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Abstract
Resource recommendation is extremely challenging under low-resource conditions because representation learning models 
require sufficient triplets for their training, and the presence of massive long-tail resources leads to data sparsity and cold-start 
problems. In this paper, an industrial knowledge graph is developed to integrate resources for manufacturing enterprises, 
and we further formulate long-tail recommendations as a few-shot relational learning problem of learning-to-recommend 
resources with few interactions under low-resource conditions. First, an industrial knowledge graph is constructed based 
on the predesigned resource schema. Second, we conduct schema-based reasoning on the schema to heuristically complete 
the knowledge graph. At last, we propose a multi-head attention-based meta relational learning model with schema-based 
reasoning to recommend long-tail resources under low-resource conditions. With the IN-Train setting, 5-shot experimental 
results on the NELL-One and Wiki-One datasets achieve average improvements of 28.8 and 13.3% respectively, compared 
with MetaR. Empirically, the attention mechanism with relation space translation learns the most important relations for 
fast convergence. The proposed graph-based platform specifies how to recommend resources using the industrial knowledge 
graph under low-resource conditions.

Keywords  Resource recommendation · Industrial knowledge graph · Few-shot relational learning · Schema-based 
reasoning

1  Introduction

The advent of Industry 4.0 requires the smartization of 
industrial processes, extending smart manufacturing to smart 
storage and smart logistics [1]. Industrial resources are the 

basis of the development and reconstruction of value chains, 
and the integration and sharing of such resources become 
increasingly important in the dawn of Industry 4.0 [2].

With the highly specialized division of labor and the con-
tinuous upgrading of products, industrial resources expe-
rience exponential growth in the entire product life cycle 
[3]. This growth inevitably leads to several problems. First, 
scattered systems impede enterprise collaboration, and the 
innovation and safety of the manufacturing value chain are 
difficult to guarantee [4]. Second, there is a lack of integra-
tion models for product innovation and resource scheduling. 
At last, massive long-tail resources (i.e., the resources are 
rarely referenced within a knowledge graph) cause the cold-
start problem (i.e., the engine cannot make reliable recom-
mendations due to an initial lack of ratings) in most of the 
reported recommendation engines [5]. These problems com-
promise the robustness and generalization of recommender 
systems, and thereby hinder the sharing and reuse of indus-
trial resources throughout the product life cycle.

The previous works focus on utilizing knowledge graphs 
to construct interpretable recommender systems [6–8]. Yet, 
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till now, insufficient attention has been paid to building rec-
ommender systems for the value chains in the manufactur-
ing industry. Despite several existing works using auxiliary 
information to overcome the data sparsity problem of user-
item interactions [9] , their performance is far from satisfac-
tion because auxiliary information is always unavailable for 
newly arising data and long-tail data [10]. Smart resource 
aggregation and collaborative recommendation require deep 
learning models [11, 12] , while these models are usually 
suboptimal under low-resource conditions.

To address the above challenges, a proper meta-model 
is needed to integrate and share heterogeneous industrial 
resources, where sufficient annotated data for training is 
always unavailable. In this article, a novel framework for 
industrial resource recommendation in low-resource con-
ditions is proposed to improve the seamless collaboration 
between enterprises and thereby promote the production and 
operation efficiency of manufacturing enterprises.

Our method consists of the following steps. First, scat-
tered industrial resources are integrated and correlated to 
form an industrial knowledge graph based on the resource 
schema. Second, to tackle the sparsity within the graph, we 
conduct schema-based reasoning to identify the potential 
implicit relations and heuristically complete the graph. 
Lastly, we propose a novel multi-head attention-based meta 
relational learning model that learns the latent representa-
tions of relation-meta to solve the cold-start problem caused 
by the long-tail resources. The predicted links are used to 
recommend industrial resources to corresponding entity 
nodes.

Our main contributions are summarized as follows.

1)We propose an industrial knowledge graph model to 
integrate heterogeneous resources throughout the product 
life cycle. We further formulate long-tail recommenda-
tions as a few-shot relational learning problem of learn-
ing-to-recommend resources with few interactions.
2)We conduct schema-based reasoning to mine the poten-
tial implicit relations, as well as to complete the industrial 
knowledge graph.
3)We propose a novel multi-head attention-based meta 
relational learning model to improve the use of long-tail 
resources and to address the cold-start problem.
4)We develop a graph-based platform in which the pro-
posed recommendation algorithm is incorporated to 
recommend industrial resources in low-resource condi-
tions. A business metric, net promoter score, is adopted 
to evaluate the recommender systems in low-resource 
conditions.

The rest of the paper is organized as follows. Sec-
tion 2 presents the literature review on related methods. 
Our method is illustrated in Sect. 3. Section 4 reports the 

experimental results. Section 5 displays analysis and discus-
sion. Section 6 concludes this work.

2 � Background

2.1 � Knowledge Graph‑Based Recommendation

Recently, personalized recommender systems based on 
knowledge graphs are proposed to improve performance 
and provide interpretability. In general, the recommender 
algorithms can be categorized into three classes, i.e., feature-
based methods, path-based methods, and embedding-based 
methods [13].

The feature-based methods, as their name indicate, extract 
the features of users and/or items for the machine learning 
process [14]. Sohail et al. [15] present an opinion mining-
based recommendation technique to provide the university 
students with promising books for their syllabus; however, 
this technique could be subjectively biased. Uyangoda et al. 
[16] apply a user-profile-feature-based approach to improve 
the recommender system with few user records. Dai et al. 
[17] propose a feature-based bayesian task recommendation 
scheme to overcome the challenge of emerging recommen-
dations, but the scheme cannot address the changes in users’ 
interests. Yang et al. [18] propose a meta-feature-based 
approach, called Explainable Recommendation Framework, 
to render explainable recommendations for both warm-start 
and cold-start users/items in a unified framework. Yet, these 
methods typically neglect the implicit information in graph 
structures [19]. The structural information in the graph 
could contribute to capturing the pairwise relations [20], 
and therefore modeling structural patterns is beneficial to 
recommender systems [21, 22].

The path-based methods learn the paths between users 
and items to construct the knowledge graph. Yu et al. [23] 
investigate the entity recommendation problem in heteroge-
neous information networks and propose the use of implicit 
feedback data for developing personalized recommendation 
models. Zhao et al. [24] introduce the concept of meta-graph 
to HIN-based recommendation and solve the information 
fusion problem with a novel approach. Unfortunately, these 
methods still exhibit poor generalization performance due 
to the manually designed paths.

