
Vol.:(0123456789)1 3

AI and Ethics (2021) 1:273–281 
https://doi.org/10.1007/s43681-020-00034-z

ORIGINAL RESEARCH

Moral responsibility for computationally designed products

David M. Douglas1   · David Howard2 · Justine Lacey1

Received: 18 September 2020 / Accepted: 3 December 2020 / Published online: 20 January 2021 
© The Author(s) 2021

Abstract
Computational design systems (such as those using evolutionary algorithms) can create designs for a variety of physical 
products. Introducing these systems into the design process risks creating a ‘responsibility gap’ for flaws in the products they 
are used to create, as human designers may no longer believe that they are wholly responsible for them. We respond to this 
problem by distinguishing between causal responsibility and capacity responsibility (the ability to be morally responsible 
for actions) for creating product designs to argue that while the computational design systems and human designers are both 
casually responsible for creating product designs, the human designers who use these systems and the developers who create 
them have capacity responsibility for such designs. We show that there is no responsibility gap for products designed using 
computational design systems by comparing different accounts of moral responsibility for robots and AI (instrumentalism, 
machine ethics, and hybrid responsibility). We argue that all three of these accounts of moral responsibility for AI systems 
support the conclusion that the product designers who use computational design systems and the developers of these systems 
are morally responsible for any flaws or faults in the products designed by these systems. We conclude by showing how the 
responsibilities of accountability and blameworthiness should be attributed between the product designers, the developers 
of the computational design systems.

Keywords  Computational design · Moral responsibility · Machine ethics · Generative design · Parametric design · Artificial 
intelligence · Evolutionary algorithms

1  Introduction

Artificial intelligence (AI) offers many opportunities for 
automating manufacturing processes. While industrial robots 
have already assisted or replaced human workers in a vari-
ety of manufacturing tasks, AI is increasingly employed in 
product design and development. This application of AI goes 
under several names, including computational design, gener-
ative design, and parametric design [4]. Combining compu-
tational design and 3D printing (or additive manufacturing) 

creates new possibilities for designing and producing physi-
cal products without necessarily involving human design-
ers or manufacturers in the process. A major application 
of computational design is topology optimisation, where 
elements are removed from a design to optimise it towards 
certain criteria (such as reducing weight) while maintain-
ing other characteristics (such as strength) [35]. Topology 
optimisation and 3D printing methods have been applied to 
design aircraft components and car parts that are consider-
ably lighter than existing parts with equivalent strength [16].

Computational design is an application of AI that is cur-
rently underrepresented in the AI ethics literature. Replacing 
or augmenting human designers with computational design 
challenges our existing notions of responsibility for design. 
While it might appear straightforward that the responsibili-
ties of human designers are unchanged if they use compu-
tational design, this conclusion should not automatically 
be accepted. The question of responsibility (in terms of 
attributing authorship) for designs created by AI systems 
has already been raised in the context of computer-generated 
art [11, 24, 31]. Advances in computational design and the 

 *	 David M. Douglas 
	 David.Douglas@csiro.au

	 David Howard 
	 David.Howard@data61.csiro.au

	 Justine Lacey 
	 Justine.Lacey@csiro.au

1	 Responsible Innovation Future Science Platform, CSIRO, 
Brisbane, Australia

2	 Robotics and Autonomous Systems Group, CSIRO, 
Brisbane, Australia

http://orcid.org/0000-0003-2448-871X
http://crossmark.crossref.org/dialog/?doi=10.1007/s43681-020-00034-z&domain=pdf


274	 AI and Ethics (2021) 1:273–281

1 3

use of the products created using this technology have the 
potential to create significant societal impact, both posi-
tive and otherwise [32]. This has sharpened our focus on 
the nature of responsibility in the science, technology, and 
innovation process itself [29], and led to questions about 
new distributions of responsibility, particularly in the case 
of system or design failure [10]. The responsibility for the 
outcome of a machine’s operation is usually ascribed to 
its operator if the machine performs as expected, or to its 
manufacturer if the machine malfunctions [23]. Similarly, 
design flaws in a machine are attributed to its designers. 
Computational design disturbs these established norms by 
replacing the human designer’s role in making decisions 
about aspects of the design. This uncertainty creates a risk 
that the designers using these systems may believe that they 
are not wholly responsible for the products they create [17]. 
Designers may see the computational system itself as having 
full or even partial responsibility for the designed products. 
This uncertainty may lead to the belief that no specific per-
son is responsible for the design, creating a ‘responsibility 
gap’ [23]. Clarifying whether the users of a computational 
design system, the system’s developers, or the system itself 
are responsible for products created using this approach will 
remove this uncertainty.

Our focus here is on moral responsibility which con-
cerns whether someone should receive moral praise or con-
demnation for their action or inaction [12]. Questions of 
legal responsibility (such as liability) for computationally 
designed products are beyond our scope.

This paper begins with an overview of computational 
design and describes one method (evolutionary algorithms) 
in detail. It then describes how the major positions on 
responsibility for the output of AI systems (instrumental-
ism, machine ethics, and hybrid responsibility) all converge 
on attributing moral responsibility to the human users and 
developers of computational design systems. No responsibil-
ity gap therefore exists if computational design systems are 
used to create physical products. Furthermore, this paper 
goes on to explain how the responsibilities of accountability 
and blameworthiness for design flaws in the products created 
using computational design may be attributed between the 
users and developers of these systems, such as computa-
tional design systems.

