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Abstract
This paper mainly studies the exponential synchronization issue for the inertial complex-valued fuzzy cellular neural networks 
(ICVFCNNs) with time-varying delays via periodically intermittent control. To achieve exponential synchronization, we 
use a non-reduced order and non-separation approach, which is a supplement and innovation to the previous method. Based 
on directly constructing Lyapunov functional and a novel periodically intermittent control scheme, sufficient conditions for 
achieving the exponential synchronization of the ICVFCNNs are established. Finally, an example is given to illustrate the 
validity of the obtained results.
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Abbreviations
ICVFCNNs  Inertial complex-valued fuzzy cellular neu-

ral networks
FCNNs  Fuzzy cellular neural networks
CVNNs  Complex-valued neural networks
RVNNs  Real-valued neural networks

1 Introduction

Since the fuzzy differential equations have played an active 
role in modeling various uncertain phenomena arising in 
applied sciences, they have attracted more attention [1–5]. 
As the cellular neural network implementation, fuzzy cel-
lular neural networks (FCNNs) were initially proposed by 
Yang et al. in 1996. Since fuzzy neural networks are a com-
bination of fuzzy logic and neural networks, they have the 
following advantages: more efficient storage of knowledge 
and processing of uncertain information, faster operation, 
better convergence, and stability. Therefore, they are widely 

used in mathematics, pattern recognition, computer science, 
artificial intelligence, optimal control, and so on [6–9]. 
Meanwhile, with the study of neural network theory and 
dynamical behavior, scholars have proposed a new neural 
network, namely an inertial neural network, which is gener-
ally described by second-order differential equations. The 
inertial neural network is represented its inertial properties 
by introducing inductance in the neural current [10, 11]. 
It is shown that the introduction of inertial terms in neural 
networks can not only substantially improve the disorderly 
search performance of neural networks but also is one of 
the essential methods to let the designed neural networks 
generate chaos and bifurcation. Therefore, it has important 
practical significance and theoretical value for the study of 
the dynamic behavior of inertial fuzzy cellular neural net-
works [12–14].

In recent years, the synchronization problem of neural 
networks has been widely studied since synchronization 
plays a vital role in many practical applications. There are 
many methods to study the synchronization problem, among 
which exponential synchronization has the advantages of 
fast synchronization rate and simple implementation, thus 
gaining the favor of researchers. Currently, many control 
techniques are introduced to synchronize neural networks, 
such as impulsive control, adaptive control, pinning control, 
and intermittent control. In particular, intermittent control is 
a discontinuous control strategy that can effectively reduce 
control costs because it is active only during the control 
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interval. Therefore, the synchronization problem of neural 
networks with intermittent control is of great importance in 
practical applications and has been widely studied with fruit-
ful results [15–19]. For example, the finite-time synchroni-
zation in [15] for delayed quaternion-valued neural networks 
was introduced via periodically intermittent control. The 
problem of quasi-synchronization in [16] for fractional-order 
heterogeneous dynamical networks was proposed via aperi-
odic intermittent pinning control.

At present, when studying inertial neural networks, the 
reduced-order approach was widely used, i.e., the second-
order model was transformed into a first-order model by 
appropriate variable substitution [19–26]. For example, 
the finite-time and fixed-time synchronization in [22] for 
a class of inertial neural networks with multi-proportional 
delays. New criteria on periodicity and stabilization [24] 
for discontinuous uncertain inertial Cohen-Grossberg neural 
networks with proportional delays. The synchronization in 
[25] for coupled memristive inertial delayed neural networks 
with impulse and intermittent control. The problem of expo-
nential synchronization in [26] for inertial neural networks 
with mixed time-varying delays via periodically intermittent 
control. The disadvantage of this method is that as the order 
decreases, the inertia term disappears, and its importance is 
not reflected in the reduced-order model. At the same time, 
it increases the system’s dimensionality, which causes the 
complexity of the theoretical analysis. However, in existing 
literature, very few papers concentrate on the synchroniza-
tion of inertial neural networks applying the non-reduced 
order method [27–29], which inspired us to study the inertial 
neural networks based on the new idea.