The embedding-based methods embed users and items to 
a low vector space to improve the accuracy of recommen-
dations. Wang et al. [25] develop a deep knowledge-aware 
network that incorporates knowledge graphs into news rec-
ommendations. Zhao et al. [8] leverage heterogeneous infor-
mation in a knowledge base to improve the recommendation 
quality. Ripple Network [26] stimulates the propagation of 
user preferences over knowledge entities by automatically 
and iteratively extending a user’s potential interests along 
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with links in the knowledge graph. Multi-task feature learn-
ing approach [27] is a deep end-to-end framework that uses 
knowledge graph embeddings to assist resource recommen-
dation. Yet, these embedding-based methods have limited 
applicability under low-resource conditions, see Sect. 4.2.2.

How to improve the performance of recommender sys-
tems based on knowledge graphs is a recent research hotspot. 
To resolve these problems, researchers have incorporated 
auxiliary information into recommendation algorithms. 
These works mine users’ historical records for implicit 
information and improve the model structure for better per-
formance. Contrarily, data sensitivity and knowledge speci-
ficity of industrial resources require massive labeled data for 
training, but manual tagging is extremely costly and time-
consuming. In addition, owing to their multi-disciplinary 
and heterogeneous nature, industrial resources tend to be 
highly complicated and professional to construct knowledge 
graphs for the manufacturing value chains, especially in low-
resource conditions.

2.2 � Industrial Knowledge Graph

There are several well-known knowledge graphs such as CN-
DBpedia [28] and Wikidata [29], but limited attention has 
been paid to knowledge graphs in industrial resource inte-
gration such as procurement and manufacturing. The current 
research on industrial knowledge graphs can be categorized 
into three parts, including the construction of industrial 
knowledge graphs, knowledge deduction, and applications 
of industrial knowledge graphs.

The construction of industrial knowledge graphs aims to 
aggregate massive data from industrial products and ser-
vices to create artificial intelligence for industrial appli-
cations [30]. Knowledge extraction technologies, such as 
data mining, natural language processing, and deep learn-
ing, are designed to extract entities and relations from 
unstructured industrial resources [31–33]. Researchers also 
enhance industrial knowledge graphs with generic knowl-
edge graphs and exploit the storage of industrial knowledge 
graphs [34–37]. However, at present, industrial knowledge 
graphs are still entangled with the emerging resources, the 
knowledge mining of possible implicit relations between 
resources, and the collaboration of domain experts within 
the graph construction [38].

The knowledge deduction of industrial knowledge graphs 
focuses on the multi-hop semantic search and knowledge 
reasoning based on the industrial knowledge graphs [39–41]. 
The industrial knowledge deduction can be categorized into 
attribute deduction and relationship deduction. Practically, 
these methods map attributes and relations to a low-dimen-
sional vector space and transform the knowledge deduc-
tion process into matrix operations [42–45]. Nevertheless, 
knowledge deduction also requires massive labeled data for 

training [38]. Moreover, the few-shot problems under low-
resource conditions are usually overlooked.

Industrial knowledge graphs can be applied in a series of 
scenarios like industrial collaboration, resource representa-
tion learning, and intelligent search. The typical representa-
tive applications include question answering with knowledge 
graphs [46], visualization of knowledge graphs [47], and 
fault diagnosis [48]. However, these practical implementa-
tions impose constraints on the links in knowledge graphs by 
defining a schema or an ontology [49]. Worse still, knowl-
edge representation is always much more complicated in the 
manufacturing industry [50].

2.3 � Few‑Shot Link Prediction

Knowledge deduction based on knowledge graph embed-
ding [51] (KGE) usually assumes that there are sufficient 
triples of entities and relations for training. However, the 
applicability of this approach is limited due to the two fol-
lowing aspects. First, long-tail resources are widespread in 
knowledge graphs, and those newly added relations often 
do not have many known samples for training [52]. Second, 
emerging resources in the manufacturing industry also cause 
the few-shot learning problem, while such resources tend to 
be ignored in prior works [53].

Compared with the methods that require sufficient train-
ing data, the performance of few-shot learning problems is 
poorer [54]. Further, embedding-based methods for few-shot 
link prediction always perform awkwardly on relations that 
only have a few associative triples [55]. Therefore, recom-
mender systems are unable to make reliable recommenda-
tions due to these long-tail constraints, also known as the 
cold-start problem.

In sum, the industrial knowledge graph is a promis-
ing solution to the integration, sharing, and management 
of domain knowledge, while industrial resources require 
a more canonical and formal form to fuse heterogeneous 
and multi-disciplinary resources for cooperation. Still, the 
industrial recommender systems are suffering from the cold-
start problem caused by the newly arising resources and the 
long-tail resources.

3 � Method

Here, a novel industrial knowledge graph is constructed 
based on the predefined resource schema. We further con-
duct rule reasoning on the schema to heuristically com-
plete the knowledge graph. The inference rules are added 
to the support sets to train the multi-head attention-based 
meta relational learning algorithm. The industrial knowl-
edge graph aims at integrating resources across the entire 
product life cycle, and our meta relational learning model 
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is developed to recommend resources under low-resource 
conditions.

3.1 � Industrial Knowledge Graph

3.1.1 � Industrial Knowledge Graph Construction

The industrial knowledge graph is a promising solution to 
integrate industrial resources and enhance knowledge shar-
ing across different manufacturing sectors [38]. In this paper, 
an industrial knowledge graph is constructed to support our 
recommendation algorithm in low-resource conditions. 
Hence, it is feasible to apply our method to other domains 
by modifying the resource schema and conducting rule-
based reasoning with the proposed meta relational learning 
algorithm. From Fig. 1, the resource schema is based on 
the resource classification tree that categorizes industrial 
resources into four classes, namely knowledge resources, 
business data resources, human resources, and product 
resources.

Specifically, knowledge resources, including patents, 
standards, papers, achievements, regulations, and reports, 
enhance the knowledge service capabilities for product 
innovations [56]. Business data resources are accumulated 
from business processes, from user demands to records of 
maintenance. These data comprise the implicit and empirical 
knowledge for intelligent manufacturing. Human resources 
refer to the information of experts who ensure the orderly 
management of other resources. Product resources are the 
entities of modules that enable manufacturing enterprises to 
focus on the interplay between innovation and design pro-
cesses, and they also embed a co-creation paradigm between 
firms and customers for mass customization [57].