2 � Computational, parametric, 
and generative design

Product design traditionally involved drawing sketches 
and detailed plans of design concepts on paper and creat-
ing physical models or prototypes that go through many 
iterations until the designer is satisfied. Computer-aided 
design (CAD) (or digital design) introduced computer 

technology into the design process, either as a replace-
ment for the designer’s sketchpad or drawing board, or 
as a method of simulating the physical characteristics of 
designs before they are physically created. Broadly, com-
putational design involves computer technology assisting 
or replacing human designers in creating and modifying 
design concepts.

In the context of architecture, Caetano et al. [4] describe 
computational design as a design process that harnesses 
computation through automating design procedures, per-
forming design tasks in parallel, adding and reflecting design 
changes quickly in representations of the design, and using 
automated feedback to assist designers in form-finding pro-
cesses. These characteristics also apply to computational 
design in other contexts, such as art or product design.

Specific forms of computational design are paramet-
ric design and generative design. Parametric design uses 
physically meaningful parameters, often provided by a 
domain expert. Varying those parameters within reasonable 
(expert-set) ranges creates new designs in a comparatively 
constrained process. Parametric designs have the benefit of 
being human-understandable. The meaning of design char-
acteristics can be gleaned from examining the optimised 
final parameters as they have human meaning, such as width, 
which allow human designers to conceptualise the extents of 
the parametric design space and operate effectively within it. 
Parameters may be varied interactively by hand, and mod-
ern design software reflects parameter changes instantly in 
a visualisation of the design to allow for experimentation. 
Many design packages also come with inbuilt parametric 
optimisers, which operate on a software representation of 
the design (a number string with one number per design 
parameter), and run without human input to maximise one 
of more fitness functions over a number of iterations, that 
calculates how well the design performs its intended purpose 
[19]. As these optimisers are only guided at a high level by 
human-defined performance goals, they have some capacity 
to provide surprising and non-intuitive solutions (parameter 
combinations), albeit within a restricted parametric design 
space.

Generative design generates a plethora of solutions over 
numerous iterations. Unlike parametric designs, there is a 
level of indirection between the software representation of 
the design (the number string), and the complexity of the 
final design. Generative design typically harnesses complex-
ity-generating measures including symmetries, repetition, 
and scaling, to produce complex designs from a compara-
tively small number string. Generative designs provide more 
complex, intricate designs with a smaller number string, and 
the string does not necessarily have to grow if an increase 
in design complexity is required. Unlike parametric design, 
these numbers have no physically grounded meaning—they 
may, for example, be the weights of a neural network that is 



275AI and Ethics (2021) 1:273–281	

1 3

run to produce an intricate geometry [33]. Other implemen-
tations include graphs and shape grammars [20].

Generative design spaces are often unintuitive to navigate 
for human designers, necessitating the use of computational 
optimisation to find good designs. Modern generative design 
is implemented in software and run in parallel on comput-
ers. In generative design, users input some high-level design 
goals (e.g., a fitness function), and the system attempts to 
generate designs that meet all those goals in the best way 
possible (maximise fitness across all objectives). Because 
of the relationship between number string and final design, 
and the lack of physically grounded parameters, the design 
process is much more free-form, with the algorithm search-
ing a wider space than parametric design methods.

3 � Evolutionary algorithms in design

Evolutionary algorithms are one of the main approaches to 
machine learning [8]. As black box optimisers, they are pop-
ular for design problems which may be high-dimensional, 
multi-modal, or lack direct gradient information. This is 
particularly true for generative representations. Evolution-
ary algorithms apply an abstract model of evolution to find 
solutions to complex optimisation problems [30]. The algo-
rithms operate within a defined search space to find solutions 
that meet all the specified requirements or as many of them 
as possible [30].

Successful examples of evolutionary design include 
designing spacecraft antennas [22], structural elements 
of construction projects [19], and even robots [3]. These 
designs are often unconventional as they are “not limited by 
conventions, aesthetic considerations, or ungrounded prefer-
ences for symmetry” [9].

While a full account of how evolutionary algorithms 
function is beyond the scope of this paper, here, we present 
a general outline of the stages these algorithms perform: 
initialisation, evaluation, selection, variation, and replace-
ment [9, 19].

The initialisation stage creates a population where each 
member is a randomly chosen binary or numerical value or 
set of values that encodes a possible solution to the design 
problem. These values must all remain within the defined 
search space. The member’s value is called a genotype, 
while the encoded solution it represents is its phenotype [9].

The evaluation stage uses a fitness function that deter-
mines the suitability of individual genotypes as solutions 
for the intended goal. If one or more members has a fitness 
function result that meets the solution’s requirements, or if a 
certain number of iterations of the algorithm have occurred, 
the genotype with the highest fitness function is converted to 
its phenotype, which is the problem solution. The algorithm 
then finishes. However, if none of the members produce the 

required value for the fitness function or if the maximum 
number of iterations has yet to be reached, the algorithm 
continues onto the selection stage.

The selection stage chooses population members to use 
as a basis for creating new members. The chosen members, 
called parents, will usually have a high fitness function 
result, although some members may also be randomly cho-
sen to ensure that some variety remains in the population 
[9]. The algorithm now progresses to the variation stage, 
where new members are created by modifying the parent 
members. This modification occurs via recombination and 
mutation. Recombination merges data from two parent 
members together to produce one or more child genotypes 
[9]. A mutation is a random change in a genotype. Mutation 
and recombination may be used singularly or together to 
produce new members.