Meanwhile, complex-valued neural networks (CVNNs) 
are widely used because they have more advantages than 
real-valued neural networks  (RVNNs) in computational 
power and processing speed. Generally, a frequently used 
approach is to split the CVNNs into two RVNNs and then 
discuss them separately, see [30–37]. Obviously, this 
approach increases the dimensionality of the model and 
the computational difficulty. To overcome the above short-
comings, the non-separation method was proposed in [38, 
39] based on the theory of complex functions and the con-
struction of suitable Lyapunov functions. To the best of 
our knowledge, exponential synchronization of the delayed 
ICVFCNNs under periodically intermittent control is not yet 
completely studied, which motivated our research.

Inspired by the previous works, the main objective of this 
paper is to eatablish some novel exponential synchronization 
criteria for the delayed ICVFCNNs. The main innovative 
contents are listed as follows: 

(1) The ICVFCNNs introduced in this paper takes into 
account factors such as the inertia term, time-varying 
delays, fuzzy logic, and periodically intermittent con-

trol, this makes the model considered more versatile 
and practical applications.

(2) Based on the theory of complex functions and analysis 
techniques, this paper investigates exponential synchro-
nization of the ICVFCNNs under periodically inter-
mittent control using a non-reduced order and non-
separation approach, which is more direct and more 
uncomplicated.

(3) The results of this paper are entirely new and supple-
ment to the known results, and our method can be used 
to investigate the case of exponential synchronization 
in other types of neural networks with time delays.

The framework of this paper is organized as follows. In Sect. 2, 
our problems are formulated. The exponential synchronization 
is established in Sect. 3. Some illustrative numerical simula-
tions are presented in Sect. 4. Section 5 draws a conclusion.

��������� ∶ Let Θ = {1, 2,⋯ , n} , ℝ and ℂn denote the set 
of real numbers and the set of n-dimensional complex-value 
vectors, respectively. Let u ∈ ℂ , define ∣ u ∣=

√
uu , where u 

is the conjugate of u. For each u = (u1, u2,⋯ , un)
T ∈ ℂ

n , 
‖u‖ =

�∑n

l=1
∣ ul ∣

2.

2  Problem description

In this paper, the model of the ICVFCNNs with time-vary-
ing delays is presented as follows:

 where xl(t) ∈ ℂ is the neural state variables of the lth neu-
ron at time t, the second-order derivative is intituled as an 
inertial term of (1); uj(t) ∈ ℂ is the input of the jth neuron 
at time t; al and bl are positive constants; clj , dlj ∈ ℝ are ele-
ments for feedback templates; elj ∈ ℝ denotes elements for 
feed-forward template; hlj , klj , slj , qlj ∈ ℝ are the elements 
of fuzzy feedback MIN template, fuzzy feedback MAX 
template, fuzzy feed forward MIN template, and fuzzy feed 

(1)

ẍl(t) = − alẋl(t) − blxl(t) +

n∑
j=1

cljfj(xj(t))

+

n∑
j=1

dljfj(xj(t − 𝜏(t)))

+

n∑
j=1

eljuj(t) +

n⋀
j=1

hljgj(xj(t − 𝛿(t)))ds

+

n⋁
j=1

kljgj(xj(t − 𝛿(t)))

+

n⋀
j=1

sljuj(t) +

n⋁
j=1

qljuj(t) + Il(t), l ∈ Θ,
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forward MAX template, respectively; 
⋀

 and 
⋁

 denote the 
fuzzy AND and fuzzy OR operations, respectively; fj(⋅) and 
gj(⋅) ∶ ℂ → ℂ are the activation functions of the jth neuron; 
�(t) , �(t) ∈ ℝ are the time delay, which satisfies 0 < 𝜏(t) < 𝜏 , 
�̇�(t) < 𝜏1 < 1 , 0 < 𝛿(t) < 𝛿 , �̇�(t) < 𝛿1 < 1 ; Il(t) ∈ ℂ is the 
bias of the lth neuron at time t, l, j ∈ Θ.

The initial condition of (1) is defined as

where 𝜛 = max{𝜏, 𝛿} , �l(⋅) and �̂�l(⋅) are bounded continu-
ous functions, l ∈ Θ.

