is threefold: we service the FLP community with a
toolbox that (1) provides open-sourced environments for well-known benchmark FLP
problems and (2) presents an interface to these environments to reduce implementation
efforts, so as to (3) enable comprehensive benchmarking of FLP implementations
against readily available RL algorithms. Thus, we hope to assist in showing whether
RL can prove to be useful for FLP research and practitioners.

2 Facility Layout Problems

The central objective of Facility Layout Problems involves determining the optimal
spatial arrangement of workstations, departments, machines, or equipment within a
facility. This arrangement profoundly influences factors such as material handling
expenses, production time, worker movement, and overall facility utilisation. FLPs
encompass identifying the most favourable positioning of these components while
adhering to constraints such as space limitations, safety regulations, and workflow

@ Springer

Operations Research Forum (2024) 5:20 Page30f26 20

prerequisites [16, 17]. Typically, one central element of an FLP is to minimise the
transport intensity between facilities, given their pairwise flow relationships and dis-
tances. This transport intensity is commonly referred to as Material Handling Cost
(MHC). Thus, the general optimisation objective of an FLP regarding the MHC is
given as follows:

n n
minimize : MHC = Y fidijcij (1)

"
where f;; denotes the flow relationship between facilities i and j, d;; is the distance
between i and j, usually measured from their centre point, and ¢;; is a scaling factor
to account for different modes of transportation in between facilities.

A central aspect of solving Facility Layout Problems revolves around the math-
ematical formulation of the problem itself as the choice of formulation governs the
complexity of the solution. FLPs can be classified into discrete and continuous for-
mulations based on the treatment of spatial arrangement variables. In discrete FLPs,
the space is divided into a finite number of predefined locations, often termed grid
points or nodes. Each component or workstation is assigned to one of these discrete
locations. In continuous FLPs, the placement of components is treated as a continuous
variable, allowing flexibility in layout design. Components can be placed at any point
in the continuous space [1].

Discrete FLPs are often modelled as Quadratic Assignment Problem (QAP). The
QAP deals with assigning a set of facilities to a set of locations in a way that
minimises the sum of weighted distances between facility pairs [18]. This combi-
natorial optimisation problem finds applications in fields ranging from manufacturing
to telecommunications.

Continuous FLPs, in turn, are modelled with various degrees of freedom: the
Flexible Bay Structure (FBS) notation has been created by Tong [19]. It allows the
departments to be located only in parallel bays with varying widths. Bays are bounded
by straight aisles on both sides, and departments are not allowed to span over mul-
tiple bays [20]. The width of the bays is determined by the cumulated area demand
of the facilities assigned to each one using the equation below [21]. The Slicing Tree
Structure (STS) decomposes irregular shapes into simpler rectangles, easing the lay-
out process. It involves iteratively partitioning a larger rectangular area into smaller
rectangles through horizontal and vertical cuts. This method aims to find an arrange-
ment of smaller rectangles that optimises the given layout objective [22]. Lastly, the
Open Field Layout Problem (OFP) involves designing the layout for facilities with
vast open spaces, such as warehouses or large manufacturing areas. The objective is to
optimise material movement and accessibility without the restrictions or constraints
that would be imposed by such arrangements as a single row or loop layout. Instead,
a key concern of the OFP is that facilities are to be arranged free of overlaps [23].

Historically, various strategies have been employed to tackle Facility Layout Prob-
lems, reflecting diverse problem formulations and solution methods [2]. Classical
techniques, such as the systematic layout planning (SLP) approach, emphasise human
factors, expertise, and experience to create efficient layouts. In the SLP approach,

@ Springer

20 Page4of26 Operations Research Forum (2024) 5:20

qualitative and quantitative considerations are combined to generate layout alterna-
tives. However, such methods might fall short in complex environments with numerous
variables and constraints [24].

Other prominent approaches are mathematical optimisation techniques like integer
programming, genetic algorithms, simulated annealing, and particle swarm optimi-
sation. These methods leverage computational power to systematically search for
optimal or near-optimal solutions, taking into account various constraints and objec-
tives simultaneously. These algorithms have proven effective in generating layouts
that minimise transportation costs, minimise material handling time, and maximise
facility throughput [25].

More recent approaches make use of ML tools. Despite some evidence of using
Artificial Neural Networks in the facility planning approach, see for instance [26-28],
arecent study has shown that ML methods, and RL specifically, have seen comparably
little use in FLP research [4]. This is remarkable since RL has been employed to solve
several real-life industry-related problems such as electric energy storage systems
[29], job-shop scheduling [5, 6, 30, 31], autonomous guided vehicle routing [32], or
the travelling salesman problem [33]. Contrary to this lack of application evidence,
recent work [34—40] demonstrates the need for and interest in the application of RL
to FLPs.

3 Reinforcement Learning

Reinforcement Learning has gained prominence due to significant research advance-
ments in creating learning agents capable of excelling in virtual arcade game
environments [41]. RL, most notably its deep learning variant for higher order prob-
lems, Deep Reinforcement Learning (DRL), has been demonstrated to outperform
expert human players in board games [42] and computer games by learning merely
from visual input [41].

In RL, an agent learns to maximise a reward signal by exploratively interacting
with its environment. The goal of the agent is to learn a policy that maps states of
the environment to actions in such a way as to maximise the expected discounted
cumulative rewards over time:

Ex[R]] = Ex[)_y'riyil)
i=1

where y € (0, 1] is a discount factor that governs whether rewards at later training
progress are treated myopic or farsighted.

A reinforcement learning problem can be formally defined as a Markov decision
process (MDP) which mathematically translates problems into a sequential decision-
making process. An MDP consists of:

e A set of states, S, that represent the possible configurations of the environment.
e A set of actions, A, that the agent can take in each state.

@ Springer

Operations Research Forum (2024) 5:20 Page50f26 20

Fig.1 Representation of the
MDP [43]

v

Agent

A4

State Reward Action
S I da,

VT '

I‘ .

1S Environment I‘_
= \.

e A reward function, R : § x A— > R, which assigns a reward to each state-action
pair.

e A transition function, 7 : S x A— > §, which specifies the next state that results
from taking a given action in a given state.

The agent begins in an initial state and at each time step #, selects an action a
according to a policy 7 and transitions to a new state. The reward at each time step
is determined by the state-action pair and the resulting state is determined by the
transition function [43]. A representation of the MDP is shown in Fig. 1.

In reinforcement learning, there are two main approaches to learning a policy:
model-based and model-free.

Model-based RL involves learning a model of the environment, which allows the
agent to make predictions about the consequences of its actions. With this model, the
agent can plan its actions using a search algorithm such as value iteration or policy
iteration. The advantage of model-based RL is that it can learn an optimal policy
more efficiently since it can use its model to predict the outcomes of actions and plan
accordingly. However, it can be difficult to learn an accurate model of the environment,
especially if the environment is complex or the state space is large. Model-free RL,
on the other hand, does not involve learning a model of the environment. Instead,
the agent directly learns a policy by interacting with the environment and receiving
rewards. Model-free reinforcement learning is simpler to implement and can learn
directly from raw sensory data, but it can take longer to learn an optimal policy
compared to model-based methods [43].

Two other fundamental approaches within RL are value-based and policy-based
methods. Value-based methods focus on estimating the value of taking various actions
in different states. They aim to learn a value function, such as the Q-function in Q-
learning, which assigns a value to each state-action pair. Agents then make decisions by
selecting actions with the highest estimated value. In contrast, policy-based methods
aim to directly learn the optimal policy, which is a mapping from states to actions.
Instead of estimating the value of actions, policy-based methods adjust the policy itself
to maximise the expected cumulative reward [43].

Furthermore, reinforcement learning algorithms can be categorised into on-policy
and off-policy methods. On-policy algorithms learn and improve the policy they cur-
rently follow. This means that the data used for learning must be collected using the
current policy, which can limit exploration. Off-policy algorithms, on the other hand,

@ Springer

20 Page6o0f26 Operations Research Forum (2024) 5:20

allow an agent to learn from data generated by a different policy, enabling more efficient
exploration and potentially better sample efficiency. Popular examples of off-policy
algorithms include Q-learning and off-policy actor-critic methods [44].