The replacement stage involves removing either some or 
all the existing population with the new members created 
in the variation stage. If only some of the existing members 
are to be replaced, the survival of the existing members is 
determined by some form of environmental selection, which 
usually involves removing the members with the lowest fit-
ness functions. Once the population has been updated, the 
algorithm returns to the evaluation stage, and continues 
again until it either completes a given number of iterations 
or it finds a genotype with the required fitness function. The 
genotype and the corresponding phenotype can be consid-
ered the decision made by the evolutionary algorithm to 
solve the problem it has been given.

From this description of evolutionary algorithms, we can 
already identify two points where human design affects the 
system’s output:

•	 The selection of representation and associated bounds
•	 The definition of the fitness function.

As the representation defines the accessible design space, 
it also affects the types of designs (e.g., geometries) and level 
of fitness that can be achieved by a given evolutionary algo-
rithm. Similarly, if the fitness function (mathematical equa-
tions that ‘score’ each design) do not capture the intended 
end goal, the final designs will not be fit for purpose.

Designs are frequently simulated to assess fitness, and 
physical simulation provides an abstraction of reality that 
can be informative, cheap, and easy to work with. However, 
simulation does not model the entirety of physics, and the 
potential mismatch between the simulation and the physical 
environment is the ‘reality gap’ [34], meaning that perfor-
mance in the simulated and physical design is notably dif-
ferent. Unexpected and undesirable results from an evolu-
tionary algorithm may also be due to ‘misspecified fitness 
functions’ (where loopholes in the fitness function allows 
for unintended or undesirable solutions gain high results) 



276	 AI and Ethics (2021) 1:273–281

1 3

or ‘unintended debugging’ (where software or hardware 
errors incorrectly provide high fitness results, while the cor-
responding phenotype will be ineffective or unsuitable for 
use) [21]. Either type of error may mean that the physical 
design may be dangerously flawed.

Given that the human developer designs and implements 
these aspects of the system, it appears straightforward that 
they are responsible for the flaws in the resulting physical 
design. Nonetheless, computational design systems will 
produce novel, surprising, and unexpected results [21]. The 
system is creating something new, and flaws in the system 
that cause unexpected results may only be identifiable after 
the system has produced them [21]. We still need to establish 
whether the system itself may have any moral responsibility 
for the solutions it produces, or whether this responsibility 
can only be held by humans associated with it in some way.

4 � Moral responsibility and computational 
design

Moral responsibility for computationally designed products 
is a limited case of the larger question of AI or robot respon-
sibility. While designing products via computational design 
does not require a robot or automated means of manufacture, 
it still concerns the question of whether systems that produce 
outputs without human direction are morally responsible for 
that output.

Responsibility takes many forms [6, 36]. As our question 
concerns the problem of whether a computational design 
system may be held morally responsible for products it 
designs, we will focus on the capacity to be morally respon-
sible. This notion of responsibility may be called capacity 
responsibility [15]. Possessing capacity responsibility means 
that someone (or something) has the capability to act respon-
sibly and to hold responsible for their actions. They are able 
“to reflect on the consequences of one’s actions, to form 
intentions, to deliberately choose an action and act upon it” 
[36]. Capacity responsibility may also be described as fulfill-
ing two conditions: the control condition of having the abil-
ity to control one’s own actions, and the epistemic condition 
of being aware of one’s actions and their consequences [5]. 
The control condition highlights the significance of causal 
responsibility, which is the attribution of actions, events and 
outcomes to people, objects, or forces of nature [15]. Capac-
ity responsibility also creates the possibility of ascribing 
other forms of responsibility, such as accountability and 
blameworthiness, to its possessor.

The usual basis for attributing moral responsibility for 
what a machine does is causal responsibility: the less control 
the user has over the machine, the less causally responsible 
she is for the actions caused by its decisions. Machine learn-
ing systems, such as those used in computational design, 

use processing methods that the users or developers did not 
incorporate into it themselves [23]. The output produced 
by these systems involve either new rules that the system 
itself has developed from analysing input data, or through 
processes that incorporate random elements, such as evo-
lutionary algorithms. As a result, the developers have less 
influence over its output that they would over a system where 
the processing rules are hard coded by the developers, and 
where randomness plays no role in the algorithmic process. 
This loss of influence over the system’s decision-making 
creates uncertainty about whether the developer fulfills 
the epistemic condition for capacity responsibility for the 
machine’s output. This uncertainty, combined with the lack 
of a clear alternative attribution of responsibility, creates the 
possibility of a responsibility gap where no one is respon-
sible for the system’s output [23]. Addressing the responsi-
bility gap requires an account of how moral responsibility 
(i.e., capacity responsibility) should be attributed when the 
causal responsibility for an AI system’s output is uncertain.

Gunkel [13] describes three possible responses to the 
responsibility gap: instrumentalism, machine ethics, and 
hybrid responsibility. Each response resolves the gap by pro-
posing a different distribution of responsibility between the 
developers, users, and the system. Instrumentalism places 
capacity responsibility solely on the humans involved in the 
system. In contrast, machine ethics places capacity responsi-
bility (of a sort) onto the system, while hybrid responsibility 
distributes capacity responsibility between the humans and 
the system.