Remark 1 Compared to the models proposed in [22, 26, 27, 
30, 32, 34, 36], the model of system (1) is more general. For 
example, when fuzzy logic and inertial term are ignored, 
system (1) is degenerated into the first-order model in [22, 
26, 27], and system (1) is reduced to the inertial complex-
valued neural model in [36] if fuzzy logic are not considered.

The corresponding response system is proposed by the 
following equation:

where yl(t) ∈ ℂ is the neural state variables of the lth neuron, 
Ml(t) denotes a controller that will be designed, the other 
notations are the same as system (1), l ∈ Θ.

The initial condition of 3 is defined as

where �l(�) and �̂�l(𝜂) are bounded continuous functions, 
l ∈ Θ.

To implement the exponentially synchronization of the 
ICVFCNNs (1) and (3), we designed the controllers as 
follows:

(2)xl(𝜂) = 𝜑l(𝜂), ẋl(𝜂) = �̂�l(𝜂), 𝜂 ∈ [−𝜛, 0],

(3)

ÿl(t) = − alẏl(t) − blyl(t) +

n∑
j=1

cljfj(yj(t))

+

n∑
j=1

dljfj(yj(t − 𝜏(t)))

+

n∑
j=1

eljuj(t) +

n⋀
j=1

hljgj(yj(t − 𝛿(t)))ds

+

n⋁
j=1

kljgj(yj(t − 𝛿(t)))

+

n⋀
j=1

sljuj(t) +

n⋁
j=1

qljuj(t) + Il(t) +Ml(t),

(4)yl(𝜂) = 𝜓l(𝜂), ẏl(𝜂) = �̂�l(𝜂), 𝜂 ∈ [−𝜛, 0],

(5)Ml(t) =

{
−𝜌l(żl(t) + zl(t)), nT ≤ t < (n + 𝜈)T ,

0, (n + 𝜈)T ≤ t < (n + 1)T ,

where 𝜌l > 0 denote control gains, T > 0 is called the control 
periodic, � is called the control rate and 0 < 𝜈 < 1 , l ∈ Θ.

Denote zl(t) = yl(t) − xl(t) , then the error system can be 
written as

w h e r e  f̃j(zj(t)) = fj(yj(t)) − fj(xj(t)  a n d 
f̃j(zj(t − 𝜏(t))) = fj(yj(t − �(t))) − fj(xj(t − �(t)))  , 
g̃j(zj(t − 𝛿(t))) = gj(yj(t − 𝛿(t)))−gj(xj(t − �(t))) , l, j ∈ Θ.

In the following, the definition of exponentially synchro-
nization and a useful lemma are given.

Definition 1 ICVFCNNs (1) and (3) are said to achieve 
exponentially synchronization under periodically intermit-
tent control, if there exist a constant 𝜔 > 0 and a real number 
M > 0 such that

where z(t) = (z1(t), z2(t), ....., zn(t))
T , ‖z(t)‖ =

�∑n

l=1
∣ zl(t) ∣

2.

Lemma 1 [40] Let V(t) is differentiable and positive on 
[0,+∞) and its derivative satisfies

where n ∈ N = (0, 1, 2,⋯) , T > 0 , 0 < 𝜈 < 1 and 𝜉 > 0 , then

3  Exponential synchronization

In this subsection, the sufficient conditions of exponentially 
synchronization of the drive-response ICVFCNNs will 
be obtain by developing some new Lyapunov functionals 
instead of the common reduced order and separation tech-
nique. In order to obtain these synchronization criteria, 
assume that the following conditions hold: 

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z̈l(t) = −alżl(t) − blzl(t) +
∑n

j=1
cljf̃j(zj(t))

+
∑n

j=1
dljf̃j(zj(t − 𝜏(t)))

+
⋀n

j=1
hljg̃j(zj(t − 𝛿(t)))ds +

⋁n

j=1
kljg̃j(zj(t − 𝛿(t)))

− 𝜌l(żl(t) + zl(t)), nT ≤ t < (n + 𝜈)T ,

z̈l(t) = −alżl(t) − blzl(t) +
∑n

j=1
cljf̃j(zj(t))

+
∑n

j=1
dljf̃j(zj(t − 𝜏(t)))