4 Leveraging Reinforcement Learning for Facility Layout Problems

In the contemporary landscape of optimisation challenges, the paradigm of RL emerges
as a compelling alternative to tackle the intricacies of FLPs. With an inherent capacity
to learn, adapt, and optimise over time, RL brings to the fore a dynamic approach that
resonates with the multi-faceted nature of FLPs.

A hallmark of RL is its intrinsic inclination toward exploration and exploitation.
This trait holds profound relevance in the context of FLPs, where sub-optimal solutions
might often be disguised as local optima. RL algorithms can navigate this challenge by
leveraging exploration mechanisms, thereby unearthing novel layout configurations
that can lead to substantial performance enhancements. Adaptive heuristics embedded
within RL techniques continuously refine strategies, ensuring a balance between tried-
and-tested methods and novel explorations.

Yet another distinctive characteristic of RL, more precisely DRL, is the utilisation of
Convolutional Neural Networks (CNNs) as described by [45]. CNNs excel at extracting
spatial features from structured data. FLPs involve spatial configurations of various
components such as layout maps or images depicting the facility. By integrating CNNs
into the Reinforcement Learning framework for FLPs, CNNs can learn to generalise
spatial patterns from one facility layout to others, enhancing the transferability of
learned policies. This can be particularly valuable in scenarios where similar layout
structures occur across different facilities.

One key challenge to be addressed is to design the problem representations and
underlying Markov Decision Processes (MDP) in a way that they can accommodate
different sorts of problem types and become less sensitive to problem sizes. By submit-
ting fixed-size input information to the RL agent, i.e. an image with the same amount
of pixels in both directions regardless of the number of facilities, one is able to assume
control over the state space dimensionality.

The underlying hypothesis driving the development of this software tool is that the
synergy between spatial feature extraction and policy optimisation can lead to more
accurate, adaptive, and efficient solutions. CNNs empower RL agents to navigate the
complexities of spatial arrangement while accounting for visual cues and correlations
inherent in facility layouts.

The Python package presented herein aims to achieve this synergy by providing
a visual representation of the FLP to the RL agent. We do so by encoding the flow
intensity matrix, both row and colour-wise, in the colour channels of an image. The
flow intensity matrix contains information on both the flows and distances from Eq. 2
where rows can be interpreted as flow sources and columns as sinks, respectively. By
encoding the flow intensity information, the RL algorithm should be able to abstract
structural information of the problem. That is, the machine with the lowest transport
flows both in- and out-bound will be shown as dim red (e.g. RGB=(40, 0, 0)) whereas
machines with higher transport relationships will move closer to purple or even white

@ Springer

Operations Research Forum (2024) 5:20 Page70f26 20

.,
o

Problem Domain i o] C i Fully C Action Layer

jow information li j % ; ﬁ j %
Sunwadl . ge=
B ~BOy~BOY) Eo
i= [l,Z, ..,,n] 3 S 5
Szaha\ information j % : ﬁ j ﬁ

=) -G

Fig. 2 Illustration of the concept of embedding FLP information in visual representations to make them
digestible by Convolutional Neural Networks. Image adapted from [41, 47]

((40,255,255) or (255,255, 255)). Figure 2 visualises this concept, the details of which
are outlined in Section 5.3. This functionality, coupled with the respective reward
assignment, should enable an RL agent to—at least—reproduce basic heuristics, such
as ‘place the machine with highest flows in the centre and arrange all others around
it’, similar to the triangular placement method of [46].

As [48] have pointed out, a key objective for using DRL in manufacturing research
and practice is to reduce manual involvement. With facility layout planning typically
being a highly manual process, the exceptional representation learning capabilities of
CNNs combined with the adaptive heuristics inherent to RL techniques can position
them as a transformative force in contemporary FLP research.

5 Tying it Together: The gym-flp Library for Using RL on FLPs
5.1 The Backbone: OpenAl Gym

In this section, we introduce the Python package gym-£1p that can be used to train
Reinforcement Learning agents on common or custom FLP instances. This software
library is at https://github.com/BTHeinbach/gym-flp.

The library we propose in this work is based on OpenAl Gym, a toolkit designed
for developing and comparing RL algorithms. Gym provides researchers with access
to benchmarks for training agents in the form of environments [49]. These environ-
ments include control problems, arcade games, and robotics. The availability of such
benchmarks has played a significant role in advancing the field of RL [50]. In fact,
open-source libraries in general play a vital role in evaluating innovations in the field
of algorithms using benchmarks on a variety of problems [51].

While originally developed for RL research, there are several examples of how Ope-
nAlI Gym has been used to address real-world research questions, such as controlling
power systems on grid [52, 53] or on building level [54], job-shop scheduling prob-
lems [55], simulated robotic motion (e.g. pick-and-place operations) [56], industrial
process control (e.g. valve settings for gas turbines or pitch angles and rotor speeds
for wind turbines) [50], or communication technology optimisation [57].

@ Springer

https://github.com/BTHeinbach/gym-flp

20 Page80f26 Operations Research Forum (2024) 5:20

The potential for OpenAl Gym in OR has also been recognised: [58] published
OR-Gym, a Gym-based library that features the common OR problem types knapsack,
bin packing, supply chain, vehicle routing, news vendor, portfolio optimisation, and
travelling salesman problems. Similar to the contribution presented herein, they aim
to encourage further development and integration of RL into optimisation and the
OR community while also opening the RL community to many of the problems and
challenges that the OR community has been wrestling with for decades. Nonetheless,
despite being a special problem in OR research, their library does not support FLPs.

The examples given above provide substantial evidence that OpenAI Gym is a pru-
dent choice for creating frameworks for RL usage in FLP research. For our intended
purposes, we reversed the Gym logic by putting the development focus on the envi-
ronments rather than the algorithms by encouraging the use of collections of common
RL algorithms, such as Stable Baselines [59] or Ray [60]. Effectively, we assert that
this can speed up RL research on FLPs since, as a first step, researchers can resort to
selecting a resolution technique from a well-established suite of algorithms to use on
their problems before having to develop new or amend existing algorithms.

5.2 Package Structure

The implemented environments in this work are Python classes that inherit from the
OpenAl Gym base class gymEnv and follow the same conventions regarding required
class methods. This is because certain RL algorithm frameworks include a method for
checking that the inputs and outputs of the environment are compatible with the agents.
Figure 3 shows the outline of the package topography, the explanations of which follow
thereafter.

5.3 Implementation Details

For an FLP to be solved using RL, its components need to be translated into the key
concepts of an MDP as introduced in Section 3.

5.3.1 Observation Spaces

There are two modes for designing the observation space: rgb_array and human.
The mode can be specified when initialising the environment.

In “human’ mode, the observation for a discrete Facility Location Problem (FLP)
is a permutation vector of size n, sampled randomly without replacement, where n
is the problem size of the instance. The permutation vector represents the available
locations (numbered consecutively) and the assigned machines. The assumption is that
every facility can be assigned to any location. Further restrictions can be implemented
by those interested in this functionality.

For continuous FLPs, the observation includes centre point coordinates (x, y),
length (/), and width (w) information for each facility in i = 1...n, resulting in an
observation space of 4 x n. The range of possible values for an observation is deter-

@ Springer

Operations Research Forum (2024) 5:20 Page90f26 20

Fig.3 gym-flp package

structure. Module init files were gym-flp/
e — algorithm/
— config/
L algo-confjson
+—— eval.py
+—— experiments/
— qifs/
+—— logs/
+—— models/
L— train.py
L—— gym_fip/
L— envs/
—— FBS.py
—— instances/
—— continuous.json
—— discrete.json
L— envBuilder.py
QAP.py
—— STS.py
— rewards/
—— area.py
L distances.py
L mhc.py
L— util/
L— preprocessing.py
L— setup.py

@ Springer

20 Page 10 of 26 Operations Research Forum (2024) 5:20

mined using the Box space and is based on problem instance information in the
_ _init_ _ function.

One of the main motivations of the authors is to teach RL algorithms to rearrange
factory plants using visual input alone, similar to the early advances in RL research
on arcade games [45]. To facilitate this, we provide the rgb_array mode, in which
observations are treated as images with dimensions corresponding to the sizes of the
plants. The allowed values for the third dimension are limited to the range [0, 255],
and the observation is normalised (divided by 255 to have values in [0, 1]) when using
Convolutional Neural Network (CNN) policies. The baseline algorithms implemented
in Stable-Baselines3 and RLIib use predefined filter sizes, so the plant sizes may need
to be adjusted accordingly on occasion. For example, the CnnPolicy in Stable-
Baselines3 requires observed images to be at least 36 by 36 pixels in size.