Instrumentalism denies that a responsibility gap exists: 
responsibility for the system and its output rests on the peo-
ple associated with it. It views robots and AI as products like 
any other, and so should not be treated differently regard-
ing moral responsibility. For computational design systems, 
this view presents us with a clear response: only the people 
associated with the system possess capacity responsibil-
ity. The remaining difficulties are determining the relevant 
people associated with the system, and how different forms 
of responsibility should be distributed among them. If we 
accept that computationally designed products are like 
any other, then we may use the same norms for attributing 
accountability and blameworthiness that we would use for 
human-designed products as a starting point for determining 
how to attribute them here.

Machine ethics calls for ethical decision-making to be 
incorporated into robots and AI systems [1, 3]. This abil-
ity to make ethical evaluations would allow such systems 
to act responsibly [2]. This is a pragmatic form of attrib-
uting responsibility that is similar to the legal personhood 
attributed to corporations [13]. How ethical evaluations are 
made by the system depends on whether their evaluations are 
constrained by the developer to prevent harmful outcomes 
occurring, or if they are programmed with an ethical theory 



277AI and Ethics (2021) 1:273–281	

1 3

and methods for using that theory in decision-making [25]. 
These may be called implicit and explicit ethical agents, 
respectively [25]. Computational design systems are implicit 
ethical agents, as they are not programmed with ethical the-
ories and methods of ethical decision-making, but rather 
make evaluations within ranges set by the developer that ide-
ally will prevent them from producing outputs with harmful 
consequences. When the system is an implicit ethical agent, 
machine ethics provides a similar response to that given by 
instrumentalism: the developers have capacity responsibility 
for the output of computational design systems.

Hybrid responsibility states that some combination of the 
system and the people associated with it bear responsibil-
ity [13]. There are several accounts of hybrid responsibil-
ity between people and artefacts. Hanson’s [14] account of 
joint responsibility equates causal responsibility with moral 
responsibility: the responsible ‘subject’ is the combination 
of people and the physical objects necessary to perform an 
action. It rejects the claim that only persons can have agency, 
and instead builds on accounts of extended agency that 
incorporate both persons and the things they use to perform 
actions (such as tools, machines, or even animals) as being 
the proper subject for moral responsibility [14]. Extended 
agency therefore situates capacity responsibility in the col-
lection of people and things that are causally responsible 
for an action.

Johnson’s [18] account of hybrid responsibility describes 
three relevant entities for a computer system’s actions: the 
human users, the human designers, and the computational 
system itself. As with Hanson’s account, all three compo-
nents share causal responsibility for the system’s actions: 
the user initiated the action, the system performed it, and the 
developer gave the system the capability to do so [18]. How-
ever, Johnson [18] argues that computer systems lack moral 
agency as they do not have mental states: they fail to fulfill 
the epistemic condition for capacity responsibility as they 
are not aware of their actions or their consequences. They 
may have intentionality as a result of their programming (in 
the sense that they can act without immediate human inter-
vention), but this intentionality reflects that of the system’s 
users and designers. Computer systems do not have inten-
tions independent of their human developers and users [18]. 
As a result, the system does not have capacity responsibility. 
Johnson’s account therefore accepts that the combination 
of an artefact and the humans associated with it is causally 
responsible for what the artefact does, but rejects the claim 
that the collection of humans and artefacts shares capacity 
responsibility.

Gunkel’s [13] concern about hybrid responsibility cen-
tres on how responsibility is divided between the entities 
involved. Entities within the network of responsibility may 

also deny that they have any responsibility, or that the out-
come was so complex that no human role or group of humans 
fulfilling a role are responsible for the outcome. While this is 
an important question, it does not mean that hybrid responsi-
bility should be rejected. Proponents of hybrid responsibility 
themselves have emphasised this point as an argument in 
favour of this approach. Hanson [14] argues that systems 
incorporating machine learning may become so complex 
that determining which part is responsible for any decision 
is effectively impossible. However, this does not prevent 
capacity responsibility from being assigned to the combi-
nation of the system and its users [14].

For computational design systems, Hanson’s and John-
son’s accounts agree that the combination of the humans 
associated with the system and the system itself is causally 
responsible for the products it designs. While they differ 
in whether the design system itself shares some degree of 
capacity responsibility, they both attribute that responsibil-
ity to the humans associated with it. While this resolves the 
responsibility gap, it places a new emphasis on resolving 
the ‘problem of many hands’ in determining how the vari-
ous types of moral responsibility should be attributed when 
multiple humans or groups contributed to an outcome [27]. 
This point is addressed in the next section.

5 � Moral responsibilities of human users 
and developers

For computational design systems, the three approaches 
to resolving the AI responsibility gap (instrumentalism, 
machine ethics, and hybrid responsibility) converge on 
attributing capacity responsibility to the humans associated 
with the system. However, as Gunkel [13] rightly observes 
in his discussion of hybrid responsibility, there is still the 
need to determine who among these human users and devel-
opers is responsible and for what. The collection of human 
roles that share capacity responsibility may be defined in 
multiple ways. The responsibility for an AI system could 
be distributed across the developers of the system, the users 
who input data into it, those who commissioned its use, the 
designers of the hardware that it operates on, and so on. 
Hanson [14] admits that there is “a point of diminishing 
returns” in specifying the elements of capacity responsibility 
associated with an AI system, and that constant and incon-
sequential elements (such as gravity and the specific model 
of a computer, respectively) may be disregarded. Johnson’s 
account sidesteps this problem by limiting her discussion 
to three entities (human users, human developers, and the 
computational system itself). We will follow Johnson in 



