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Abstract
Decision-makers’ subjective preferences can be well modeled using preference aggregation operators and related induced 
weights allocation mechanisms. However, when several different types of preferences occur in some decision environment 
with more complex uncertainties, repeated uses of preferences induced weights allocation sometimes become unsuitable 
or less reasonable. In this work, we discuss a common decision environment where several invited experts will offer their 
respective evaluation values for a certain object. There are three types of preferences which will significantly affect the 
weights allocations from experts. Instead of unsuitably performing preference induced weights allocation three times inde-
pendently and then merging the results together using convex combination as some literatures recently did, in this work, we 
propose some organic and comprehensive rules-based screen method to first rule out some unqualified experts and then take 
preference induced weights allocation for the refined group of experts. A numerical example in business management and 
decision-making is presented to show the cognitive reasonability and practical feasibility.

Keywords  Aggregation operators · Basic uncertain information · Decision-making · Information fusion · Preference 
modeling

Abbreviations
BUI	� Basic Uncertain Information
OWA	� Ordered Weighted Averaging
IOWA	� Induced Ordered Weighted Averaging

1  Introduction

Information fusion theories and methods [1–6] are pow-
erful tools in numerous applications including manage-
ment decision-making and evaluations [7–9, 24–31]. For 
a collection of n input values, which are often expressed 
by a vector, a commonly used aggregation operator can 
merge those n inputs into a single output in some strict and 
standard manners. Recall that a real-valued aggregation 
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operator A ∶ [0, 1]n → [0, 1] is a mapping satisfying two 
conditions: (i) A(0, ..., 0) = 0 and A(1, ..., 1) = 1 ; (ii) for any 
x, y ∈ [0, 1]n[0, 1]n with x < y , A(x) ≤ A(y).

In group decision-making environment, data fusion is one 
particular effective and important way to diminish inconsist-
ency among many involved evaluators or experts. To suit-
ably apply desirable data aggregation, usually some weights 
should be determined and allocated to all the involved 
experts. When a group of experts are invited for giving their 
individual evaluation values for some certain object, often 
there may involve two types of information. The first type is 
their offered evaluation values, while the second type is con-
cerned with the personal general abilities, such as reliability, 
fame, experience and credibility of those experts themselves. 
With the extents of such two types of information known, 
Yager’s preferences aggregation theory and related weights 
allocation methods [10–12] can be convenient to use to 
determine weights for those experts in a group.

However, when these two types of information, namely 
the evaluation values for some certain object and the reli-
ability or credibility of experts who give those evaluation 
values, are with uncertainties, the direct preferences induced 
weights allocation [12] will become much more complex 
or even not feasible. In this setting, actually the two types 
of information with uncertainties can be expressed exactly 
with two basic uncertain information (BUI) [13, 14] forms. 
In structure, the first type of uncertainty may be also offered 
by the experts themselves and attached to the corresponding 
evaluation values they give; the second type of uncertainty 
is concerned with the reliability or credibility of experts and 
may be provided by other decision-makers who invite those 
experts.

BUI is a recently introduced uncertain conceptual para-
digm to express and deal with different types of uncertain 
information. Recall that a BUI granule is with a pair form 
(x, c) in which x ∈ [0, 1] is a concerned evaluation value and 
c ∈ [0, 1] is the certainty degree of x; and 1 − c ∈ [0, 1] is the 
uncertainty degree of x. Certainty degrees may represent the 
degrees to which decision-makers are confident, sure, cer-
tain or definite of the concerned evaluation values in flexible 
manners, while uncertainty degrees may show the extents 
to which they are unconfident, unsure, uncertain or indefi-
nite of the concerned evaluation values. With this definition, 
(x, 1) indicates the full certainty over evaluation value x and 
it may be regarded as equivalent to the real value x in prac-
tice; (x, 0) indicates the full uncertainty over evaluation value 
x, implying every value between [0, 1] can be considered as 
a true value, and therefore there is no effective or substantial 
information can be taken out.