The overview of the industrial knowledge graph construc-
tion process is shown in Fig. 2. Specifically, the resource 
schema [58] is designed based on the resource classification 
tree that describes the hierarchy concepts and their relations. 
Open Information Extraction (OpenIE) annotator [59] is 
used to extract open-domain relation triples within struc-
tured and unstructured data. Neo4j JDBC driver [35] and 
RDF2Neo4j interpreter [60] are employed for data mapping, 
and attribute-based fusion [61] is used to fuse industrial 
resources from scattered relational databases in a unified 
paradigm. In such a paradigm, the entity set represents heter-
ogeneous resources, and the edge set represents the relations 
among industrial resources. The information and knowledge 
in resources are set as properties of the nodes. The industrial 
knowledge graph is then integrated and stored in the graph 
database Neo4j [35]. For KGE, entities and relations form 
triples that are embedded in a low-dimensional vector space 
using TransE [62]. Further, the community detection algo-
rithm Cluster-GCN [63] and the few-shot multi-hop reason-
ing algorithm Meta-KGR [64] are used to support schema-
based reasoning (see Sect. 3.1.2). Our few-shot relational 
learning algorithm (see Sect. 3.2) is proposed to complete 
the industrial knowledge graph and recommend industrial 
resources in low-resource conditions. Lastly, a graph-based 
platform that provides intelligent services like our recom-
mendation engine is developed (as shown in Sect. 4.2).

3.1.2 � Schema‑Based Reasoning

Schema-based reasoning is an inductive reasoning process 
that represents a generalized form of case-based reason-
ing [65]. We conduct schema-based reasoning to complete 
the industrial knowledge graph and resolve the cold-start 

Resource classification tree
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Fig. 1   Resource classification tree



International Journal of Computational Intelligence Systems           (2022) 15:42 	

1 3

Page 5 of 21     42 

problem by generating more training data for the few-shot 
link prediction in Sect. 3.2.

Schema-based reasoning on industrial knowledge graph 
can be categorized into four classes, namely historical rules, 
performance rules, community rules, and path rules. The 
symbols in Table 1 are defined as follows. Assuming a is a 
manufacturing enterprise that would benefit from the indus-
trial knowledge graph. b and b′ are potential suppliers of a . c 
and c′ are parts and components that are required by a.

By their definitions, (1) historical rules associate newly 
added resources based on the historical or empirical data, i.e. 
if the enterprise a cooperated with the supplier b in the past, 
and the supplier b and b′ are similar in production, then b′ 
would be linked to a . (2) Performance rules are proposed to 
link candidate resources that achieve comparable performance. 

For instance, if the product c′ achieves comparable machining 
accuracy with the product c that is required in the production 
process of the manufacturing enterprise a , then c′ would be 
linked to a . (3) Community rules are introduced to associate 
resources in the same community based on graph structure 
information, i.e. if industrial enterprises a , b , and b′ are densely 
connected in the knowledge graph, then b and b′ would be 
linked to a . (4) Path rules are generated based on the path in 
the graph to discover long-tail resources for multi-hop reason-
ing, i.e. if enterprises a and b are partners, b and b′ are also 
partners, then b′ would be linked to a.

In sum, schema-based reasoning can be used to address the 
sparsity issue of industrial knowledge graphs. Such rules are 
competent to discover and unveil the implicit relations among 
resources and associate long-tail resources to complete the 

Fig. 2   Overview of the industrial knowledge graph construction

Table 1   Schema-based 
Reasoning

Rule class Condition Result

Historical rule If b and b′ are similar, and a cooperated with b before Then b′ is linked to a
Performance rule If c and c′ perform similarly, and c meets a ’s needs Then c′ is linked to a
Community rule If a , b , and b′ are in the same community Then b and b′ are linked to a
Path rule If a and b are partners, b and b′ are also partners Then b′ is linked to a
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industrial knowledge graph. Moreover, schema-based reason-
ing generates more training data for few-shot link prediction 
[55], which is regarded as a promising solution to the cold-start 
problem in recommender systems [66, 67].

3.2 � Multi‑head Attention‑Based Meta Relational 
Learning Algorithm with Schema‑Based 
Reasoning

The sparsity of knowledge graphs brings about long-tail data 
that are the principal cause of the cold-start problem of rec-
ommendation algorithms. To fix this problem, we conduct 
schema-based reasoning to generate more training data and 
employ the few-shot relational learning on the industrial 
knowledge graph, which transfers the recommendation task 
to a simple ranking problem of candidate predictions in low-
resource conditions.

An example of the recommendation algorithm based on 
the few-shot link prediction is shown in Fig. 3. First, the 
schema-based reasoning strategy is conducted on the indus-
trial knowledge graph to generate more data in the support 
set and query set for few-shot learning. The meta relational 
learning model is further proposed to learn the relation-
meta. Finally, a recommendation engine that is based on 
the rankings of predicted links among long-tail resources is 
introduced to resolve the cold-start problem.

Different from traditional deep learning models that are 
slow and highly computational expensive, few-shot link 
prediction aims to gain the capability of predicting new tri-
ples about a specific relation by only observing a few tri-
ples. Hence, our model is designed to predict any newly 
added relations without fine-tuning, while existing models 

always require massive training data to adapt to newly added 
relations.

The structure of the multi-head attention-based meta 
relational learning is shown in Fig. 4, in which a represen-
tation layer, a relation-meta encoder, and a training module 
are included. The representation layer maps entities and 
relations to a hyper embedding space. A relation-meta 
encoder is proposed to learn a mapping from head entities 
to corresponding tail entities in the support set. The train-
ing module constructs the objective function and updates 
the relation-meta that is transferred from the support set to 
the query set, enabling our model to address the few-shot 
link prediction.

3.2.1 � Representation Layer

Within a support set Sr and a query set Qr , a fact 
(
hi, ti

)
 is 

defined as an entity pair that comprises the head entity hi 
and the tail entity ti . The corresponding relation in the fact 
is ri . Entities and relations are first embedded in a hyper 
vector space, either by random initialization or pre-trained 
embeddings. [54] Given one few-shot link prediction task 
T⊖r =

{
Sr,Qr

}
 , each fact 

(
hi, ti

)
 of the task T⊖r is mapped 

to get the embeddings of entities and corresponding rela-
tions in Eq. (1).

(1)

xhi = e(hi)

xri = e(ri)

xti = e(ti)

Fig. 3   Resource recommendation algorithm based on the few-shot link prediction
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where e() denotes an embedding lookup table, k=||Sr
|| is the 

shot number, and i ∈ {1, 2..., k}.
We concatenate entity embeddings both for the positive 

fact 
(
hi, ti

)
 and the negative one 

(
hi, t

′
i

)
 , generating inputs of 

the relation-meta encoder in Eq. (2). The symbol ⊕ repre-
sents the concatenation function.

where xhi , xti , and xt′
i
 are embeddings of the head entity hi , 

the positive tail entity ti , and the negative tail entity t′
i
.