278	 AI and Ethics (2021) 1:273–281

1 3

highlighting the human users and developers as the primary 
focus of capacity responsibility.1

This distinction between users and developers is justified 
by the role responsibilities they have in their association 
with the system. Role responsibilities are the duties that 
accompany specific social roles [15]. The computational 
design system’s human users use it as a tool for achieving 
the goal of creating new product designs. The users there-
fore have the role of human product designers, which intro-
duces the expectation that they will consider the purpose, 
physical characteristics, potential uses, and likely risks of 
the products they design. The developers design and create 
the computational design system as a whole and the system 
components specifically designed and incorporated into it. 
They are expected to consider the functionality and perfor-
mance of the software they create and ensure that it is as 
error-free as possible.

The role responsibilities of designers (as users) and devel-
opers also serve as the basis for what they are accountable 
and blameworthy for. Accountability is the requirement for 
someone with capacity responsibility to provide an explana-
tion or justification for actions they are causally responsibil-
ity for where there is the possibility of wrongdoing [36]. 
Accountability may also serve as the basis for establishing 
blameworthiness. To avoid being blameworthy, the expla-
nation provided by those held accountable must show that 
either no wrongdoing occurred, that they were unaware of 
the potential outcome of their actions (the knowledge con-
dition), that they were unable to do otherwise (the freedom 
condition), that they were not casually responsible, or that 
they lacked capacity responsibility [36].

For human product designers, the potential forms of 
wrongdoing are that the design is unfit for its intended 
purpose and that it is unnecessarily dangerous to its users. 
For the purposes of accountability for using computational 
design systems, the relevant problems here are how to ensure 
that the design created by the system for the human designer 
is safe to use and fit for purpose. Creating a design that is 
unfit for purpose may be due to the designer having an inac-
curate or confused conception of the product’s intended 
purpose, or by making errors in specifying the materials 
to be used to create it. Inappropriate materials and design 
flaws may also make the designed product unsafe to use. If 
we assume that the designer rather than the system chooses 
the materials and the requirements for the created design, 
then the designer is relying on the developer creating the 

computational design system, ensuring that the products it 
designs are likely to be safe. This may be achieved by incor-
porating the safety requirements and regulations that apply 
to human-designed products into the computational design 
system.

Noorman and Johnson [28] rightly observe that the 
developers and users of robotic and AI systems impose con-
straints on their possible outputs. The users set the design 
requirements for the products the system will design. The 
developers define the search space available to the system 
to search for potential designs and define the parameters it 
uses to determine the fitness of the potential designs. The 
changeable parameters and the relationships between them 
are defined by the developers of parametric design systems. 
These constraints allow the system’s designs to be within 
the known performance characteristics of the intended pro-
duction materials of the selected design. As suggested in 
our earlier discussions of instrumentalism and machine eth-
ics, the regulatory requirements for the type of product to 
be designed may also be defined as constraints within the 
search space. For parametric systems, regulatory require-
ments (such as strength and weight tolerances, for example) 
could be specified as limits for the parameters. The system 
would reject potential designs that exceed these constraints 
as unsuitable solutions, in the same way that it would reject 
other potential designs that fail to meet the requirements 
defined by the user.

The potential forms of wrongdoing are similar for devel-
opers: that their creation is unfit for purpose, that it causes 
unnecessary harm to its user (through damaging data or 
hardware, for example), or by unfairly copying the software 
developed by others without permission. We will focus on 
the problem that the computational design system itself is 
unfit for purpose: it does not create designs that function as 
expected as physical products as they are predicted to do by 
the system.

Historically human developers have been reluctant to 
accept accountability for computer systems. Nissenbaum 
[26] describes four such rationalisations: the problem of 
‘many hands’ contributing to the system, the acceptance 
that bugs will always exist within complex computer sys-
tems, attributing causal responsibility for errors to the sys-
tem itself rather than to its developers, and the developers’ 
own rejection of liability for the software they create. For 
systems incorporating machine learning techniques (such as 
computational design systems), de Laat [7] adds ‘opacity’ 
to this list: the lack of transparency in how the system pro-
duces outputs. Four of these rationalisations may be defen-
sible for computational design systems (as our focus is on 
moral rather than legal responsibility, we will not consider 
the legitimacy of rejecting liability). Computational design 
systems are complex software that itself runs on complex 
software and hardware platforms, each of which may contain 

1  The product manufacturers might also considered be relevant if 
they are distinct from the system’s human users. However, the duties 
of performing the manufacturing process successfully and using 
the correct materials that accompany the role of manufacturer are 
unchanged by the introduction of computational design.



279AI and Ethics (2021) 1:273–281	

1 3

errors that affect their operation. Debugging and testing will 
help to identify the source of errors and where they exist 
within the system, even if they cannot guarantee that all 
errors are known or removed. Each response to the respon-
sibility gap acknowledges the causal responsibility of the 
computational design system. The problem of opacity will 
depend on the form of machine learning used within the 
computational design system. While the outcomes of evolu-
tionary algorithms are effectively unpredictable, the methods 
by which these outcomes are determined and evaluated are 
known to the developers. These include the fitness function 
and simulation used to evaluate the generated genotypes and 
how the phenotype representing the physical product designs 
are represented as genotypes. For parametric design systems, 
potential errors may exist in how the relationship between 
different parameters is defined, and in how the parameters 
are optimised by the system.