To facilitate feature extraction in CNN-based policies and make all facilities on
the plane identifiable, we encode certain information in the RGB colour space of the
observation images. The index i of a facility is encoded on the red channel, while the
row sums of the flow matrix F (representing how much a facility is a flow source) are
embedded in the green channel and the column sums of F' (i.e. the sinks) are written
into the blue channel. The underlying idea is that facilities with higher green and blue
values have stronger flow relationships and may be located at the centre of all facilities,
potentially allowing an RL algorithm to learn this rule through intuition or heuristics.

Figure4 shows a visual representation of the rgb_array observations for each
environment.

Note that the observation mode has an impact on the policy used by the algorithm.
For instance, the use of human mode forbids using CnnPolicy as convolutional
filters do not work on one-dimensional arrays.

5.3.2 Action Spaces

Defining proper action spaces is likely to be as crucial in RL as reward engineering.
This section explains the predefined implementations, yet we encourage all interested
researchers to amend the actions for their respective purposes.

Aside from Box used for the observation spaces, gym. Spaces provides sev-
eral other spaces, e.g. Discrete, MultiDiscrete, Dict, Tuple, Graph,
MultiBinary, Sequence and Text. To define the possible range of actions,
gym-£f1p currently uses Box, Discrete, and MultiDiscrete.

Table 1 shows which spaces are supported in the respective environments.

In gap-v0, the action space represents a pairwise exchange mechanism, where
two facilities i and j will swap their currently assigned locations. We also supply a
swap (i, j) to provide an action to remain in the current state. Since the swap (i, j) is
identical to (j, i), the size of the action space is given asn —n * 0.5 4 1.

fbs-vO0 incorporates five discrete actions: Permute swaps two random positions
in permutation vector, Bit Swap flips the value (0/1) of one random element in the
bay break vector. With Bay Exchange, two randomly selected bays exchange their
facilities. Inverse inverts the order of facilities in a randomly selected bay, and Idle
does nothing, again to provide the agent with an action that allows it to remain in a
state it deems optimal.

@ Springer

Operations Research Forum (2024) 5:20 Page 110f26 20

qap-v0 (Neos-n7) ofp-v0 (BME15)
fbs-v0 (VC10) sts-v0 (VC10)

Fig.4 Examples for environment renderings. The text in brackets describes the instance used

sts-v0 uses five discrete actions as well. In addition to Permute and Idle, the
action space uses Slice Swap (swap two random positions in slicing order), Bit Swap
(change slicing orientation at random position) and Shuffle (Create new random slicing
order).

To date, the action spaces for o £p-v0 are the most comprehensive. The Discrete
variant is a 1-D array of size 4 x n 4 1, where each facility can take any step in the
north, east, south, or west direction at a step size that defaults to 1 but can be passed
differently upon initialisation. The single additional action is again used as a way to
retain the current state. The MultiDiscrete action space folds the four actions
into a 5 x n 2-D array. Here, all facilities are moved simultaneously in any of the four

Table 1 Summary of currently supported action spaces per environment

Environment Discrete Multi-Discrete Box Box (simultaneous)
qap-v0 v - - -

fbs-v0 v - - -

ofp-v0 v v v v

sts-v0 v - - -

@ Springer

20 Page 12 0f 26 Operations Research Forum (2024) 5:20

directions. The idle action is appended as the fifth option to every dimension. Lastly,
there are two options using a Box space. Both of them use Cartesian coordinates on
the factory plant ranging from point (0, 0) to (Y, X), with Y and X corresponding to
the plant width and length, respectively. The Box spaces differ in that facilities can
be moved sequentially or simultaneously. This decision is passed upon initialisation
using the boolean argument multi.

5.3.3 Reward Computation

The reward engine comprises up to three different components, depending on the
environment and action space used. Since QAP, FBS and STS are collision-free and
within defined plant bounds, these environments only handle material handling cost
(MHC).

The flows between facilities are stored in the package. The distance metric for con-
tinuous problems can be set upon initialisation with the options rectilinear, Euclidean
and squared-Euclidean, where rectilinear is the default value. MHC computation is
invoked as an instance of the sub-module rewards .mhc.

An intricacy to consider is that common RL approaches attempt to maximise cumu-
lative reward whereas the goal in FLP is to minimise transport cost. At the same time,
the reward signal should enable generalisation and avoid reward gaming (i.e. the
exploitation of an unintended loop-hole) as described in [34]. To address these points,
we have set up the reward component for MHC as a moving target. In every step, we
compare the MHC at time step t M H Cy ;1) with the best known MHC M H Cp,; of
the current episode. A reward of 1 is assigned if the new MHC is lower, or O otherwise,
see Eq. 3. Then, M H Cj,y; is overwritten accordingly.

FMHC = 1, if MHCS(H.l) < MHCbest (3)
¢ 0, otherwise

For the OFP environment, layout feasibility needs to be taken into account. In
contrast to the environments where locations are determined, OFP needs to incorporate
non-overlapping constraints. We, therefore, define the penalty term pcoiision (S€€
Eq.4) that collects a penalty of 1 if one facility intersects the union of the remaining
ones. We choose a value of 2 to prevent a sparse reward signal for actions that improved
MHC (+1) but resulted in a collision.

2 ifF N (Ui;ll FjUUjzis F/) # 9
0 otherwise

Pcollision = { (4)

Finally, the variants that rearrange facilities with a movement with a given step
size (Discrete and MultiDiscrete) are at risk of moving facilities beyond the
plant boundaries resulting in entering a state beyond the state space. Such actions
are penalised in two ways: the current episode is terminated (similar to a game-over
situation in arcade games) and a penalty p,fs—griq Of 10 is assigned so as to overrule
possible positive rewards from MHC and to be free of collisions, see Eq. 5.

@ Springer

Operations Research Forum (2024) 5:20 Page 130f26 20

o J10 it ¢S 5)
Poff—grid = 0 otherwise

In consequence, the total reward per step (in OFP) is given as:

' =TMHC — Pcollision — Poff—grid (6)

Reward engineering is said to be one of the most important tasks in RL research.
Therefore, all researchers using gym- £ 1p are encouraged to redefine the reward com-
putation according to their respective needs and suitable for their problems in question.
For instance, additional reward or penalty terms can be defined inside gym-£f1p.

5.3.4 Agent

This package uses Stable Baselines 3 [59] as the framework for RL and the algorithms
it currently supports (as of version 1.8.0). Thus, the algorithms available off-the-shelf
in gym-flp are

e Deep Q-Networks (DQN) [45]

e Proximal Policy Optimization (PPO) [61]

e Advantage Actor Critic (A2C) [62]

e Deep Deterministic Policy Gradients (DDGP) [63]
e Twin-Delayed DDPG (TD3) [64], and

e Soft Actor-Critic (SAC) [65]

Prior to training, hyper-parameters for the algorithm are loaded from the algo-
conf.json file located inside . /algorithm/config/. The hyper-parameters are
the baseline values as stored in the Stable Baselines 3 classes. These can be altered by

(a) Manually changing the parameters in the configuration file by navigating to the
source folder
(b) Passing the parameter values along with train.py, see Section 6.2

When choosing option b), parameters can be passed as a single value for one-off
training (see Section 6.2.4) or as two values describing the lower and upper bound for
an optimisation run (see Section 6.2.5).

5.3.5 Environment

The environment is the heart of the package and contains the state transition dynamics
for the observation and action spaces defined above. The environment follows the Gym
convention and thus contains the functions _ _init (), reset(),step(),and
render ().

Environments in Gym are typically episodic, i.e. they usually possess a terminal
state that aborts an episode and resets the environment. One such terminal state in the
context of FLPs could be the optimal state of the layout given the objective function.
However, the implementation assumes that no optimum is known a priori. Therefore,

@ Springer

20 Page 14 of 26 Operations Research Forum (2024) 5:20

the gym-£1p environments are designed as continuous tasks. To nonetheless enable
the use of episode-based callbacks and evaluations, episodic behaviour needs to be
mimicked. We have therefore included the following termination criteria:

e An action leads to a state outside of the state space (applies mostly to OFP)
e No improvement of MHC has been made in a number of consecutive steps

The first criterion prevents the agent from learning actions that produce infeasible
layouts and are penalised accordingly, see Section 5.3.3. The second criterion assumes
that the agent has reached a region close to a (local) optimum.