+
⋀n

j=1
hljg̃j(zj(t − 𝛿(t)))ds +

⋁n

j=1
kljg̃j(zj(t − 𝛿(t))),

(n + 𝜈)T ≤ t < (n + 1)T ,

‖z(t)‖ ≤ Me−�t, t ≥ 0,

{
V̇(t) ≤ 0, nT ≤ t < (n + 𝜈)T ,

V̇(t) ≤ 𝜉V(t), (n + 𝜈)T ≤ t < (n + 1)T ,

V(t) ≤ V(0)e�(1−�)t, t ≥ 0.
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(H1)  There exist positive constants Fl , Gl such that for all 
u, v ∈ ℂ , 

(H2)  for any l ∈ Θ , there exist positive constants �l , � such 
that Γl < 0, Υl < 0, Π2

l
< 4ΓlΥl, where 

Theorem 1 Let (H1)-(H2) hold, then the systems (1) and 
(3) can achieve exponentially synchronization under 
the feedback controller (5) if 𝜆 − �̂�(1 − 𝜈) > 0 , where 
�̂� = maxl∈Θ{𝜌l}.

Proof Consider the following Lyapunov function:

For nT ≤ t < (n + 𝜈)T  , the derivative of V(t) is estimated 
as follows:

∣ fl(u) − fl(v) ∣≤Fl ∣ u − v ∣,

∣ gl(u) − gl(v) ∣≤Gl ∣ u − v ∣, l ∈ Θ.

Γl = 𝜆𝛼l + 𝛽l(𝜆 − bl − 𝜌l)

+

n∑
j=1

[
𝛽j ∣ cjl ∣ Fl

+
1

2
𝛽l

(
∣ clj ∣ Fj+ ∣ dlj ∣ Fj + (∣ hlj ∣ + ∣ klj ∣)Gj

)]

+

n∑
j=1

𝛽j

(
∣ djl ∣ Fl

1 − 𝜏
1

e2𝜆𝜏 +
(∣ hjl ∣ + ∣ kjl ∣)Gl

1 − 𝛿
1

e2𝜆𝛿
)
,

Υl = 𝛽l

(
𝜆 − al − 𝜌l + 1

)

+
1

2

n∑
j=1

𝛽l

(
∣ clj ∣ Fj+ ∣ dlj ∣ Fj + (∣ hlj ∣ + ∣ klj ∣)Gj

)
,

Πl = 𝛼l + 𝛽l(2𝜆 + 1 − bl − 2𝜌l − al).

V(t) =
1

2

n∑
l=1

𝛼lzl(t)zl(t)e
2𝜆t

+
1

2

n∑
l=1

e2𝜆t𝛽l(żl(t) + zl(t))(żl(t) + zl(t))

+

n∑
l=1

n∑
j=1

𝛽l ∣ dlj ∣
Fj

1 − 𝜏
1

e2𝜆𝜏

∫

t

t−𝜏(t)

zj(s)zj(s)e
2𝜆sds

+

n∑
l=1

n∑
j=1

𝛽l(∣ hlj ∣ + ∣ klj ∣)
Gj

1 − 𝛿
1

e2𝜆𝛿

∫

t

t−𝛿(t)

zj(s)zj(s)e
2𝜆sds.

By means of the theory of complex functions and (H1) , then

(6)

V̇(t) =e2𝜆t
n∑
l=1

[
𝜆𝛼lzl(t)zl(t) + 𝛽l𝜆(żl(t) + zl(t))(żl(t) + zl(t))

+
1

2
𝛼l

(
żl(t)zl(t) + zl(t)żl(t)

)
+

1

2
𝛽l(z̈l(t)

+ żl(t))(żl(t) + zl(t))

+
1

2
𝛽l(żl(t) + zl(t))(z̈l(t) + żl(t))

]

+

n∑
l=1

n∑
j=1

𝛽l ∣ dlj ∣
Fj

1 − 𝜏
1

e2𝜆𝜏

×

(
zj(t)zj(t)e

2𝜆t − zj(t − 𝜏(t))

zj(t − 𝜏(t))e2𝜆(t−𝜏(t))(1 − 𝜏�(t))

)

+

n∑
l=1

n∑
j=1

𝛽l(∣ hlj ∣ + ∣ klj ∣)
Gj

1 − 𝛿
1

e2𝜆𝛿

(
zj(t)zj(t)e

2𝜆t

− zj(t − 𝛿(t))zj(t − 𝛿(t))e2𝜆(t−𝛿(t))(1 − 𝛿�(t))