(2)
x0
pi
= xhi ⊕ xti

x0
ni
= xhi ⊕ xti

3.2.2 � Relation‑meta Encoder

The relation-meta encoder consists of two stacked encod-
ing modules and an inference long short-term memory net-
work (LSTM) sublayer. Since the previous implementation 
is based on simple multi-layer perceptron [55] (MLP), it 
could lead to vanishing gradient problems when the net-
work goes deeper [68]. In comparison, here we extract 
fact-specific relation-meta via the multi-head attention-
enhanced LSTM, allowing the encoder to capture implicit 
long-range semantic dependencies [69, 70] between the 
head entities and tail entities.

As shown in Fig. 4, an encoding module consists of an 
LSTM sublayer and a multi-head attention layer, learning 

Fig. 4   Multi-head attention-based meta relational learning for few-shot link prediction
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a deeper representation of facts for relation encoding. In 
Eq. (3), both the positive embedding �0

pi
 and the negative 

one �0
ni
 are fed into an LSTM sublayer that yields an inter-

mediate output representation 
{
�l

pi
,�l

ni

}
∈ ℝ

k×d , where k 
and d denote the shot number of the task T⊖r and LSTM 
hidden size, respectively. l here is the layer number of the 
encoding module.

Then a multi-head attention sublayer is stacked to the 
above LSTM sublayer, forcing the encoder to focus on the 
commonalities of facts. For the multi-head attention mecha-
nism, we assign � = �1

pi
,� = � = �1

ni
 . Hence, the attention 

mechanism is calculated using Eq. (4).

We use multi-head for capturing the distribution differ-
ence between positive facts and negative ones in parallel.

where �Q

i
∈ ℝ

d×
d

q ,�k
i
∈ ℝ

d×
d

q ,�V
i
∈ ℝ

d×
d

q are trainable 
parameters, and q is the number of parallel heads. �1

ai
 

denotes the intermediate output representation of the first 
multi-head attention sublayer. Then the output of the first 
encoding module �1

i
 is the concatenation of �1

pi
 and �1

ai
.

We stack two encoding modules in the relation-meta 
encoder. Here, �2

i
= �2

pi
⊕�2

ai
 denotes the output of the 

second encoding module. Then, an inference LSTM sublayer 
that only modifies dropout to be 0 is added to generate the 
fact-specific relation-meta Ri in Eq. (7)

At last, the relation-meta in Eq. (8) is the average of all 
the fact-specific relation-meta Ri . k denotes the shot number 
of the task T⊖r.

(3)
�1

pi
= LSTM

(
�0
pi

)

�1
ni
= LSTM

(
�0
ni

)

(4)attention(�,�,�) = softmax

�
��T

√
d

�
�

(5)
headi = attention

(
��

Q

i
,��k

i
,��V

i

)

�1
ai
= concat(head1,...,headq) +�1

pi

(6)�1
i
= �1

pi
⊕�1

ai

(7)Ri = LSTM
(
H2

i

)

(8)RT⊖r
=

∑k

i=1
Ri

k

3.2.3 � Training

A score function is used to evaluate the relation-meta and the 
loss function is employed to update the whole model. The 
score function of the support set is defined in Eq. (9) based 
on TransE [62]. Inspired by Lin et al. [71], a penalty term is 
added to ensure the relation-meta RT⊖r

 not too far away from 
the original relation embedding xri . � is the weight parameter 
for this constraint, and ‖‖2

2
 is the squared L2 norm operation.

In Eq. (10), margin ranking loss [72] is conducted to com-
pute the loss of the support set Sr for parameter updating.

where m represents the margin hyperparameter. s(hi,ti) is the 
score of the positive fact and s(hi,t�i) is the score of the cor-
responding negative fact. []+ denotes the positive part of the 
function.

In Eq. (11), we compute the gradient of parameters, denoted 
as ∇RT⊖r

L
(
Sr
)
 , in the support set Sr to update the relation-

meta and transfer it to the query set Qr to get the updated 
relation-meta R′

T⊖r
 and the updated relation embedding x̃rj . � 

here indicates the updating step size.

Thus, the scores and loss of query set in Eq. (12) and 
Eq. (13) follow the same procedure in the support set.

Our training objective is to minimize the loss of both the 
support set and the query set. Finally, the updated relation-
meta is used to predict tail entities, and recommendations are 
based on the rankings of the predictions Y in the test set. From 
Eq. (14), top-k querying [73] is adopted to return the k samples 
with the highest scores as the candidate recommendations.

where Y(k) represents the set of k-tuples with k distinct sam-
ples of Y . � denotes a tuple distinguished from a single pre-
diction y ∈ Y . s refers to the score computed as Eq. (12), and 
s[k] is the kth maximum score.

(9)s(hi,ti =
‖‖‖‖
xhi + RTr

− xti

‖‖‖‖
2

2
+ �

‖‖‖‖
RTr

− xri

‖‖‖‖
2

2

(10)L
(
Sr
)
=

∑

(hi,ti)∈Sr

[
m + s(hi,ti) − s(hi,t�i)

]

+

(11)
R̃Tr

= RTr
− 𝛽∇RTr

L(Sr)

x̃rj = xrj − 𝛽∇RTr
L(Sr)

(12)s(hj,tj) =
‖‖‖xhj + R̃Tr − xtj

‖‖‖
2

2
+𝜆

‖‖‖R̃Tr − x̃rj
‖‖‖
2

2

(13)L
(
Qr

)
=

∑

(hj,tj)∈Qr

[
m + s(hj,tj) − s(

hj,t
�
j

)
]

+

(14)Pk(s) ∈
{
y ∈ Y(k) ∶ ∀i ∈ {1, .., k}, syi ≥ s[k]

}
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4 � Experiment

4.1 � Multi‑head Attention‑Based Meta Relational 
Learning

In this section, we conduct experiments1 on two public 
data sets to demonstrate the validity of our method. Our 
meta relational learning model outperforms previous meth-
ods, GMatching [54], MetaR [55], and GANA [74], which 
achieve state-of-the-art results on the few-shot link predic-
tion benchmarks. We further develop an industrial knowl-
edge graph-based platform embedded with our meta rela-
tional learning model to support the recommender system 
in low resource conditions.