6 Usage

This section provides basic examples of how to use the described package with
Reinforcement Learning approaches. Following some installation hints, we provide
execution commands for training and tuning scripts provided with the package.

6.1 Installation

The procedures below were tested on a Windows 10 OS and assume the usage of an
Anaconda, Pycharm or Visual Code distribution. gym-£1p requires Python with a
version starting from 3.7. The following ways exist to install the package.

6.1.1 PyPi Installation

Gym-£f1p supports PyPi installation which is the most straightforward means of
installation. The package can be conveniently installed by opening a terminal window
in the Python home directory and running the command:

pip install gym—{flp

The use of virtual environments, such as virtualenv, conda or pipenv is highly
encouraged.

6.1.2 Installation from GitHub

The next option is to directly install the package from the GitHub source. This can be
achieved by opening a command terminal and running the command:

pip install git+git://github.com/BTHeinbach/gym—flp.git

6.1.3 Cloning GitHub Repository

If all else fails, navigate to the GitHub repository under https://github.com/
BTHeinbach/gym-flp and download the .zip package to a destination folder of your
choosing. Next, open up a terminal, navigate to the destination folder using the com-
mand cd and type the command below (Note the full-stop after the space). This will
install the package in editable development mode, allowing easier changes to it.

@ Springer

https://github.com/BTHeinbach/gym-flp
https://github.com/BTHeinbach/gym-flp

Operations Research Forum (2024) 5:20 Page 150f26 20

pip install —e .

The examples below demonstrate the usage and results.

6.2 Basic Experiment Workflow

According to the experiment workflow presented in Fig.5, in the current version of
gym-flp, researchers have the following experimental design options:

e Common problem instance or custom problem
e One-off or optimisation
e Meta-Study or algorithm tuning

The core of the package are the ‘train’ and ‘evaluate’ blocks. Train will call evaluate
from within to test the agent on the new instance of the environment. But, both can be
called individually from a command line interface. Calling ‘evaluate’ independently
can be useful to test an agent with different random seeds.

The training scripts will create a model according to the script name and the argu-
ments passed. Finally, when training is completed, the program will run one episode
in the environment until termination and log reward and MHC per step for evalua-
tion. The Tensorboard logs, final and (if applicable) intermediate models, experiment
JSON files, and GIFs from the evaluation run are stored in respective sub-folders in
algorithm by default.

The algorithm scripts make use of Stable Baselines 3 and especially the built-in
callback functionality. An evaluation callback will assess the training performance
every 10,000 steps for 10 episodes and save a checkpoint of the model if a new best
mean reward has been achieved. In the script’s evaluation process, the model at the
end of training and the best model are used simultaneously.

Since RL algorithms are generally prone to be sample-inefficient and training can
take a long time, especially on large problem sets or if parallelisation is not possible, we
included the StopTrainingOnNoModel Improvement callback which observes
the results of the evaluation callback and will abort the training run if no new best model
could be found within a predefined time frame (default: three consecutive evaluations).

6.2.1 Experiment Input Options Overview

Gym supports passing optional arguments to the environment. We make use of this
opportunity to provide the FLP researcher with more flexibility and less need to access
the environments’ code for changes. These arguments are technically optional, yet
some of them are critical for the behaviour of the environment, and failing to pass
them may result in errors being thrown or otherwise unexpected behaviour. Figure 6
summarises the implementation details from Section 5.3.

For training RL algorithms, gym- £ 1p provides executable scripts under the pack-
age directory algorithms that can be executed via IDE or using a command line
interface such as a regular terminal in Windows. The available parameters along with
their permissible values are shown below. The default value is highlighted in boldface.

@ Springer

20 Page 16 0of 26

Operations Research Forum (2024) 5:20

(I gym-flp :

Custom Problem?

Juiduy yaodury

.Load sp‘atlal Load Distances D
information A

optuna
D" N\

Save model and discard
env(s)

Load model and make ATk
new env 89

evaluate no yes

End

Fig.5 Basic gym-flp workflow with decision gates

@ Springer

Operations Research Forum (2024) 5:20 Page 17 0f26 20

e I “

Problem
representation

QAP OFLP FBS STS

Observation 1D 20
Space
Box — concurrent

Action Space Discrete Multi-Discrete Box =
displacement

Environment

Distance Rectilinear Euclidean Squared Euclidean
:1'5"'::?;: Literature Custom
Rant;t::;estan Yes No
Step size Int: size of i i to OFLP only, defaults to 1
Algorithm PPO DQN A2C SAC TD3 DDPG

Number of

parallel workers Int: defaults to 1

Training Steps Int: defaults to 100,000

RL Algorithm

Hyper-

parameters Vary according to choice of algorithm

Fig.6 Morphological Box of experimentation options supported as of gym-flp 0.2.0

e ‘mode’ (human or rgb_array): controls whether observations are output as 1D
or 2D arrays.

e ‘instance’ (instance name as string): the instance to be used. If no instance is
passed or if it is misspelled, the environment will prompt for new input and provide
an environment-specific list of available problem sets.

e ‘env’ (gap — v0, fbs — v0, sts — v0 or of p — v0): the environment id to train in

e ‘distance’ (rectilinear,euclidean or squared—euclidean): the distance metric
to be used for MHC calculations

e ‘step_size’: controls displacement length for discrete steps in of p — v0. Without
effect in other environments. Defaults to 1.

e ‘box’:if passed, will create an actions space of type Box. If omitted, a Discrete
space is created instead.

e ‘multi’: if passed, will create a variant of the action space defined by the argument
‘box’ that supports simultaneous displacements.

e ‘train_steps’: integer value for the number of steps to take in the environment.
Defaults to 100.000.

e ‘num_workers’: integer value for the number of parallel environments (where the
algorithm provides it). Defaults to 1.

e ‘algo’: Name of the algorithm used for logging. If omitted, the program will use
the script name instead

e ‘randomize’: If set, reset () will assign facilities to random locations. If omitted,
machines will be distributed in a reproducible manner

@ Springer

20 Page 18 of 26 Operations Research Forum (2024) 5:20

6.2.2 Using Problem Sets from Literature

To perform studies that compare the performance of RL approaches to that of solu-
tions presented in contemporary literature, we provide the flow (and distance or area)
information for problems commonly used in literature. We implemented 138 QAPs
available from the QAPLIB [66] and a plethora of continuous problems which were
taken from the compilation of [67].

It is important to note that all continuous problems are available for the respective
implementations as explained in Section 5.3, but their suitability may vary. For exam-
ple, problem sets where the available plant space matches the sum of facility areas
may not be suitable for the greenfield scenario, as the environment may fail to find
a collision-free layout. On the other hand, instances where area requirements greatly
undershoot plant space availability may result in empty spaces in the RGB image rep-
resentations, which can hinder computation efficiency when using image recognition
policies.

For all problem sets, we deliberately chose not to include currently known lowest
bounds or optimal solutions from academic literature as we consider these a ‘moving
target’ with no true added value for this package. The reason is that we intend to also
solve real industry problems without any solution known a priori. However, we note
and explicitly encourage any interested researcher to adapt the open-source package
by, for instance, implementing an episodic approach that terminates upon reaching the
state representing the best known layout.

The available problem sets are tabulated in the readme . md of the package.

6.2.3 Working with Custom Problems

New FLP instances can be loaded at run-time by providing flows and distances or
dimensions (depending on which type of problem representation is chosen). The gym-
flp import engine accepts text files of the types .json, .txt and .prn.

When passing the value ‘custom’ to the argument ‘instance’ upon starting the
training, the user will be prompted to provide the desired problem size and the file to
read. This happens twice during training (training and evaluation environment) and
during testing (final model and best model environment). The second input allows
users to provide an evaluation instance that is different from the training instance to
test the agent’s performance on new information.