)

≤e2𝜆t
n∑
l=1

[(
𝜆𝛼l + 𝛽l(𝜆 − bl − 𝜌l)

)
zl(t)zl(t)

+ 𝛽l

(
𝜆 − al − 𝜌l + 1

)

× żl(t)żl(t) +

(
𝛼l + 𝛽l(2𝜆 + 1 − bl − 2𝜌l − al)

)

Re(żl(t)zl(t))

]

+

n∑
l=1

n∑
j=1

𝛽l ∣ dlj ∣
Fj

1 − 𝜏
1

e2𝜆𝜏

(
zj(t)zj(t)e

2𝜆t − zj(t − 𝜏(t))zj(t − 𝜏(t))

× e2𝜆(t−𝜏(t))(1 − 𝜏�(t))

)
+

n∑
l=1

n∑
j=1

𝛽l(∣ hlj ∣

+ ∣ klj ∣)
Gj

1 − 𝛿
1

e2𝜆𝛿

×

(
zj(t)zj(t)e

2𝜆t − zj(t − 𝛿(t))

zj(t − 𝛿(t))e2𝜆(t−𝛿(t))(1 − 𝛿�(t))

)

+ e2𝜆t
n∑
l=1

n∑
j=1

𝛽2
l

[
∣ clj ∣ Re(żl(t)f̃j(zj(t)))

+ ∣ dlj ∣ Re(żl(t)f̃j(zj(t − 𝜏(t))))

+ (∣ hlj ∣ + ∣ klj ∣)Re(żl(t)g̃j(zj(t − 𝛿(t))))

]

+ e2𝜆t
n∑
l=1

n∑
j=1

𝛽l𝛾l

×

[
∣ clj ∣ Re(zl(t)f̃j(zj(t)))

+ ∣ dlj ∣ Re(zl(t)f̃j(zj(t − 𝜏(t))))

+ (∣ hlj ∣ + ∣ klj ∣)Re(zl(t)g̃j(zj(t − 𝛿(t))))

]
.
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(7)

n∑
l=1

n∑
j=1

𝛽l ∣ clj ∣ Re(żl(t)f̃j(zj(t)))

≤

n∑
l=1

n∑
j=1

𝛽l ∣ clj ∣ Fjżl(t)zj(t)

≤
1

2

n∑
l=1

n∑
j=1

(
𝛽l ∣ clj ∣ Fjżl(t)żl(t) + 𝛽j ∣ cjl ∣ Flzl(t)zl(t)

)
,

(8)

n∑
l=1

n∑
j=1

𝛽l ∣ dlj ∣ Re(żl(t)f̃j(zj(t − 𝜏(t))))

≤
1

2

n∑
l=1

n∑
j=1

𝛽l ∣ dlj ∣ Fj

(
żl(t)żl(t) + zj(t − 𝜏(t))zj(t − 𝜏(t))

)
,

(9)

n∑
l=1

n∑
j=1

𝛽l(∣ hlj ∣ + ∣ klj ∣)Re(żl(t)g̃j(zj(t − 𝛿(t))))

≤
1

2

n∑
l=1

n∑
j=1

𝛽l(∣ hlj ∣ + ∣ klj ∣)

Gj

(
żl(t)żl(t) + zj(t − 𝛿(t))zj(t − 𝛿(t))

)
,

(10)

n∑
l=1

n∑
j=1

𝛽l ∣ clj ∣ Re(zl(t)f̃j(zj(t)))

≤
1

2

n∑
l=1

n∑
j=1

(
𝛽l ∣ clj ∣ Fjzl(t)zl(t) + 𝛽j ∣ cjl ∣ Flzl(t)zl(t)

)
,

(11)

n∑
l=1

n∑
j=1

𝛽l ∣ dlj ∣ Re(zl(t)f̃j(zj(t − 𝜏(t))))

≤
1

2

n∑
l=1

n∑
j=1

𝛽l ∣ dlj ∣ Fj

(
zl(t)zl(t) + zj(t − 𝜏(t))zj(t − 𝜏(t))

)
,

(12)

n∑
l=1

n∑
q=1

𝛽l(∣ hlj ∣ + ∣ klj ∣)Re(zl(t)g̃j(zj(t − 𝛿(t))))

≤
1

2

n∑
l=1

n∑
j=1

𝛽l(∣ hlj ∣ + ∣ klj ∣)

Gj

(
zl(t)zl(t) + zj(t − 𝛿(t))zj(t − 𝛿(t))

)
.