4.1.1 � Datasets and Evaluation Metrics

4.1.1.1  Datasets  In the experiments, two public datasets, 
namely NELL-One and Wiki-One, are employed to evalu-
ate the performance of our meta relational learning model. 
These datasets are first constructed by Xiong et al. [54] and 
then reused by Chen et al. [55]. They are commonly used in 
few-shot link prediction [54, 55, 74]. The statistics of data-
sets are shown in Table 2.

Since GMatching considers both learned embeddings 
and one-hop graph structures, a background graph is con-
structed with relations out of training/validation/test sets to 
obtain the pre-trained embeddings and local graph. Except 
for one-shot task relations, GMatching selects the rest of 
the relations as background relations that provide crucial 
background knowledge for training. MetaR further uses the 
background graph to get two dataset settings. (1) Pre-Train 
setting represents the background used for pretraining. (2) 
In-Train setting denotes that the background graph is fitted 
into the training tasks with random initialization.

4.1.1.2  Evaluation  For evaluation, MRR (mean reciprocal 
rank) and Hits@N are widely adopted for evaluating few-

shot link prediction algorithms. MRR is an average meas-
ure of reciprocal ranks over all the true triples [55, 75, 76]. 
Hits@N counts the proportion of correct entities ranked in 
the top N in link prediction [54, 55].

4.1.2 � Implementation and Baselines

4.1.2.1  Implementation  Our model uses the Adam opti-
mizer [77] for adaptive convergence, and we use the Leaky 
ReLU function [78] to address the dying ReLU problem. 
The initial learning rate is 0.001 and gradually drops to 
0.0001. The dropout rate is set to be 0.5. We set the margin 
m = 1 and the updating step size � = 5 . The training would 
be stopped when the performance on Hits@10 drops 30 
times.

Parameters of the relation-meta encoder in Sect. 3.2.2 are 
as follows. Following GMatching, [54] the initial embedding 
dimension of NELL-One is 100 and Wiki-One is 50. For 
the first LSTM sublayer, the input dimension of NELL-One 
is 200 and Wiki-One is 100, with the size of the hidden 
state being 200 for NELL-One and 100 for Wiki-One. For 
the multi-head attention sublayers, the input size is 200 for 
NELL-One and 100 for Wiki-One. The number of parallel 
attention heads is 5. Due to the concatenation operation, for 
the inference LSTM sublayer, the input dimension of NELL-
One is 400 and Wiki-One is 200, with the output size being 
100 for NELL-One and 50 for Wiki-One.

4.1.2.2  Baselines  Since GMatching and MetaR are two 
notable baselines of few-shot link prediction task, we com-
pare our method with the embedding-based methods below, 
following the implementations of Chen’s report [55] for 
comparison:

(1) TransE [62]: a classical method that transforms the 
triples into a low-dimensional vector space.
(2) TransH [79]: a hyperplane-based translation model.
(3) RESCAL [80]: a factorization-based method that 
combines the collective learning of a three-way tensor 
with the factorization to learn the latent relation space 
of the triples.

Table 2   Statistics of datasets. The Pre-Train setting represents using 
background to train entity embedding in advance. The In-Train set-
ting fits the background graph into training tasks. # Train, # Dev, and 

# Test count the number of relations in training, validation, and test 
set. Regardless of the different settings above, # Ent, # R, and # Tri-
ples denote the number of entities, relations, and triples

Dataset Setting # Train # Dev # Test # Ent # R # Triples

NELL-One Pre-Train 321 5 11 68,545 358 181,109
In-Train 51 5 11

Wiki-One Pre-Train 589 16 34 4,838,244 822 5,859,240
In-Train 133 16 34

1  The source code of Sect.  3.2 is available at https://​github.​com/​
Russe​lMcGr​ady/​Multi-​head-​atten​tion-​based-​MetaR.

https://github.com/RusselMcGrady/Multi-head-attention-based-MetaR
https://github.com/RusselMcGrady/Multi-head-attention-based-MetaR
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(4) DisMult [81]: setting the matrix to diagonal matrices 
and constructing the object function to simplify the com-
putation of RESCAL.
(5) ComplEx [82]: a latent factorization method that uses 
the composition of complex embeddings to handle both 
the symmetric and antisymmetric relations.

(6) GMatching [54]: a one-shot relational learning model 
that is trained to match local graph patterns. Notably, 
GMatching_RESCAL, GMatching_TransE, GMatch-
ing_DisMult, GMatching_ComplEx, and GMatching_
Random in Table 3 and Table 4 represent different selec-
tions of the matching processor in the GMatching model.

Table 3   Results of few-shot 
link prediction on NELL-One. 
Underline numbers are the best 
results of our model. Our model 
and MetaR test on both the Pre-
Train setting and the In-Train 
setting, specified in (bracket)

NELL-One MRR Hits@10 Hits@5 Hits@1

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

TransE 0.105 0.168 0.226 0.345 0.111 0.186 0.041 0.082
TransH 0.168 0.279 0.233 0.434 0.160 0.317 0.127 0.162
RESCAL 0.140 – 0.229 – 0.186 – 0.089 –
DisMult 0.165 0.214 0.285 0.319 0.174 0.246 0.106 0.140
ComplEx 0.179 0.239 0.299 0.364 0.212 0.2153 0.112 0.176
GMatching_RESCAL 0.188 – 0.305 – 0.243 – 0.133 –
GMatching_TransE 0.171 – 0.255 – 0.210 – 0.122 –
GMatching_DisMult 0.171 – 0.301 – 0.221 – 0.114 –
GMatching_ComplEx 0.185 0.201 0.313 0.311 0.260 0.264 0.119 0.143
GMatching_Random 0.151 – 0.252 – 0.186 – 0.103 –
CogKR 0.256 – 0.353 – 0.314 – 0.205 –
GANA 0.307 0.344 0.483 0.517 0.409 0.437 0.211 0.246
MetaR (Pre-Train) 0.164 0.209 0.331 0.355 0.238 0.280 0.093 0.141
MetaR (In-Train) 0.250 0.261 0.401 0.437 0.336 0.350 0.170 0.168
Our model (Pre-Train) 0.236 0.243 0.359 0.377 0.299 0.315 0.168 0.171
Our model (In-Train) 0.325 0.337 0.487 0.521 0.418 0.447 0.237 0.234

Table 4   Results of few-shot 
link prediction on Wiki-One. 
Underline numbers are the 
best results of our model. Both 
the Pre-Train setting and the 
In-Train setting results are also 
specified in (bracket)