In cases where the developers are accountable but not 
blameworthy for the harm caused by their system creates 
a responsibility for them to modify it to avoid such harm 
occurring in the future. Using computational design is a form 
of experimentation. While the developers can predict with a 
reasonable level of confidence the range of possible system 
outputs, there will necessarily be some uncertainty about the 
output. The purpose of these systems is to produce solutions 
to problems that are too complex or impractical to resolve 
using traditional methods where the output is (in principle) 
predictable. The computational design system is effectively 
an experimenter within the boundaries of the search space 
defined for it to find possible designs. The flaws it uncov-
ers through the designs it creates are counterexamples to the 
developers’ claims to have accurately represented the materi-
als and physical constraints to the system. Correcting these 
flaws will reduce the reality gap between the simulation and 
fitness function, and the actual context where the design will 
be used. While they are not blameworthy for these flaws if 
they had not been previously discovered or predicted, devel-
opers of computational design systems have an obligation 
to correct these flaws in their systems that are exposed by 
any faulty product designs the computational system creates.

Some uncertainty will always remain with the output of 
any machine learning system, regardless of the constraints 
incorporated into it. Malicious users may game the system 
to deliberately produce harmful outputs. The system may 
use unforeseen and untested interactions in materials that 
cause harmful failures in the products it creates. Product 
designs may fall into a ‘reality gap’ between the simulation 
and the product’s actual use context. Establishing the spe-
cific cause of the fault in the product should indicate whether 
the fault was due to an error in defining the properties of the 
search space, a problem in the physical manufacturing pro-
cess, or due to an unexpected interaction between the mate-
rials and the design developed by computational methods. 

The specific cause of the fault will determine whether the 
human developers, the human users, or the computational 
system itself is blameworthy for the fault. Each of these 
human parties is accountable for an explanation of why the 
fault occurred, and which party is potentially blameworthy 
depends on the type of fault. The developer is accountable 
for faults that are due to the product’s design. The user is 
accountable for faults that result from the product’s speci-
fication and design requirements (i.e., whether it is fit for 
purpose). Their accounts for why the product was flawed or 
caused harm determines whether they are blameworthy for 
that harm (i.e., if they were negligent in using, creating or 
testing the system) or if it was beyond their expected knowl-
edge of how the system operates and the materials used to 
create the product. For example, the developer would not be 
blameworthy for a fault if their account explains how it is the 
result of unforeseen problems with how the physical world 
is represented in the simulation.

So here, we find a solution to the problem of assigning 
moral responsibility for products designed using computa-
tional design systems. Unless the fault is the result of an 
unforeseen interaction between the materials comprising the 
product and the designs created via computational design, 
the human users or developers are wholly accountable for 
faults in the design of the product and the product itself. 
Human users are blameworthy as product designers if their 
account reveals that they would be expected to know about 
the errors and potential risks in the parameters and fitness 
functions that they defined for the computational design sys-
tem to use. If the developers’ account of what caused the 
design flaws or product faults reveals negligence in design-
ing, developing, or testing the system, then the developers 
are also blameworthy. While the developers are not blame-
worthy for flaws discovered by the computational design 
system, they have an obligation to correct their models to 
remove them once they have been revealed using the system.

6 � Conclusion

Using computational design to create physical products raises 
two potential questions for responsibility: does employing 
computational design create a ‘responsibility gap’ for product 
design, and if there is no responsibility gap, who is morally 
responsible for the products created with the aid of these 
systems? Recognising the different forms of responsibility 
(particularly the distinction between causal responsibility 
and capacity responsibility) and building on the existing 
philosophical work on moral responsibility and AI systems 
provide us with the conceptual tools to address this problem.

Here, we have argued that there is no responsibility gap 
by showing that the human users of computational design 
systems and the human developers of these systems are 



280	 AI and Ethics (2021) 1:273–281

1 3

morally responsible for the designs these systems produce. 
This moral responsibility includes being accountable for 
design flaws and product faults, being blameworthy for neg-
ligence in developing the system that causes harmful design 
flaws and product faults and having an obligation to correct 
flaws in how the system produces designs that could not be 
discovered without being uncovered by faulty designs pro-
duced by the system. In doing so, we hope to demonstrate 
how the ‘responsibility gap’ for products designed and made 
by robots and AI systems may be addressed by considering 
how responsibility is attributed in specific applications of 
these technologies.

Acknowledgements  This research was informed by a series of inter-
views with professionals involved in the computational design of prod-
ucts, as approved by CSIRO’s Social and Interdisciplinary Science 
Human Research Ethics Committee in line with the guideline specified 
in the (Australian) National Statement on Ethical Conduct in Human 
Research. The authors thank those participants for generously sharing 
their insights and time to this research. We also thank the anonymous 
reviewers for their useful comments and suggestions.

Author contributions  All authors contributed equally to developing the 
topic and argument of the paper. DMD wrote the text, with contribu-
tions by DH and JL.

Funding  This research was funded by CSIRO’s Responsible Innovation 
Future Science Platform.

Availability of data and materials  Not applicable.