Substituting (7–12) into (6), one has

Let △ = {l ∈ Θ ∶ Γl = 0} and from (H2) , we have Πl = 0 for 
l ∈ △ . Meanwhile, note that Γl ≤ 0 , Υl ≤ 0 and Π2

l
≤ 4ΓlΥl , 

then

For (n + 𝜈)T ≤ t < (n + 1)T  , similar to the preceding proof, 
we have

V̇(t) ≤ e2𝜆t
n∑
l=1

{
𝜆𝛼l + 𝛽l(𝜆 − bl − 𝜌l)

+

n∑
j=1

[
𝛽j ∣ cjl ∣ Fl +

1

2
𝛽l

(
∣ clj ∣ Fj

+ ∣ dlj ∣ Fj + (∣ hlj ∣ + ∣ klj ∣)Gj

)]

+

n∑
j=1

𝛽j

(
∣ djl ∣ Fl

1 − 𝜏
1

e2𝜆𝜏

+
(∣ hjl ∣ + ∣ kjl ∣)Gl

1 − 𝛿
1

e2𝜆𝛿
)}

zl(t)zl(t)

+ e2𝜆t
n∑
l=1

[
𝛽l

(
𝜆 − al − 𝜌l + 1

)

+
1

2

n∑
j=1

𝛽l

(
∣ clj ∣ Fj+ ∣ dlj ∣ Fj + (∣ hlj ∣

+ ∣ klj ∣)Gj

)]
żl(t)żl(t)

+ e2𝜆t
n∑
l=1

(
𝛼l + 𝛽l(2𝜆 + 1 − bl − 2𝜌l − al)

)

Re(żl(t)zl(t))

= e2𝜈t
n∑
l=1

[
Γlzl(t)zl(t)

+ Υlżl(t)żl(t) +
Πl

2

(
żl(t)zl(t) + żl(t)zl(t)

)]
.

V̇(t) ≤ e
2𝜆t

n∑
l∈Λ�Δ

Γl

(
żl(t) +

Πl

2Γl

zl(t)

)(
żl(t) +

Πl

2Γl

zl(t)

)

+ e
2𝜆t

n∑
l∈Λ�Δ

(
Υl −

Π2

l

4Γl

)
zl(t)zl(t)

≤ 0.
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For all t ≥ 0 , we have

V̇(t) ≤e2𝜆t
n∑
l=1

{
𝜆𝛼l + 𝛽l(𝜆 − bl)

+

n∑
j=1

[
𝛽j ∣ cjl ∣ Fl +

1

2
𝛽l

(
∣ clj ∣ Fj

+ ∣ dlj ∣ Fj + (∣ hlj ∣ + ∣ klj ∣)Gj

)]

+

n∑
j=1

𝛽j

(
∣ djl ∣ Fl

1 − 𝜏
1

e2𝜆𝜏

+
(∣ hjl ∣ + ∣ kjl ∣)Gl

1 − 𝛿
1

e2𝜆𝛿
)}

zl(t)zl(t)

+ e2𝜆t
n∑
l=1

[
𝛽l

(
𝜆 − al + 1

)

+
1

2

n∑
j=1

𝛽l

(
∣ clj ∣ Fj+ ∣ dlj ∣ Fj

+ (∣ hlj ∣ + ∣ klj ∣)Gj

)]
żl(t)żl(t)

+ e2𝜆t
n∑
l=1

(
𝛼l + 𝛽l(2𝜆 + 1 − bl − al)

)
Re(żl(t)zl(t))

≤e2𝜆t
n∑
l=1

{
𝜆𝛼l + 𝛽l(𝜆 − bl − 𝜌l)

+

n∑
j=1

[
𝛽j ∣ cjl ∣ Fl +

1

2
𝛽l

(
∣ clj ∣ Fj+ ∣ dlj ∣ Fj + (∣ hlj ∣ + ∣ klj ∣)Gj

)]