Wiki-One MRR Hits@10 Hits@5 Hits@1

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

TransE 0.036 0.052 0.059 0.090 0.024 0.057 0.011 0.042
TransH 0.068 0.095 0.333 0.177 0.060 0.092 0.027 0.047
RESCAL 0.072 – 0.082 – 0.062 – 0.051 –
DisMult 0.046 0.077 0.087 0.134 0.034 0.078 0.014 0.035
ComplEx 0.055 0.070 0.100 0.124 0.044 0.063 0.021 0.030
GMatching_RESCAL 0.139 – 0.305 – 0.228 – 0.061 –
GMatching_TransE 0.219 – 0.328 – 0.269 – 0.163 –
GMatching_DisMult 0.222 – 0.340 – 0.271 – 0.164 –
GMatching_ComplEx 0.200 – 0.336 – 0.272 – 0.120 –
GMatching_Random 0.198 – 0.299 – 0.260 – 0.133 –
CogKR 0.288 – 0.366 – 0.334 – 0.249 –
GANA 0.301 0.351 0.416 0.446 0.350 0.407 0.231 0.299
MetaR (Pre-Train) 0.314 0.323 0.404 0.418 0.375 0.385 0.266 0.270
MetaR (In-Train) 0.193 0.221 0.280 0.302 0.233 0.264 0.155 0.178
Our model (Pre-Train) 0.333 0.354 0.445 0.470 0.397 0.432 0.282 0.296
Our model (In-Train) 0.215 0.247 0.310 0.352 0.262 0.307 0.172 0.193
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(7) CogKR [83]: a cognitive graph based on coordinating 
retrieval and reasoning.
(8) GANA [74]: a global–local framework.

4.1.3 � Results

We use two initialization strategies, Pre-Train and In-Train, 
for 1-shot and 5-shot tasks on NELL-One and Wiki-One 
following MetaR [55]. The results of the test set are shown 
in Table 3 and Table 4. Results of the baselines with differ-
ent initialization of KGE are copied from the original paper 
in this paper.

In Table 3 and Table 4, our model performs better with all 
evaluation metrics compared with MetaR on both datasets. 
(1) With the Pre-Train setting, our model increases 1-shot 
link prediction on NELL-One by 43.9, 8.5, 25.6, and 80.6% 
on MRR, Hits@10, Hits@5, and Hits@1, with an average 
improvement of 39.1%. The improvements of 1-shot link 
prediction on Wiki-One are 6.1, 10.1, 5.9, and 6.0%, with an 
average improvement of 7.0%. Besides, our model increases 
5-shot link prediction on NELL-One by 19.1, 6, 12.5, and 
21.3% on MRR, Hits@10, Hits@5, and Hits@1, with an 
average improvement of 14.9%. The improvements in 5-shot 
link prediction on Wiki-One are 9.6, 12.4, 12.2, and 9.6% 
on Wiki-One, with an average improvement of 11.0%. (2) 
With the In-Train setting, our model increases 1-shot link 
prediction on NELL-One by 30%, 21.4, 24.4, and 39.4%, 
with an average improvement of 28.8%. The improvements 
of 1-shot link prediction on Wiki-One are 11.4, 10.7, 12.4, 
and 11%, with an average improvement of 11.4%. Besides, 
our model increases 5-shot link prediction on NELL-One by 
29.1, 19.2, 27.7, and 39.3%, with an average improvement 
of 28.8%. The improvements in 5-shot link prediction on 
Wiki-One are 11.7, 16.6, 16.3, and 8.4%, with an average 
improvement of 13.3%.

Moreover, we conclude that the performance of few-shot 
link prediction is affected by the quantity and quality of 
training data. On the one hand, the In-Train dataset setting is 
better than the Pre-Train dataset setting on large and sparse 
datasets because the relations are too sparse to learn the 
relation-meta. Controversially, the Pre-Train setting provides 
a few supervised signals for the sparse data for fast conver-
gence, and we conduct schema-based reasoning based on 
the same intuition. On the other hand, the In-Train dataset 
setting performs better on the small-scale dataset because 
our meta relational learning model focuses on learning task-
specific relation-meta. Bi-LSTM layers are also employed 
in the relation-meta encoder, while this implementation 

performs even worse because the reverse relations of facts 
should be mapped as a different relation-meta.

4.2 � Case Study

In this section, a graph-based platform is developed to dem-
onstrate the feasibility of our method. The proposed recom-
mendation algorithm is embedded in the platform with the 
graph searching engine to support product development and 
service innovation for Zhejiang Yueli Electrical CO.LTD 
(YL) [84]. YL is one of the top three home appliance manu-
facturing bases in China, with annual sales exceeding 1.7 
billion yuan. Their three factories have more than 50 assem-
bling lines, 7 automatic painting lines, 286 patents, and 258 
injection molding machines.

4.2.1 � Evaluation

To evaluate the impact of our recommendation algorithm on 
the industrial knowledge graph of YL, a business metric, net 
promoter score (NPS) [85, 86], is introduced in this section. 
NPS is a measure of customer loyalty that evaluates users’ 
preferences for the recommended results. However, NPS based 
on customer surveys may lead to subjectivity and randomness 
of results. Assuming the threshold between promoters and pas-
sives is m, and the threshold between passives and detractors 
is n. The number of candidate resources is k for each query 
entity. Thus, we define the promoters, the passives, and the 
detractors as follows.

(1) Promoters are correct predictions ranked in the top m.
(2) Passives are correct predictions that are ranked from 
mth to nth.
(3) Detractors are correct predictions that are ranked from 
nth to kth.

Based on our definition, NPS is calculated by subtracting 
the percent of detractors from the percent of promoters, as 
shown in Eq. (15).

where ranki is the ranking of the ith prediction, and �() is an 
indicator function counting rankings that meet the inequal-
ity constraints.

Referenced to the construction of NELL-One, we select 
50/5/10 task relations that are collected from the industrial 
knowledge graph constructed for YL for training/validation/
testing, considering sufficient triples for evaluation [54]. Here 

(15)

NPS =
1

|k|

|k|∑

i=1

�
(
ranki ≤ m

)
−

1

|k|

|k|∑

i=1

�
(
n ≤ ranki ≤ k

)
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we use random initialization. The results are shown in Table 5, 
and the performance of NPS is related to the ranking threshold 
settings of m and n.