In the background, the EnvBuilder processor will attempt to make sure the input
file is not ill-structured. The input engine expects the flow information to come first.
Ideally, text files are supplied as numeric values only with connections, e.g. f0.0... fn.n
separated by a white space, given as one line per machine, separated by a line feed.
JSON files, on the other hand, are more complicated to engineer, but easier to parse
by the engine. A .json should be structured as per the listing below. Alternatively,

@ Springer

O 0 N N W R W N =

Operations Research Forum (2024) 5:20 Page 190f26 20

the connections j for each i, i.e. the columns of the matrices, can be given as a list
following the key ‘i’. The input engine will further attempt to deduce all necessary
information required for the gym-£f1p environment. That is, if only area data are
provided with the input file, the engine will make facilities square or rectangular with
integer side lengths. If no plant dimensions are supplied, the engine will return an
area that is twice the size of what is occupied by the specified facilities. Furthermore,
the program will raise an exception and terminate if it detects distance information in
inputs supplied to a continuous environment, or spatial information fed into a discrete
environment, respectively.

For further details on structuring custom input files, readers are referred to the
gym-f 1p repository, where downloadable examples are provided.

6.2.4 Example 1: One-Off Training

This example represents an atomic version of algorithm training with a single train-
ing run followed by one evaluation run. We train once with 100,000 and once with
1,000,000 steps to compare the effect of increasing the training budget. To train using
PPO we invoke the respective scripts from a terminal as follows:

python train.py ——algo ppo ——distance euclidean
and
python train.py ——algo ppo ——distance euclidean ——train_steps 1000000

The results of 100,000 training steps can be found in Fig.7a. One can observe a
steady improvement of MHC for about 80 evaluation steps. Afterwards, it is likely that
the agent had not yet processed a sufficient amount of training observations, leading
it to propose a series of actions that do not yield improvements and eventually run
into a termination criterion. With an increased training budget (Fig.7b), the agent
achieves even lower MHC values. In addition to this, we see a plateau starting at
around 100 evaluation steps after which the evaluation stops due to not improving for
five consecutive steps.

@ Springer

20 Page 20 of 26 Operations Research Forum (2024) 5:20

a) Evaluation after 100,000 training steps b) Evaluation after 1,000,000 training steps
4500

4000
© 3500
z
3000

2500

0 20 40 60 80
Evaluation steps

0 20 40 60 80 100
Evaluation steps

4500

3500

MHC

3000

2500

0 20 40 60 80 0 20 40 60 80 100
Evaluation steps Evaluation steps

Fig. 7 Results of an evaluation run in ofp-v0 for 100,000 and 1,000,000 training steps in the instance P6

6.2.5 Example 2: Tuning Hyper-parameters with Optuna

The gym- £ 1p training script leverages Optuna [68]. Optuna can, for instance, be used
to optimise hyper-parameters of agents before submitting them to longer trials.

To do so, any parameter present in the algorithm configuration file can be passed
to the training script with two values which will be interpreted as lower and upper
bound in that order. The program runs 20 iterations by default, other values can be
passed with tune_runs. The optimisation procedure is set up to use the relative
improvement of MHC (MHC at the start—MHC at the finish) per each trial and
attempts to maximise this value. The listing below shows an example for optimising
the PPO hyper-parameter learning rate.

python train.py ——algo ppo ——instance P12 ——learning_rate 1e6 le2

It should be noted that RL training, especially with larger problem sets, tends to
require many training steps before convergence sets in (e.g. the common instance P6
shows converging behaviour after around 1 million training steps). While it is possible
to pass optimisation bounds for all hyper-parameters simultaneously to mimic a full-
factorial design of experiment (DoE), it is highly unlikely that this approach will yield
any meaningful results in a satisfactory time frame.

6.2.6 Example 3: Meta-study

Optuna is further useful to conduct comprehensive studies to examine the effects
of using different algorithms or, as originally intended with gym-£f1p, changes to
environment design. The listing below demonstrates an experiment that performs one
training run for instance P12 with 1,000,000 training steps for the three algorithms
PPO, DQN and A2C (in the given order). The results of the evaluation runs for all
three algorithms can be seen in Fig. 8.

python train.py ——instance P12 ——train_steps 1e6 ——algo ppo dqn a2c

@ Springer

Operations Research Forum (2024) 5:20 Page210f26 20

Evaluation Results: MHC progress for the aloonthms exammed

Mias

e Capm

Fig. 8 Evaluation result of training three RL algorithms on the instance P12 for 1M steps each. It can be
observed that PPO yields the best results given identical hyper-parameters as it achieves the lowest MHC

Of course, this approach can be used in conjunction with Section 6.2.5. In this case,
the Optuna trial will begin by suggesting the input training values and consecutively
submitting them to the algorithms passed along as a list. If any of the hyper-parameters
passed are not supported by the algorithms, the input values will not have any effect.
No warnings are thrown in this case, so special care must be taken when designing
experiments.

6.2.7 Example 4: Beyond the Package

Instead of using the experiment workflow that is built-in into gym-f1p, users can of
course write their own scripts for training. This is especially recommended when using
RL frameworks other than Stable Baselines 3, such as Ray or a custom implementation.
To achieve this, the environment side of gym- f£1p can be used stand-alone. A generic
script as a starting point is given below in Algorithm 1.

In the context of operations research, it can be useful to replace steps 9 and 20 by
other algorithmic approaches from the field. Taking the OFP as an example, the internal
observation can be accessed at any time, too, simply by calling env.internal_state. The
internal observation corresponds to the state output in human mode and is a vector of
size 4 x n that holds the coordinates and dimensions of each facility (see Section 5.3.1).
That information could be encoded differently outside gym-£1p, e.g. as chromosomes
to make it useable with genetic algorithms.

@ Springer

20 Page 22 of 26 Operations Research Forum (2024) 5:20

Algorithm 1 An algorithm with caption

1: Initialise gym and gym-flp

2: M <« Initialise instance of RL model class

3: env < instance of class GymEnv > Use env=gym.make(...)
4: T < Number of train steps (int)

5: 59 < env.reset() > obtain initial observation
6: fort =1,T do

7 Sample random action @ from action space A

8 Pass a to env and receive tuple return (o, r, d, i) > env.step(a)
9: Pass tuple to RL algorithm (Update replay buffer, value function, network weights, ...) and update M
10: end for

11: Save RL model, delete env

12: Start evaluation run:

13: Make new env

14: eval_env <« instance of class GymEnv

15: 0 <« eval_env.reset() > obtain initial observation
16: M < Load RL model

17: d < False

18: mhc < empty list

19: while d # True do

20: a < predict a for o from M

21: Pass a to eval_env and receive tuple return (o, r, d, i)

22: Append i to mhc

23: end while

24: Plot/Interpret mhc

7 Concluding Remarks

In this paper, we present a Python library intended to assist operations researchers
in advancing the usage of Reinforcement Learning techniques for Facility Layout
Problems. As RL has gained traction as a methodology for related combinatorial
optimisation problems, we firmly believe that this is a direction worth exploring. As an
initial stepping stone, we implemented three commonly used FLP problem definitions
(QAP, FBS, and STS) plus an open-field layout problem (OFP) including the material
handling cost computation. The package follows the conventions used in the OpenAl
Gym framework allowing the FLP instances to serve as future benchmark problems
for RL in FLP research.

We consider this package in its current version as a starting point for other keen FLP
researchers who can freely modify our environments by accessing their local copy of
gym-£f1lp.py and make amendments to, e.g., reward signals or even add whole new
environments to it. We encourage interested researchers to explore the functionality
of the package and to engage in, among others, the following activities:

e Filing issues where reproducible code problems arise

e Adding additional RL algorithms by providing an agent branch

e Writing further unit tests using test branches

e Introducing more FLP components by submitting a feature branch (drop-off points,
row-based layouts, other reward mechanisms, etc.)

@ Springer

Operations Research Forum (2024) 5:20 Page 23 0f26 20

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability The package data that support the findings of this study are available from GitHub, https://
github.com/BTHeinbach/gym-flp.