+

n∑
j=1

𝛽j

(
∣ djl ∣ Fl

1 − 𝜏
1

e2𝜆𝜏

+
(∣ hjl ∣ + ∣ kjl ∣)Gl

1 − 𝛿
1

e2𝜆𝛿
)}

zl(t)zl(t)

+ e2𝜆t
n∑
l=1

𝛽l𝜌lzl(t)zl(t)

+ e2𝜆t
n∑
l=1

[
𝛽l

(
𝜆 − al − 𝜌l + 1

)

+
1

2

n∑
j=1

𝛽l

(
∣ clj ∣ Fj

+ ∣ dlj ∣ Fj + (∣ hlj ∣ + ∣ klj ∣)Gj

)]
żl(t)żl(t)

+ e2𝜆t
n∑
l=1

𝛽l𝜌l żl(t)żl(t)

+ e2𝜆t
n∑
l=1

(
𝛼l + 𝛽l(2𝜆 + 1 − bl − 2𝜌l − al)

)

Re(żl(t)zl(t))

+ e2𝜆t
n∑
l=1

2𝛽l𝜌lRe(żl(t)zl(t))

≤e2𝜆t
n∑
l=1

𝛽l𝜌l(zl(t)zl(t) + żl(t)żl(t) + 2Re(żl(t)zl(t)))

=e2𝜆t
n∑
l=1

𝛽l𝜌l(żl(t) + zl(t))(żl(t) + zl(t))

≤2�̂�V(t).

V(t) ≤ V(0)e2�̂�(1−𝜈)t.

Hence,

where � = minl∈Λ{�l} . Therefore,

which means that the exponential synchronization is real-
ized. The proof is achieved.   ◻

Remark 2 Without the traditional variable transformation 
method in the reports of [19, 25, 26] based on intermittent 
control scheme, some new Lyapunov functionals are con-
structed to directly analyze the synchronization problem of 
inertial neural networks. The new technique is more direct and 
concise compared to the previous reduced order technique.

Remark 3 Actually, various complex-valued neural networks 
have been studied to achieve synchronization by separating 
the complex-valued neural networks into two real-valued 
systems [30–37]. Different from these work, exponential 
synchronization is reached in this paper for the inertial 
complex-valued neural networks by the theory of complex-
variable functions.

Remark 4 In [39], the authors used a non-reduced order 
approach to study global dissipativity of real-valued neutral-
type inertial neural networks. Compared to the work, a class 
of more general systems, complex-valued inertial neural net-
works are considered in this paper.

4  Numerical illustration

Considering the ICVFCNNs with time-varying delays is 
given as follows:

‖z(t)‖2 =
n�
l=1

zl(t)zl(t) ≤
2

𝛼
e−2𝜆tV(t) ≤

2V(0)

𝛼
e−2[𝜆−�̂�(1−𝜈)]t,

‖z(t)‖ ≤

�
2V(0)

𝛼
e−[𝜆−�̂�(1−𝜈)]t,

(13)

ẍl(t) = − alẋl(t) − blxl(t) +

n∑
j=1

cljfj(xj(t))

+

n∑
j=1

dljfj(xj(t − 𝜏(t)))

+

n∑
j=1

eljuj(t) +

n⋀
j=1

hljgj(xj(t − 𝛿(t)))ds

+

n⋁
j=1

kljgj(xj(t − 𝛿(t)))

+

n⋀
j=1

sljuj(t) +

n⋁
j=1

qljuj(t) + Il(t), l ∈ Θ,
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and the corresponding response system is proposed by the 
following equation:

(14)

ÿl(t) = − alẏl(t) − blyl(t) +

n∑
j=1

cljfj(yj(t))

+

n∑
j=1

dljfj(yj(t − 𝜏(t)))

+

n∑
j=1

eljuj(t) +

n⋀
j=1

hljgj(yj(t − 𝛿(t)))ds

+

n⋁
j=1

kljgj(yj(t − 𝛿(t)))

+

n⋀
j=1

sljuj(t) +

n⋁
j=1

qljuj(t) + Il(t) +Ml(t), l ∈ Θ,

where Θ = {1, 2} , �(t) = �(t) = 0.5(1 + sin 2t) , a1 = 0.3 , 
a2 = 0.5 , b1 = 0.4 , b2 = 0.2 , �1 = 6 , �2 = 8 , fj(⋅) = gj(⋅)