Table 5 shows that NPS keeps going up with higher thresh-
old settings of m and n, which denotes users would require 
more recommended resources. If the manufacturing process 
requires more accurate recommendations, then a strict thresh-
old should be considered. Considering our recommendation 
engine is based on the few-shot link prediction, the threshold 
settings of m and n in Table 5 refer to the widely used evalu-
ation metrics Hits@N [55], including 1 and 5, 1 and 8, and 5 
and 8, with 10 recommendations for each query. It is based 
on the intuition that redundant and mismatched recommenda-
tions are worthless. Additionally, due to the random initializa-
tion adopted for testing here, slight fluctuations of MRR and 
Hits@N demonstrate that our meta relational learning model 
could predict any newly added relations without fine-tuning.

4.2.2 � Comparative Experiment

To compare with prior recommendation approaches under 
low-resource conditions, the following algorithms are 
employed as baselines using the data of YL in Sect. 4.2.1:

(1) CKFG [19]: an explainable recommendation approach 
using knowledge-based embeddings.
(2) CKE [8]: a collaborative knowledge base embedding 
approach that uses the heterogeneous information in a 

knowledge base to improve the quality of recommender 
systems.
(3) NFM [87]: a novel neural factorization machine for 
predicting recommendations under sparse settings.
(4) KGAT [88]: a framework that investigates the utility 
of the knowledge graph to provide explainable recom-
mendations.
(5) MetapathRS [89]: a unified recommendation method 
with embedding-based learning and graph-based learn-
ing.

Here, we reimplement all the approaches by setting the 
threshold settings of m and n to be 5 and 8. We randomly 
initialize all the embeddings and the learning rate is 0.001. 
Evaluation metrics introduced in Sect. 4.1.1 are also adopted 
for evaluation. Experimental results are shown in Table 6.

From Table  6, our model outperforms previous 
approaches on all the evaluation metrics. Compared with 
our model, there are significant gaps in long-tail recommen-
dations for prior knowledge graph-based recommendation 
approaches like KGAT. We postulate that the performance 
divergence generally falls into two factors. First, long-tail 
recommendations that are formulated as a few-shot learning 
problem of learning-to-recommend long-tail resources with 
few interactions pose extreme difficulties to the previously 
reported recommendation approaches. Second, the indus-
trial knowledge graph of YL includes resources with various 
labels and diverse relations, but the methods like KGAT and 
MetapathRS that are developed to address user-item graphs 

Table 5   NPS results with 
different ranking thresholds

Thresh-
old 
settings

MRR Hits@10 Hits@5 Hits@1 NPS

m n 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

1 5 0.321 0.329 0.484 0.500 0.411 0.431 0.234 0.230 0.161 0.161
1 8 0.324 0.331 0.492 0.516 0.423 0.442 0.227 0.226 0.201 0.201
5 8 0.323 0.331 0.481 0.509 0.413 0.437 0.234 0.228 0.395 0.420

Table 6   Comparative 
Experiment

Method MRR Hits@10 Hits@5 Hits@1 NPS

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

CKFG 0.026 0.029 0.055 0.062 0.024 0.029 0.004 0.009 0.024 0.031
CKE 0.033 0.043 0.061 0.075 0.044 0.058 0.006 0.014 0.038 0.048
NFM 0.037 0.053 0.069 0.087 0.061 0.068 0.009 0.034 0.057 0.053
KGAT​ 0.040 0.074 0.087 0.092 0.073 0.081 0.013 0.058 0.069 0.078
MetapathRS 0.049 0.077 0.090 0.101 0.074 0.088 0.030 0.065 0.070 0.083
Our model 0.323 0.331 0.481 0.509 0.413 0.437 0.234 0.228 0.395 0.420
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Panel group of resource classes

Resource map of patent resources

Resource recommendations

Fig. 5   Graph-based platform: home page of our recommender system

Knowledge graph of patent resources

Semantic research based on the resource-based KG

Fig. 6   Graph-based platform: knowledge graph search
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cannot be directly adapted to this scenario. Comparatively, 
based on these observations, we propose handling such prob-
lems by learning the robust relation-meta between poten-
tially associated resources.

4.2.3 � Applications

The platform integrates resources throughout the product life 
cycle based on the industrial knowledge graph. Addition-
ally, newly arising resources produced by the business pro-
cess system are added to the graph, forming a closed loop. 
Once YL restarts a business process, candidate resources are 

Table 7   Outsourcing 
Procurement of YL

Procedure Sub-process Department Resource

1 Release requirements Planning department Purchase requisition
Specification
Drawing
Standard, Patent

2 Receive requisition information Purchasing department Purchase requisition
3 Identify suppliers Approved supplier list
4 Create a purchase order Purchase order letter
5 Receive the purchase order Supplier Purchase order letter

Specification
6 Proofing Drawing

Standard, Patent
7 Sample Information Purchasing department Sample confirmation letter

Product sample
8 Sample confirmation Research and develop-

ment department
Sample confirmation letter

9 Quality inspection Sample confirmation letter
Standard

10 Issue test reports, sample confirma-
tion, and the sealed sample

Sample confirmation letter
Test report

11 Store and management resources Purchasing department Sample confirmation letter

Project information

Details of sub-tasks and resource information

Fig. 7   Outsourcing procurement of YL: Process engine
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recommended to corresponding nodes according to the links 
in the knowledge graph.

Figure 5 and 6 are applications of the graph-based plat-
form, including the resource map, graph search engine, and 
recommendation engine based on the proposed approach in 
Sect. 3.

We further analyze an outsourcing procurement process 
of the YL enterprise for a case study. It is a collaborative 
step in the product design process. Resources involved in the 
11 sub-processes are shown in Table 7. Knowledge resources 
are standards and patents. Business data resources include 
purchase requisitions, purchase order letters, test reports, 
sample confirmation letters, and specifications. Product 
resources are product samples and drawings.

The core enterprise YL can manage the entire outsourc-
ing process by the process engine in the platform, as shown 
in Fig. 7. Meanwhile, the industrial resources involved in the 
process are continuously added to the graph-based platform. 
The core enterprise releases resources to cooperative sup-
pliers that upload resources back to the core enterprise for 

industrial process control. Figure 8 shows the knowledge 
graph that integrates all the resources involved in the out-
sourcing process. Yet, such data are still static and sparse. 
In this sense, our recommendation algorithm would recom-
mend resources under low-resource conditions.

From Fig. 9, black links annotated as rel, specify the cor-
relations among resources based on the process engine. The 
platform further links the resources based on schema-based 
reasoning (blue links in Fig. 9), forming the training set for 
few-shot link prediction.