For the aforementioned group evaluation problem, we can 
use twice of BUI to well re-express the involved two pairs 
of information and associated uncertainties. First, the nota-
tional form ((xi, ci))ni=1 can be selected to use wherein (xi)ni=1 

represents the evaluation values offered by the invited group 
of experts while (ci)ni=1 represents respectively the certainty 
of (xi)ni=1 offered still by that group of experts. Second, the 
notational form ((yi, di))ni=1 can be used in which (yi)ni=1 indi-
cates the reliability or credibility of that group of experts, 
and (di)ni=1 is the certainty of the reliability or credibility, 
both offered by some other decision-makers like managers 
other from the group of experts.

Note that in such setting, we model the practical situation 
more realistically with considering two sources of uncertain-
ties, and then we are precisely concerned with four different 
data units and thus four different types of preference. To 
perform the weights allocation for the group of experts, usu-
ally we should consider three types of preference (out of the 
four types): one is the reliability (or credibility) preference 
related to y (i.e., concerning whether we prefer the invited 
experts who are more reliable or prefer considering more 
experts in number regardless of their reliability), another 
is the certainty preference related to d (i.e., concerning the 
extent to which we prefer those reliability degrees (offered 
by decision-makers) with high certainty degrees), and still 
another is the certainty preference related to c (i.e., con-
cerning the extent to which we prefer the evaluation values 
(offered by experts) with high certainty degrees (also offered 
by experts)). It should be noticed that the three preferences 
will play some different roles and will not be handled in 
absolutely equal terms, which requires us to devise some 
reasonable and effective weights allocation methods rather 
than taking the same Yager’s preference involved aggrega-
tions three times.

Indeed, some recent literatures discussed several induced 
weight allocations methods [15–18], but the main methods 
proposed in them are either first taking weighted average of 
inducing variables and then determining weights, or at first 
determining weights from different inducing variables and 
then taking weighted average (convex combination) of those 
generated weight vectors. Actually, the irregular tangle of 
the two elements in (y, d) sometimes makes it not very rea-
sonable to directly use of Yager’s preference induced weight 
allocations twice independently for y and d, which may 
cause some preferences of decision-makers not to be well 
modeled and embodied in the corresponding weights alloca-
tion process. To devise some more reasonable preferences 
and uncertainties induced weights allocation methods, in this 
work, we will apply some comprehensive and rules-based 
methods to address the posed issue of well embodying the 
three types of preferences. Further, an integrated decision 
model including information screen, weights allocation, BUI 
aggregation and decision methods will be proposed. Since 
there is a paucity of existing comprehensive preferences and 
uncertainties involved weights allocation and aggregation 
models, then the proposed decision model in this paper will 
provide some cognitively reasonable decision methods for 
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practitioners to consider in decision-making environments 
where more preferences are faced and uncertainties are 
encountered.

As we have stated that the reliabilities of experts, the cer-
tainty degrees of such information, and the certainty degrees 
they offered for evaluation values play different roles in deci-
sion-making, the general way of taking a convex combina-
tion of them used in some other literatures might become 
actually not very reasonable in many circumstances. The 
advantage of the proposed weights allocation method can 
reasonably and flexibly take into consideration the prefer-
ences over the experts’ reliabilities, the certainty degrees of 
such reliabilities, and the certainty degrees the experts offer 
for their provided evaluation values in different ways, and 
combine these three types of preference in an organic and 
cognitively reasonable way.

The remainder of this work is organized as follows: Sec-
tion 2 reviews Yager’s preference involved aggregation and 
related weights allocation, and proposes and illustrates the 
reasonability of the comprehensive rules-based preferences 
induced weights allocation with BUI. Section 3 system-
atically proposes an integrated decision model with com-
prehensive decision rules, preferences and uncertainties. 
In Sect. 4, a numerical case in business management and 
decision-making is given for illustrating and validating the 
proposed decision-making and evaluation method. Section 5 
concludes and remarks this paper.