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Code availability  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Allen, C., Wallach, W., Smit, I.: Why Machine Ethics? In: Ander-
son, M., Anderson, S.L. (eds.) Machine Ethics, pp. 51–61. Cam-
bridge University Press, Cambridge (2011)

	 2.	 Anderson, M., Anderson, S.L. (eds.): Machine Ethics. Cambridge 
University Press, Cambridge (2011)

	 3.	 Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 
74–83 (2013). https​://doi.org/10.1145/24938​83

	 4.	 Caetano, I., Santos, L., Leitão, A.: Computational design in 
architecture: defining parametric, generative, and algorithmic 
design. Front. Archit. Res. 9(2), 287–300 (2020). https​://doi.
org/10.1016/j.foar.2019.12.008

	 5.	 Coeckelbergh, M.: AI Ethics. The MIT Press, Cambridge (2020)
	 6.	 Davis, M.: “Ain’t No One Here But Us Social Forces”: construct-

ing the professional responsibility of engineers. Sci. Eng. Ethics 
18(1), 13–34 (2012). https​://doi.org/10.1007/s1194​8-010-9225-3

	 7.	 de Laat, P.B.: Algorithmic decision-making based on machine 
learning from Big Data: can transparency restore accountability? 
Philos. Technol. 31(4), 525–541 (2018). https​://doi.org/10.1007/
s1334​7-017-0293-z

	 8.	 Domingos, P.: The Master Algorithm. Penguin, London (2015)
	 9.	 Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Comput-

ing, 2nd edn. Springer, Berlin (2015)
	10.	 Elish, M.C.: Moral crumple zones: cautionary tales in human-

robot interaction. Engag. Sci. Technol. Soc. 5, 40–60 (2019). 
https​://doi.org/10.17351​/ests2​019.260

	11.	 Epstein, Z., Levine, S., Rand, D.G., Rahwan, I.: Who gets credit 
for ai-generated art? iScience 23(9), 101515 (2020). https​://doi.
org/10.1016/j.isci.2020.10151​5

	12.	 Eshleman, A.: Moral Responsibility. In: Zalta, E.N. (ed.) The 
Stanford Encyclopedia of Philosophy (Winter 2016 Edition). 
https​://plato​.stanf​ord.edu/archi​ves/win20​16/entri​es/moral​-respo​
nsibi​lity/ (2016). Accessed 12 Jan 2021

	13.	 Gunkel, D.J.: Mind the gap: responsible robotics and the prob-
lem of responsibility. Ethics Inf. Technol. (2017). https​://doi.
org/10.1007/s1067​6-017-9428-2

	14.	 Hanson, F.A.: Beyond the skin bag: on the moral responsibility 
of extended agencies. Ethics Inf. Technol. 11(1), 91–99 (2009). 
https​://doi.org/10.1007/s1067​6-009-9184-z

	15.	 Hart, H.L.A.: Punishment and Responsibility: Essays in the Phi-
losophy of Law, 2nd edn. Oxford University Press, Oxford (2008)

	16.	 Heaven, D.: The designer changing the way aircraft are built. BBC 
future. https​://www.bbc.com/futur​e/artic​le/20181​129-the-ai-trans​
formi​ng-the-way-aircr​aft-are-built​ (2018). Accessed 8 June 2020

	17.	 Jackson, C.: Generative design and engineering ethics: where’s 
the intersection? Lifecycle insights. https​://www.lifec​yclei​nsigh​
ts.com/gener​ative​-desig​n-and-engin​eerin​g-ethic​s-where​s-the-inter​
secti​on/ (2019). Accessed 23 Nov 2020

	18.	 Johnson, D.G.: Computer systems: moral entities but not moral 
agents. Ethics Inf. Technol. 8(4), 195–204 (2006). https​://doi.
org/10.1007/s1067​6-006-9111-5

	19.	 Kicinger, R., Arciszewski, T., de Jong, K.: evolutionary com-
putation and structural design: a survey of the state-of-the-art. 
Comput. Struct. 83, 1943–1978 (2005). https​://doi.org/10.1016/j.
comps​truc.2005.03.002

	20.	 Knight, T., Stiny, G.: Making grammars: from computing with 
shapes to computing with things. Des. Stud. 41, 8–28 (2015). https​
://doi.org/10.1016/j.destu​d.2015.08.006

	21.	 Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., 
Beaulieu, J., et al.: The surprising creativity of digital evolution: 
a collection of anecdotes from the evolutionary computation 
and artificial life research communities. Artif. Life 26, 274–306 
(2020). https​://doi.org/10.1162/artl_a_00319​

	22.	 Lohn, J.D., Hornby, G.S., Linden, D.S.: An evolved antenna for 
deployment on NASA’s space technology 5 mission. In: O’Reilly, 
U.M., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming 
Theory and Practice II, pp. 301–315. Springer, Boston (2005)