Declarations

Conflict of Interest The authors declare no competing interests.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Drira A, Pierreval H, Hajri-Gabouj S (2007) Facility layout problems: a survey. Annu Rev Control
31(2):255-267. https://doi.org/10.1016/j.arcontrol.2007.04.001
2. Hosseini-Nasab H, Fereidouni S, Ghomi Fatemi, Taghi Seyyed Mohammad et al (2018) Classification
of facility layout problems: a review study. Int J Adv Manuf Technol 94(1-4):957-977. https://doi.
org/10.1007/s00170-017-0895-8
3. Pérez-Gosende P, Mula J, Diaz-Madrofiero M (2021) Facility layout planning. An extended literature
review. Int J Prod Res 59(12):3777-3816. https://doi.org/10.1080/00207543.2021.1897176
4. Burggriaf P, Wagner J, Heinbach B (2021) Bibliometric study on the use of machine learning as
resolution technique for facility layout problems. IEEE Access 9:22569-22586. https://doi.org/10.
1109/ACCESS.2021.3054563
5. Burggrif P, Wagner J, Koke B (2018) Artificial intelligence in production management: a review of the
current state of affairs and research trends in Academia. 2018 International Conference on Information
Management and Processing (ICIMP 2018): Jan. 12-14, 2018, London, UK. IEEE, Piscataway, NJ,
pp 82-88. https://doi.org/10.1109/ICIMP1.2018.8325846
6. Burggrif P, Wagner J, Koke B et al (2020) Performance assessment methodology for Al-supported
decision-making in production management. Procedia CIRP 93:891-896. https://doi.org/10.1016/j.
procir.2020.03.047
7. Burggraf P, Wagner J, Koke B et al (2020) Approaches for the prediction of lead times in an engineer
to order environment—a systematic review. IEEE Access 8:142434-142445. https://doi.org/10.1109/
ACCESS.2020.3010050
8. Burggriaf P, Wagner J, Koke B et al (2019) Sensor retrofit for a coffee machine as condition mon-
itoring and predictive maintenance use case. Human Practice. Digital Ecologies. Our Future: 14.
Internationale Tagung Wirtschaftsinformatik (WI2019): Tagungsband. Universititsbibliothek Siegen,
pp 62-66. https://aisel.aisnet.org/wi2019/track01/papers/5/
9. Wuest T, Weimer D, Irgens C et al (2016) Machine learning in manufacturing: advantages, challenges,
and applications. Prod Manuf Res 4(1):23-45. https://doi.org/10.1080/21693277.2016.1192517
10. Dogan A, Birant D (2021) Machine learning and data mining in manufacturing. Expert
Syst Appl 166:114060. https://doi.org/10.1016/j.eswa.2020.114060. https://www.sciencedirect.com/
science/article/abs/pii/S095741742030823X
11. Bahrpeyma F, Reichelt D (2022) A review of the applications of multi-agent reinforcement learning in
smart factories. Front Robot AI 9:1027340. https://doi.org/10.3389/frobt.2022.1027340. https://www.
frontiersin.org/articles/10.3389/frobt.2022.1027340/full
12. Panzer M, Bender B (2022) Deep reinforcement learning in production systems: a systematic literature
review. Int J Prod Res 60(13):4316—4341. https://doi.org/10.1080/00207543.2021.1973138

@ Springer

https://github.com/BTHeinbach/gym-flp
https://github.com/BTHeinbach/gym-flp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.arcontrol.2007.04.001
https://doi.org/10.1007/s00170-017-0895-8
https://doi.org/10.1007/s00170-017-0895-8
https://doi.org/10.1080/00207543.2021.1897176
https://doi.org/10.1109/ACCESS.2021.3054563
https://doi.org/10.1109/ACCESS.2021.3054563
https://doi.org/10.1109/ICIMP1.2018.8325846
https://doi.org/10.1016/j.procir.2020.03.047
https://doi.org/10.1016/j.procir.2020.03.047
https://doi.org/10.1109/ACCESS.2020.3010050
https://doi.org/10.1109/ACCESS.2020.3010050
https://aisel.aisnet.org/wi2019/track01/papers/5/
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1016/j.eswa.2020.114060
https://www.sciencedirect.com/science/article/abs/pii/S095741742030823X
https://www.sciencedirect.com/science/article/abs/pii/S095741742030823X
https://doi.org/10.3389/frobt.2022.1027340
https://www.frontiersin.org/articles/10.3389/frobt.2022.1027340/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.1027340/full
https://doi.org/10.1080/00207543.2021.1973138

20

Page 24 of 26 Operations Research Forum (2024) 5:20

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Rolf B, Jackson I, Miiller M et al (2023) A review on reinforcement learning algorithms and applications
in supply chain management. Int J Prod Res 61(20):7151-7179. https://doi.org/10.1080/00207543.
2022.2140221

Del Real Torres A, Andreiana DS, Ojeda Rold4n A et al (2022) A review of deep reinforcement learning
approaches for smart manufacturing in industry 4.0 and 5.0 framework. Appl Sci 12(23):12377. https://
doi.org/10.3390/app122312377. https://www.mdpi.com/2076-3417/12/23/12377

Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinatorial optimization: A method-
ological tour d’horizon. Eur J Oper Res 290(2):405-421. https://doi.org/10.1016/].€jor.2020.07.063
Zuniga ER, Moris MU, Syberfeldt A et al (2020) A simulation-based optimization methodology
for facility layout design in manufacturing. IEEE Access 8:163818-163828. https://doi.org/10.1109/
ACCESS.2020.3021753

Tompkins J, White JA, Bozer YA (2010) Facilities planning, 4th edn. Wiley, Hoboken, NJ
Koopmans TC, Beckmann M (1957) Assignment problems and the location of economic activities.
Econometrica 25(1):53. https://doi.org/10.2307/1907742

Tong X (1991) SECOT: a sequential construction technique for facility design. University of Pittsburgh,
Pittsburgh, PA. https://elibrary.ru/item.asp?id=5805928. Accessed 16 Feb 2024

Konak A, Kulturel-Konak S, Norman BA et al (2006) A new mixed integer programming formulation
for facility layout design using flexible bays. Oper Res Lett 34(6):660-672. https://doi.org/10.1016/j.
0r].2005.09.009

Haktanirlar Ulutas B, Kulturel-Konak S (2012) An artificial immune system based algorithm to solve
unequal area facility layout problem. Expert Syst Appl 39(5):5384-5395. https://doi.org/10.1016/j.
eswa.2011.11.046

Tam KYR (1992) A simulated annealing algorithm for allocating space to manufacturing cells. Int J
Prod Res 30(1):63-87. https://doi.org/10.1080/00207549208942878

Niroomand S, Hadi-Vencheh A, Sahin R et al (2015) Modified migrating birds optimization algo-
rithm for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst
Appl 42(19):6586—6597. https://doi.org/10.1016/j.eswa.2015.04.040. https://www.sciencedirect.
com/science/article/pii/s0957417415002821?casa_token=iavfj2vewwsaaaaa:qispvydrz7gpionc_
mjuodgdxjif3gelijutuhrqdgpncSmrfhj7bxkcpweqalzeecruopmy

Yang T, Su CT, Hsu YR (2000) Systematic layout planning: a study on semiconductor wafer fabrication
facilities. Int J Oper Prod Manag 20(11):1359-1371. https://doi.org/10.1108/01443570010348299.
https://www.emerald.com/insight/content/doi/10.1108/01443570010348299/full/

Anjos MF, Vieira MV (2021) Facility layout: mathematical optimization techniques and engineering
applications, 1st edn. EURO Advanced Tutorials on Operational Research, Springer International
Publishing and Imprint Springer, Cham. https://doi.org/10.1007/978-3-030-70990-7

Ueda K, Fujii N, Hatono I et al (2002) Facility layout planning using self-organization method. CIRP
Ann 51(1):399-402. https://doi.org/10.1016/S0007-8506(07)61546-7. https://www.sciencedirect.
com/science/article/pii/s0007850607615467

Tsuchiya K, Bharitkar S, Takefuji Y (1996) A neural network approach to facility layout problems. Eur J
Oper Res 89(3):556-563. https://doi.org/10.1016/0377-2217(95)00051-8. https://www.sciencedirect.
com/science/article/pii/0377221795000518