2 � The Methodology for Comprehensive 
Rules‑Based and Preferences Induced 
Weights Allocation with BUI

2.1 � Yager’s Preference Involved Aggregation 
and Related Induced Weights Allocation

Ordered weighted averaging (OWA) operators [10] can flex-
ibly and reasonably model optimism–pessimism bi-polar 
preference, often with subjectivity of decision-makers. 
Recall that an OWA operator of dimension n with a normal-
ized weight vector w = (wi)

n
i=1

 is an aggregation operator 
OWA

�
∶ [0, 1]n → [0, 1] such that

where � ∶ {1, ..., n} → {1, ..., n} can be any appropriate per-
mutation satisfying x

�(i) ≥ x
�(j) whenever i < j . The weight 

vector w used for OWA operator directly embodies a bi-
polar optimism–pessimism preference which can be further 
quantified by orness/andness which is also introduced by 

(1)OWA
�
(x) =

∑n

i=1
wix�(i)

Yager. Recall that the orness and andness of a vector w used 
in OWA operator is defined by

Yager used the (fuzzy) quantifier function to automati-
cally generate weight vectors of any finite dimension for 
OWA operators [11]. A (fuzzy) quantifier Q ∶ [0, 1] → [0, 1] 
is a non-decreasing function with Q(0) = 0 and Q(1) = 1 , 
and thus its integrability is guaranteed. For any n ∈ ℕ , and 
any quantifier Q, the weight vector wQ can be generated such 
that

A larger quantifier can generate OWA weight vectors with 
larger orness degrees, and vice versa. Observe that when a 
quantifier Q is absolutely continuous, then there is an inte-
grable function q ∶ [0, 1] → [0,+∞] such that ∫ 1

0
q(t)dt = 1 

and hence

With some approximate sense, the orness of a quantifier 
function Q can be defined by orness(Q) = ∫ 1

0
Q(t)dt , though 

in general this does not precisely equal to orness(�Q) . In 
practice, we may choose some quantifier functions Q with 
Q(t) > t ( t ∈ [0, 1] ) to model optimism preferences and 
choose some quantifier functions Q with Q(t) < t ( t ∈ [0, 1] ) 
to model pessimism preferences. For example, Q(t) = t2 with 
orness(Q) = 1∕3 can be suitably used to model some pes-
simism attitude with moderate extent.

It is worth mentioning that orness/andness can measure 
not only optimism/pessimism preference but also numer-
ous other types of bi-polar preferences such as time-related 
preference, which is related to given chronological order, 
and certainty preference as will be discussed later. In other 
types of preferences than optimism/pessimism, one should 
use induced ordered weighted averaging (IOWA) operators 
[12] to perform the corresponding information aggregation.

2.2 � Comprehensive Rules‑Based and Preferences 
Induced Weights Allocation with BUI

When a group of n experts {Ei}
n
i=1

 is invited, we use a vector 
of BUI granules (y, d) = ((yi, di))

n
i=1

 to denote the concerned 
information where y = (yi)

n
i=1

∈ [0, 1]n is the reliability 
vector in which yi represents the reliability (or credibility) 
degree of expert Ei and d = (di)

n
i=1

∈ [0, 1]n is the certainty 
vector in which di indicates the certainty degree to which 

(2)
orness(w) =

n
∑

i=1

n − i

n − 1
wi

andness(w) = 1 − orness(w)

(3)w
Q

i
= Q(i∕n) − Q((i − 1)∕n) (i = 1, ..., n)

(4)w
Q

i
= ∫

i∕n

(i−1)∕n

q(t)dt (i = 1, ..., n)
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expert Ei is with reliability yi . In general, we may prefer 
those BUI granules (yi, di) in which both yi and di are large. 
But this judgment for a “large” BUI pair is delicate and dif-
ferent from a two-dimensional real vector. Clearly, those 
BUI granules with low certainty degrees di will not be pre-
ferred since we are uncertain about the real reliabilities of 
related experts (though they may be really reliable or may 
not). Furthermore, those unreliable, trustless or inexperi-
enced experts are also not favorable and unaccepted; note 
that for those experts to be classified under those labels (reli-
able or not reliable), we should have enough high certainty 
degrees associated to the reliabilities of them.