= tanh(Re(⋅)) + i tanh(Im(⋅)) , and

The initial value are give as �1(�) = 2 + 3i , �
2
(�) = −3 + 0.5i , 

�̂�1(𝜂) = �̂�2(𝜂) = −2 + 2i , �1(�) = −1 + i , �2(�) = 2 − 2i , 
�̂�1(𝜂) = �̂�2(𝜂) = −1 + 2i , � ∈ [−1, 0] . Under periodically 
intermittent control, Figs. 1 and  2 show that synchroniza-
tion curves of xl and yl , l = 1, 2.

Note that 𝜏 = 𝜏1 = 𝛿 = 𝛿1 = 0.5 , F1 = F2 = G1 = G2 = 1 , 
�̂� = 8 . Choose T = 3 , � = 0.6 , � = 0.95 , �1 = 1 , �2 = 2 , 
�1 = 0.5 , �2 = 0.4 and by calculation, we can get

It is easy to verify that the conditions of Theorem 1 hold. 
Consequently, the ICVFCNNs 13 and 14 are exponentially 
synchronized under periodically intermittent control, which 
is demonstrated by Fig. 3.

In addition, let the time-varying delays �(t) = 0.5 cos2(2t) 
and �(t) = 0.5 sin

2(2t) , all the other parameters and the error 
initial conditions are the same as the above for systems (13) 
and (14), then it is easy to verify that the conditions of Theo-
rem 1 hold. Under the intermittent control, Figure 4 shows 
time responses of the error variables z1(t) , z2(t) . From Figs. 3 
and 4, the synchronization time in Fig. 3 is shorter than that 
in Fig. 4, which indicates that the synchronization of (13) 
and (14) is delay-dependent. So, Figs. 1, 2, 3, 4, testify the 
validity of the results for Theorem 1.

5  Conclusion

This paper has discussed the global exponential synchro-
nization for ICVFCNNs with mixed time-varying delays 
via periodically intermittent control. Based on the theory 
of complex functions and the construction of suitable 

(clj)2×2 =

(
0.3 −0.1

−0.2 0.1

)
, (dlj)2×2 =

(
0.1 −0.4

−0.5 −0.3

)
,

(elj)2×2 =

(
1.0 amp;0.5

0.4 0.2

)
, (hlj)2×2 =

(
0.1 −0.1

−0.3 0.2

)
,

(klj)2×2 =

(
−0.6 0.1

0.2 0.3

)
, (slj)2×2 =

(
0.5 amp; 0.5

0.2 0.2

)
,

(qlj)2×2 =

(
0.4 amp;0.3

0.2 0.1

)
,

(
I1(t)

I2(t)

)
=

(
2 sin t + i sin 2t

cos t + i sin t

)
,

u1(t) = sin 2t + i cos 2t, u2(t) = cos t + i sin t.

Γ1 = − 5.11 < 0, Γ2 = −2.14 < 0, Υ1 = −2.5 < 0,

Υ2 = − 2.86 < 0, Π1 = −4.25, Π2 = −3.8.

𝜆 − �̂�(1 − 𝜈)0.6 − 0.8(1 − 0.95) = 0.2 > 0.
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Lyapunov functions, the non-reduced order and non-separa-
tion approach was introduced to investigate the synchroniza-
tion problems of delayed ICVFCNNs. Compared to previous 
results, the method used in this article is more concise and 
practical, which is an entirely new attempt. Further, it can 
be utilized to study other dynamic models, e.g., fractional-
order models  [41, 42], impulsive model  [43], stochastic 
model  [44], etc.

In addition, because fixed-time synchronization does 
not depend on the system’s initial conditions and is only 
related to the parameters of the system, thus reducing the 
requirements in practical applications. Currently, fixed-time 
synchronization for inertial complex-valued fuzzy cellular 
neural networks has been extensively discussed by using 
reduced-order transform. However, there seems few related 
results about the topic based on the direct method of Lyapu-
nov functional instead of the reduced order technique. The 
interesting and challenging issues will be examined in our 
latest work.
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