Garcia-Herndndez L, Pérez-Ortiz M, Aradzo-Azofra A et al (2014) An evolutionary neural system
for incorporating expert knowledge into the UA-FLP. Neurocomputing 135:69-78. https://doi.org/10.
1016/j.neucom.2013.01.068. https://www.sciencedirect.com/science/article/pii/s0925231213011430
Weitzel T, Glock CH (2018) Energy management for stationary electric energy storage systems: a
systematic literature review. Eur J Oper Res 264(2):582-606. https://doi.org/10.1016/j.ejor.2017.06.
052

Shi D, Fan W, Xiao Y et al (2020) Intelligent scheduling of discrete automated production line via
deep reinforcement learning. Int J Prod Res 58(11):3362-3380. https://doi.org/10.1080/00207543.
2020.1717008

Kuhnle A, Rohrig N, Lanza G (2019) Autonomous order dispatching in the semiconductor industry
using reinforcement learning. Procedia CIRP 79:391-396. https://doi.org/10.1016/j.procir.2019.02.
101

Malus A, Kozjek D, Vrabi¢ R (2020) Real-time order dispatching for a fleet of autonomous mobile
robots using multi-agent reinforcement learning. CIRP Ann 69(1):397-400. https://doi.org/10.1016/j.
¢irp.2020.04.001

@ Springer

https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.3390/app122312377
https://doi.org/10.3390/app122312377
https://www.mdpi.com/2076-3417/12/23/12377
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1109/ACCESS.2020.3021753
https://doi.org/10.1109/ACCESS.2020.3021753
https://doi.org/10.2307/1907742
https://elibrary.ru/item.asp?id=5805928
https://doi.org/10.1016/j.orl.2005.09.009
https://doi.org/10.1016/j.orl.2005.09.009
https://doi.org/10.1016/j.eswa.2011.11.046
https://doi.org/10.1016/j.eswa.2011.11.046
https://doi.org/10.1080/00207549208942878
https://doi.org/10.1016/j.eswa.2015.04.040
https://www.sciencedirect.com/science/article/pii/s0957417415002821?casa_token=iavfj2vewwsaaaaa:qispvydrz7gpionc_mjuodgdxjif3ge1ijutuhrqdqpnc5mrfhj7bxkcpwcqalzeecruopmy
https://www.sciencedirect.com/science/article/pii/s0957417415002821?casa_token=iavfj2vewwsaaaaa:qispvydrz7gpionc_mjuodgdxjif3ge1ijutuhrqdqpnc5mrfhj7bxkcpwcqalzeecruopmy
https://www.sciencedirect.com/science/article/pii/s0957417415002821?casa_token=iavfj2vewwsaaaaa:qispvydrz7gpionc_mjuodgdxjif3ge1ijutuhrqdqpnc5mrfhj7bxkcpwcqalzeecruopmy
https://doi.org/10.1108/01443570010348299
https://www.emerald.com/insight/content/doi/10.1108/01443570010348299/full/
https://doi.org/10.1007/978-3-030-70990-7
https://doi.org/10.1016/S0007-8506(07)61546-7
https://www.sciencedirect.com/science/article/pii/s0007850607615467
https://www.sciencedirect.com/science/article/pii/s0007850607615467
https://doi.org/10.1016/0377-2217(95)00051-8
https://www.sciencedirect.com/science/article/pii/0377221795000518
https://www.sciencedirect.com/science/article/pii/0377221795000518
https://doi.org/10.1016/j.neucom.2013.01.068
https://doi.org/10.1016/j.neucom.2013.01.068
https://www.sciencedirect.com/science/article/pii/s0925231213011430
https://doi.org/10.1016/j.ejor.2017.06.052
https://doi.org/10.1016/j.ejor.2017.06.052
https://doi.org/10.1080/00207543.2020.1717008
https://doi.org/10.1080/00207543.2020.1717008
https://doi.org/10.1016/j.procir.2019.02.101
https://doi.org/10.1016/j.procir.2019.02.101
https://doi.org/10.1016/j.cirp.2020.04.001
https://doi.org/10.1016/j.cirp.2020.04.001

Operations Research Forum (2024) 5:20 Page 250f26 20

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

Khalil E, Dai H, Zhang Y et al (2017) Learning combinatorial optimization algorithms over
graphs. In: Guyon I, Von Luxburg U, Bengio S et al (eds) Advances in Neural Information
Processing Systems, vol 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
d9896106ca98d3d05b8cbdf4fd8b13al-Paper.pdf

Unger H, Borner F (2021) Reinforcement learning for layout planning — modelling the layout problem
as MDP. In: Dolgui A, Bernard A, Lemoine D et al (eds) Advances in production management systems,
IFIP Advances in Information and Communication Technology, vol 632. Springer, Cham, pp 471-479.
https://doi.org/10.1007/978-3-030-85906-0_52

Klar M, Glatt M, Aurich JC (2021) An implementation of a reinforcement learning based algorithm
for factory layout planning. Manuf Lett 30:1-4. https://doi.org/10.1016/j.mfglet.2021.08.003

Klar M, Hussong M, Ruediger-Flore P et al (2022) Scalability investigation of double deep q learning
for factory layout planning. Procedia CIRP 107:161-166. https://doi.org/10.1016/j.procir.2022.04.027
Klar M, Glatt M, Aurich JC (2023) Performance comparison of reinforcement learning and meta-
heuristics for factory layout planning. CIRP J Manuf Sci Technol 45:10-25. https://doi.org/10.1016/
j.cirpj.2023.05.008. https://www.sciencedirect.com/science/article/pii/s1755581723000718

Ikeda H, Nakagawa H, Tsuchiya T (2022) Towards automatic facility layout design using reinforce-
ment learning. Communication Papers of the 17th Conference on Computer Science and Intelligence
Systems, vol 32. PTI, pp 11-20. https://doi.org/10.15439/2022£25

Unger H, Borner F, Fischer D (2024) Reinforcement learning for layout planning — automated path-
way generation for arbitrary factory layouts. In: Silva FJG, Ferreira LP, Sa JC, et al (eds) Flexible
Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufactur-
ing Systems. Springer Nature Switzerland and Imprint Springer, Cham, Lecture Notes in Mechanical
Engineering, pp 1031-1039. https://doi.org/10.1007/978-3-031-38165-2_118. https://link.springer.
com/chapter/10.1007/978-3-031-38165-2_118

Heinbach B, Burggrif P, Wagner J (2023) Deep reinforcement learning for layout planning - an MDP-
based approach for the facility layout problem. Manuf Lett 38:40—43. https://doi.org/10.1016/j.mfglet.
2023.09.007

Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529-533. https://doi.org/10.1038/nature14236. https://www.nature.com/
articles/nature14236?wm=book_wap_0005

Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of go with deep neural networks
and tree search. Nature 529(7587):484—489. https://doi.org/10.1038/nature16961. https://www.nature.
com/articles/nature16961?mrk_cmpg_source=sm_tw_pp

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. Adaptive Computation
and Machine Learning. The MIT Press, Cambridge, Massachusetts

Dong H, Ding Z, Zhang S (2020) Deep reinforcement learning: fundamentals, research and applications,
1st edn. Springer eBook Collection, Springer Singapore and Imprint Springer, Singapore. https://doi.
org/10.1007/978-981-15-4095-0

Mnih V, Kavukcuoglu K, Silver D et al (2013) Playing Atari with deep reinforcement learning. Preprint
at http://arxiv.org/abs/1312.5602

Schmigalla H (1970) Methoden zur optimalen Maschinenanordnung. VEB Verlag Technik

Patel D, Hazan H, Saunders DJ etal (2019) Improved robustness of reinforcement learning policies upon
conversion to spiking neuronal network platforms applied to Atari breakout game. Neural Networks:
the Official Journal of the International Neural Network Society 120:108-115. https://doi.org/10.1016/
j-neunet.2019.08.009. https://www.sciencedirect.com/science/article/pii/s0893608019302266

Li C, Zheng P, Yin Y et al (2023) Deep reinforcement learning in smart manufacturing: a review and
prospects. CIRP J Manuf Sci Technol 40:75-101. https://doi.org/10.1016/j.cirpj.2022.11.003. https://
www.sciencedirect.com/science/article/pii/s1755581722001717

Brockman G, Cheung V, Pettersson L et al (2016) OpenAl gym. Preprint at http://arxiv.org/abs/1606.
01540