Specifically, the supplier BJHC (denoted as BJHC in 
Fig. 9) could be recommended to the core enterprise because 
of the link annotated as rel based on the historical rule. 
Besides, according to the performance rule, the platform 
links the supplier ZJLB (denoted as ZJLB in Fig. 9) to the 
core enterprise YL (denoted as YL in Fig. 9) because both 
the supplier ZJLB and supplier NBKQ (denoted as NBKQ 
in Fig. 9) are satisfied with the requirements of the specifica-
tion. Third, the patents and standards (nodes in black ovals 
in Fig. 9) are linked to supplier NBJH (denoted as NBJH in 

Fig. 8   Outsourcing procurement of YL: Knowledge graph visualization
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Fig. 9) based on the community rule. Lastly, with the path 
rule, several resources like drawings can be recommended 
to the core enterprise YL according to the two-hop paths in 
the graph.

Also, schema-based reasoning generates relations and tri-
ples for few-shot recommendations. The platform conducts 
multi-head attention-based meta relational learning to link 
implicit resources for the correlative recommendation. As 
shown in Fig. 9, the model learns the relation-meta (red links 
in Fig. 9) to correlate long-tail resources. For example, the sup-
plier NBJH is linked to the core enterprise YL, because both 
suppliers (ZJLB and NBJH) are satisfied with the knowledge 
resource requirements and the schema-based relation in the 
graph serves as the heuristic rule for meta training. Moreover, 
the meta relational learning model learns the relation-meta 
for product specification, drawing, purchase order, and suppli-
ers shown in the graph. These industrial resources are recom-
mended to the suppliers (NBJH and BJHC) because of their 
strong relevance in the outsourcing process. All the predicted 
links practically improve the YL’s outsourcing process and 
further complete the industrial knowledge graph.

5 � Analysis and Discussion

To the best of our knowledge, we are among the first to con-
struct an industrial knowledge graph and use the few-shot 
relational learning to address the cold-start problem in the 
recommender system. We develop a meta relational learn-
ing model for recommender systems based on the intuitive 
that the close correlations among industrial resources are 
conducive to the conditions where massive labeled data are 
unavailable. The case study demonstrates that the industrial 
knowledge graph contributes to resource ordering, and our 
meta relational learning model with schema-based reason-
ing helps to solve the cold-start problem in recommender 
systems.

Schema-based reasoning (links in blue)

Meta relational learning (links in red)

Fig. 9   An example of recommending industrial resources for the outsourcing procurement of YL

Table 8   Ablation Study on NELL-One with Hits@10 Metric

Ablation Configu-
ration

1-shot
(Pre-Train/In-Train)

5-shot
(Pre-Train/In-Train)

standard 0.359/0.487 0.377/0.521
-mh 0.253/0.368 0.296/0.463
-g 0.245/0.353 0.281/0.447
-g -r 0.226/0.226 0.345/0.345
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Inevitably, our method also suffers from multiple limita-
tions. Specifically, the construction of the resource graph is 
hugely influenced by the specialists using top-down meth-
ods. Contrarily, the performance of bottom-up methods in 
most industrial scenarios, such as unsupervised learning, is 
unsatisfactory. Moreover, the meta relational learning model 
greatly affects the performance of the recommender systems 
that are troubled with the cold-start problem. Thus, we dis-
cuss the components and modules of our model through the 
ablation study.

The ablation study on NELL-One selects metric Hit@10 
with four settings for evaluation. The results are shown in 
Table 8 where the marks (Pre-Train/In-Train) represent two 
different dataset settings in experiments. First, we remove 
the multi-head attention sublayers, denoted as -mh. Sec-
ond, we remove the training module, denoted as -g follow-
ing MetaR for convenience. Third, we remove the entire 
relation-meta encoder and the penalty term in the training 
module, which makes the model rebase to a simple TransE 
model, denoted as -g -r. is the result of TransE is copied 
from GANA [74], which is neither Pre-Train nor In-Train. 
The last one is our complete model denoted as standard.

First, removing the multi-head attention layers for Pre-
Train and In-Train settings, our model decreases by 29.5 and 
24.4% for the 1-shot task, and 21.5 and 11.1% for the 5-shot 
task. Second, by removing the translating embedding mod-
ule for Pre-Train and In-Train settings, our model decreases 
by 31.8 and 27.5% for the 1-shot task, and 25.5 and 14.2% 
for the 5-shot task respectively. At last, removing the entire 
relation-meta encoder Pre-Train and In-Train settings, our 
model decreases by 37 and 48.7% for the 1-shot task, and 
8.5 and 33.8% for the 5-shot task.

The results demonstrate that all the components of our 
model contribute dramatically, and the relation-meta encoder 
contributes more than translating module. Moreover, more 
shot samples contribute to few-shot learning algorithms 
because such training samples enhance the robustness of 
models. This also illustrates that the few-shot link prediction 
is a practical solution to the cold-start problem of recom-
mender systems.

However, all evaluation metrics of our model still have 
room for improvement, especially compared with deep 
learning models that have sufficient data for training. Thus, 
refinement and optimization of meta relational learning 
models are expected in the future.

6 � Conclusion and Future Work

Here we propose an industrial knowledge graph to recom-
mend resources in low-resource conditions for industrial 
collaboration. We construct the industrial knowledge graph 
with the predefined schema to enhance resource sharing and 
improve resource reuse. The nodes in the graph represent 
different resources, and the links in the graph are correla-
tions among resources. Then the schema-based reasoning 
links resources to heuristically construct the training data 
for few-shot learning. The multi-head attention-based meta 
relational learning further learns the relation-meta that sup-
ports the correlative recommendation within the manufac-
turing value chain.

In the future, we will employ our recommendation algo-
rithm in other domains based on the domain knowledge 
graph. In addition, reinforcement learning and generative 

Table 9   Abbreviations Abbreviation Meaning

Long-tail resource Resources are less commonly referenced within a knowledge graph
Cold-start problem Engines cannot make reliable recommendations due to an initial lack of ratings
KGE knowledge graph embedding
LSTM Long short-term memory
MRR Mean reciprocal rank
Pre-Train Pre-Train dataset setting
In-Train In-Train dataset setting
YL Zhejiang Yueli Electrical CO.LTD
MetaR Meta Relational Learning for Few-Shot Link Prediction in Knowledge Graphs 

55.
GMatching One-Shot Relational Learning for Knowledge Graphs  54.
ZJLB Supplier ZJLB
NBKQ Supplier NBKQ
BJHC Supplier BJHC
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adversarial learning would be used to improve the per-
formance of few-shot relational learning. Finally, multi-
modal knowledge graphs with industrial applications are 
to be developed to enhance industrial cooperation.
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