	23.	 Matthias, A.: The responsibility gap: ascribing responsibility 
for the actions of learning automata. Ethics Inf. Technol. 6(3), 
175–183 (2004). https​://doi.org/10.1007/s1067​6-004-3422-1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2493883
https://doi.org/10.1016/j.foar.2019.12.008
https://doi.org/10.1016/j.foar.2019.12.008
https://doi.org/10.1007/s11948-010-9225-3
https://doi.org/10.1007/s13347-017-0293-z
https://doi.org/10.1007/s13347-017-0293-z
https://doi.org/10.17351/ests2019.260
https://doi.org/10.1016/j.isci.2020.101515
https://doi.org/10.1016/j.isci.2020.101515
https://plato.stanford.edu/archives/win2016/entries/moral-responsibility/
https://plato.stanford.edu/archives/win2016/entries/moral-responsibility/
https://doi.org/10.1007/s10676-017-9428-2
https://doi.org/10.1007/s10676-017-9428-2
https://doi.org/10.1007/s10676-009-9184-z
https://www.bbc.com/future/article/20181129-the-ai-transforming-the-way-aircraft-are-built
https://www.bbc.com/future/article/20181129-the-ai-transforming-the-way-aircraft-are-built
https://www.lifecycleinsights.com/generative-design-and-engineering-ethics-wheres-the-intersection/
https://www.lifecycleinsights.com/generative-design-and-engineering-ethics-wheres-the-intersection/
https://www.lifecycleinsights.com/generative-design-and-engineering-ethics-wheres-the-intersection/
https://doi.org/10.1007/s10676-006-9111-5
https://doi.org/10.1007/s10676-006-9111-5
https://doi.org/10.1016/j.compstruc.2005.03.002
https://doi.org/10.1016/j.compstruc.2005.03.002
https://doi.org/10.1016/j.destud.2015.08.006
https://doi.org/10.1016/j.destud.2015.08.006
https://doi.org/10.1162/artl_a_00319
https://doi.org/10.1007/s10676-004-3422-1


281AI and Ethics (2021) 1:273–281	

1 3

	24.	 McCormack, J., Gifford, T., Hutchings, P.: Autonomy, authentic-
ity, authorship and intention in computer generated art. In: Ekárt, 
A., Liapis, A., Castro Pena, M.L. (eds.) Computational Intelli-
gence in Music, Sound, Art and Design. EvoMUSART 2019, pp. 
35–50. Springer, Cham (2019)

	25.	 Moor, J.H.: The nature, importance, and difficulty of machine 
ethics. In: Anderson, M., Anderson, S.L. (eds.) Machine Ethics, 
pp. 13–20. Cambridge University Press, Cambridge (2011)

	26.	 Nissenbaum, H.: Accountability in a Computerized Society. In: 
Friedman, B. (ed.) Human values and the design of computer tech-
nology, pp. 41–64. CSLI Publications and Cambridge University 
Press, New York (1997)

	27.	 Noorman, M.: Computing and Moral Responsibility. In: Zalta, 
E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring 
2018 Edition). https​://plato​.stanf​ord.edu/archi​ves/spr20​18/entri​
es/compu​ting-respo​nsibi​lity/ (2018). Accessed 12 Jan 2021

	28.	 Noorman, M., Johnson, D.G.: Negotiating Autonomy and Respon-
sibility in Military Robots. Ethics Inf. Technol. 16(1), 51–62 
(2014). https​://doi.org/10.1007/s1067​6-013-9335-0

	29.	 Owen, R., Stilgoe, J., Macnaghten, P., Gorman, M., Fisher, E., 
Guston, D.: A framework for responsible innovation. In: Owen, 
R., Bessant, J., Heintz, M. (eds.) Responsible Innovation: Man-
aging the Responsible Emergence of Science and Innovation in 
Society, pp. 27–50. Wiley, Chichester (2013)

	30.	 Renner, G., Ekárt, A.: Genetic algorithms in computer aided 
design. Comput. Aided Des. 35(8), 709–726 (2003). https​://doi.
org/10.1016/S0010​-4485(03)00003​-4

	31.	 Samuelson, P.: AI authorship? Commun. ACM 63(7), 20–22 
(2020). https​://doi.org/10.1145/34017​18

	32.	 Stahl, B.C., Coeckelbergh, M.: Ethics of healthcare robotics: 
towards responsible research and innovation. Robot. Auton. Syst. 
86, 152–161 (2016). https​://doi.org/10.1016/j.robot​.2016.08.018

	33.	 Stanley, K.O.: Compositional pattern producing networks: a novel 
abstraction of development. Genet. Program Evolvable Mach. 
8(2), 131–162 (2007). https​://doi.org/10.1007/s1071​0-007-9028-8

	34.	 Trefzer, M.A., Tyrrell, A.M.: Evolvable Hardware: From Practice 
to Application. Springer, Berlin (2015)

	35.	 Tutum, C.C., Vouga, E., Chockchowwat, S., Miikkulainen, 
R.: Functional generative design: an evolutionary approach to 
3D-printing. Paper presented at the genetic and evolutionary 
computation conference (GECCO ’18), Kyoto, Japan, 15–19 June 
2018

	36.	 van de Poel, I.: The Relation between forward-looking and back-
ward-looking responsibility. In: Vincent, N.A., van de Poel, I., van 
den Hoven, J. (eds.) Moral Responsibility, pp. 37–52. Springer, 
Dordrecht (2011)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://plato.stanford.edu/archives/spr2018/entries/computing-responsibility/
https://plato.stanford.edu/archives/spr2018/entries/computing-responsibility/
https://doi.org/10.1007/s10676-013-9335-0
https://doi.org/10.1016/S0010-4485(03)00003-4
https://doi.org/10.1016/S0010-4485(03)00003-4
https://doi.org/10.1145/3401718
https://doi.org/10.1016/j.robot.2016.08.018
https://doi.org/10.1007/s10710-007-9028-8

	Moral responsibility for computationally designed products
	Abstract
	1 Introduction
	2 Computational, parametric, and generative design
	3 Evolutionary algorithms in design
	4 Moral responsibility and computational design
	5 Moral responsibilities of human users and developers
	6 Conclusion
	Acknowledgements 
	References