Hein D, Depeweg S, Tokic M et al (2018) A benchmark environment motivated by industrial control
problems. 2017 SSCI proceedings: 2017 IEEE SSCI, Honolulu, Hawaii, UA. IEEE, Piscataway, NJ.
https://doi.org/10.1109/ss¢i.2017.8280935

Serra T, O’Neil RJ (2020) MIPLIBing: seamless benchmarking of mathematical optimization problems
and metadata extensions. SN Operations Research Forum 1(3):14. https://doi.org/10.1007/s43069-
020-00024-1

@ Springer

https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://doi.org/10.1007/978-3-030-85906-0_52
https://doi.org/10.1016/j.mfglet.2021.08.003
https://doi.org/10.1016/j.procir.2022.04.027
https://doi.org/10.1016/j.cirpj.2023.05.008
https://doi.org/10.1016/j.cirpj.2023.05.008
https://www.sciencedirect.com/science/article/pii/s1755581723000718
https://doi.org/10.15439/2022f25
https://doi.org/10.1007/978-3-031-38165-2_118
https://link.springer.com/chapter/10.1007/978-3-031-38165-2_118
https://link.springer.com/chapter/10.1007/978-3-031-38165-2_118
https://doi.org/10.1016/j.mfglet.2023.09.007
https://doi.org/10.1016/j.mfglet.2023.09.007
https://doi.org/10.1038/nature14236
https://www.nature.com/articles/nature14236?wm=book_wap_0005
https://www.nature.com/articles/nature14236?wm=book_wap_0005
https://doi.org/10.1038/nature16961
https://www.nature.com/articles/nature16961?mrk_cmpg_source=sm_tw_pp
https://www.nature.com/articles/nature16961?mrk_cmpg_source=sm_tw_pp
https://doi.org/10.1007/978-981-15-4095-0
https://doi.org/10.1007/978-981-15-4095-0
http://arxiv.org/abs/1312.5602
https://doi.org/10.1016/j.neunet.2019.08.009
https://doi.org/10.1016/j.neunet.2019.08.009
https://www.sciencedirect.com/science/article/pii/s0893608019302266
https://doi.org/10.1016/j.cirpj.2022.11.003
https://www.sciencedirect.com/science/article/pii/s1755581722001717
https://www.sciencedirect.com/science/article/pii/s1755581722001717
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1109/ssci.2017.8280935
https://doi.org/10.1007/s43069-020-00024-1
https://doi.org/10.1007/s43069-020-00024-1

20

Page 26 of 26 Operations Research Forum (2024) 5:20

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Li F, Du Y (2018) From AlphaGo to power system Al: what engineers can learn from solving the
most complex board game. IEEE Power Energ Mag 16(2):76-84. https://doi.org/10.1109/mpe.2017.
2779554

Viézquez-Canteli JR, Kimpf J, Henze G et al (2019) Citylearn v1.0. In: Zhang M (ed) BuildSys *19: Pro-
ceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation: November 13-14, 2019, New York, NY, USA. The Association for Computing
Machinery, New York, New York, pp 356-357. https://doi.org/10.1145/3360322.3360998

Spangher L, Gokul A, Palakapilly J et al (2020) Officelearn: an OpenAl Gym environment for rein-
forcement learning on occupant-level building’s energy demand response. https://www.climatechange.
ai/papers/neurips2020/56/paper.pdf. Accessed 16 Feb 2024

Waschneck B, Reichstaller A, Belzner L et al (2018) Optimization of global production scheduling with
deep reinforcement learning. Procedia CIRP 72:1264-1269. https://doi.org/10.1016/j.procir.2018.03.
212

Zamora I, Lopez NG, Vilches VM et al (2016) Extending the OpenAl Gym for robotics: a toolkit for
reinforcement learning using ROS and gazebo. Preprint at https://arxiv.org/pdf/1608.05742.pdf
Gawtowicz P, Zubow A (2018) ns3-gym: extending OpenAl Gym for networking research. Preprint at
http://arxiv.org/pdf/1810.03943v2

Hubbs CD, Perez HD, Sarwar O et al (2020) OR-Gym: a reinforcement learning library for operations
research problems. https://doi.org/10.48550/arXiv.2008.06319. Accessed 16 Feb 2024

Raffin A, Hill A, Ernestus M et al (2019) Stable baselines3. https://github.com/DLR-RM/stable-
baselines3. Accessed 16 Feb 2024

Philipp Moritz, Robert Nishihara, Stephanie Wang et al (2018) Ray: a distributed framework for emerg-
ing Al applications. 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pp 561-577. https://www.usenix.org/conference/osdil8/presentation/moritz

Schulman J, Wolski F, Dhariwal P et al (2017) Proximal policy optimization algorithms. Preprint at
http://arxiv.org/abs/1707.06347

Mnih V, Badia AP, Mirza M et al (2016) Asynchronous methods for deep reinforcement learning.
In: Balcan MF, Weinberger KQ (eds) Proceedings of The 33rd International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol 48. PMLR, pp 1928-1937. https://arxiv.
org/pdf/1602.01783

Lillicrap TP, Hunt JJ, Pritzel A et al (2015) Continuous control with deep reinforcement learning.
Preprint at http://arxiv.org/abs/1509.02971

Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic meth-
ods. In: Dy J, Krause A (eds) Proceedings of the 35th International Conference on Machine Learning,
Proceedings of Machine Learning Research, vol 80. PMLR, pp 1587-1596. https://proceedings.mlr.
press/v80/fujimoto18a.html

HaarnojaT, Zhou A, Abbeel P et al (2018) Soft actor-critic: off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In: Dy J, Krause A (eds) Proceedings of the 35th International
Conference on Machine Learning, Proceedings of Machine Learning Research, vol 80. PMLR, pp
1861-1870. https://proceedings.mlr.press/v80/haarnojal 8b.html

Burkard RE, Karisch SE, Rendl F (1997) QAPLIB - a quadratic assignment problem library. J Global
Optim 10(4):391-403. https://doi.org/10.1023/A:1008293323270

LaScalia G, Micale R, Enea M (2019) Facility layout problem: bibliometric and benchmarking analysis.
Int J Ind Eng Comput 10(4):453—472. https://doi.org/10.5267/j.ijiec.2019.5.001

Akiba T, Sano S, Yanase T et al (2019) Optuna. Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, New York, NY, USA, p 2623. https://
doi.org/10.1145/3292500.3330701

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1109/mpe.2017.2779554
https://doi.org/10.1109/mpe.2017.2779554
https://doi.org/10.1145/3360322.3360998
https://www.climatechange.ai/papers/neurips2020/56/paper.pdf
https://www.climatechange.ai/papers/neurips2020/56/paper.pdf
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1016/j.procir.2018.03.212
https://arxiv.org/pdf/1608.05742.pdf
http://arxiv.org/pdf/1810.03943v2
https://doi.org/10.48550/arXiv.2008.06319
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://www.usenix.org/conference/osdi18/presentation/moritz
http://arxiv.org/abs/1707.06347
https://arxiv.org/pdf/1602.01783
https://arxiv.org/pdf/1602.01783
http://arxiv.org/abs/1509.02971
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1023/A:1008293323270
https://doi.org/10.5267/j.ijiec.2019.5.001
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701

	gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems
	Abstract
	1 Introduction
	2 Facility Layout Problems
	3 Reinforcement Learning
	4 Leveraging Reinforcement Learning for Facility Layout Problems
	5 Tying it Together: The gym-flp Library for Using RL on FLPs
	5.1 The Backbone: OpenAI Gym
	5.2 Package Structure
	5.3 Implementation Details
	5.3.1 Observation Spaces
	5.3.2 Action Spaces
	5.3.3 Reward Computation
	5.3.4 Agent
	5.3.5 Environment

	6 Usage
	6.1 Installation
	6.1.1 PyPi Installation
	6.1.2 Installation from GitHub
	6.1.3 Cloning GitHub Repository

	6.2 Basic Experiment Workflow
	6.2.1 Experiment Input Options Overview
	6.2.2 Using Problem Sets from Literature
	6.2.3 Working with Custom Problems
	6.2.4 Example 1: One-Off Training
	6.2.5 Example 2: Tuning Hyper-parameters with Optuna
	6.2.6 Example 3: Meta-study
	6.2.7 Example 4: Beyond the Package

	7 Concluding Remarks
	References