Moreover, note that ((xi, ci))ni=1 is the vector of BUI gran-
ules that is offered by the group of n experts and each of 
which contains the evaluation value xi of the certain object 
under evaluation with certainty degree ci . Since it also 
involves uncertainty, it is reasonable to have some prefer-
ences over the BUI granules (or the experts offer them) 
with higher certainty degree. In addition, in a similar way, 
those very uncertain evaluations (i.e., with very low cer-
tainty degrees) should not be considered and those evalua-
tions with low (but not very low) certainty degrees should 
be given less weights.

Recall that rules-based decision-making [19–21] is often 
irreplaceable in a great deal of decision-making and evalu-
ation problems. Given some preset rules, decisions can be 
automatically taken without further subjective intervention 
from decision-makers. In our weights allocation problems, 
given two vectors of BUI granules ((yi, di))ni=1 and ((xi, ci))ni=1 , 
we can design some reasonable rules below to screen out 
some experts who we are not familiar with (i.e., uncertain 
about), who are obviously inadequate to be invited as evalu-
ators, and who offer evaluation values but with apparently 
low certainty degrees.

Screen Rule 1: If the certainty degree di for the expert Ei 
is less than a preset “enough low” threshold DT1 ∈ [0, 1] , 
then expert Ei should be ruled out and be regarded as “inva-
lid” candidate for evaluating and offering his/her uncertain 
evaluation, i.e., a BUI granule (xi, ci) , for a certain object 
under evaluation.

Screen Rule 2: If the certainty degree di for the expert Ei 
is larger than a preset “enough high” threshold DT2 ∈ [0, 1] 
(with DT1 < DT2 ) and the reliability extent yi is less than a 
preset “enough low” threshold RT ∈ [0, 1] , then expert Ei 
should also be ruled out from further evaluating.

Screen Rule 3: If the certainty degree ci offered from 
the expert Ei is less than a preset “enough low” threshold 
CT1 ∈ [0, 1] , then expert Ei should be ruled out and be 
regarded as “invalid” candidate.

Note that we have already considered the preference 
about certainty degrees of reliabilities, and in this work 
we cannot simply think that high certainty is better (due to 
the possibility of associating to a low reliability). Hence, 

the screen rules have already embodied our desired pref-
erence about certainty degrees. After singling out those 
unqualified experts from the above listed decision rules, 
the remainder of experts will still differ from each other 
about their reliabilities with associated certainty degrees. 
That is, the remaining experts is re-expressed with a 
refined experts set {Ei}

m
i=1

 where m ≤ n . We may also set 
a minimum number 0 < l ≤ n of experts to invite and if 
m < l , then we should further invite more (until m = l ) 
experts who will not be ruled out under the three screen 
rules. Hence, we also obtain a refined or adjusted BUI vec-
tor ((yi, di))mi=1 to enable us to perform our preference over 
reliabilities, that is, whether we prefer the invited experts 
who are more reliable (at the cost of reducing the number 
of experts invited and decreasing representativeness) or 
prefer considering more experts regardless of their reli-
ability (with benefit of increasing representativeness). But 
note that it is not sensible for us to prefer those experts 
with low reliabilities to those with high reliabilities.

Another point to be noticed is that expert is a type of 
important resource and thus not unlimited. Therefore, 
when there are not enough experts available to invite (that 
is, we always have m < l due to the scarcity of experts), 
then we should correspondingly decrease l  or increase 
funds to be enough to invite more experts.

At now, all remaining experts are valid since the cer-
tainties for their reliabilities are equal to or larger than the 
preset “enough low” threshold DT1 ∈ [0, 1] . Then, for any 
BUI granule (yi, di) , we know di ≥ DT1 . Now, if for two 
BUI granules (yi, di) and (yj, dj) , it further has di, dj ≥ DT2 , 
then we are more certain of the reliability degrees yi and 
yj , and thus we can more safely compare the order of 
yi and yj (or expert Ei and expert Ej ) and allocate more 
weight to the expert with high reliability degree; but if 
DT1 ≤ di, dj < DT2 , then there is no sufficient evidence to 
believe that yi > yj (or yi < yj ) and thus it is more reason-
able for us to allocate the same weights to expert Ei and 
expert Ej.

Therefore, for the BUI vector ((yi, di))mi=1 ,  we 
define two sets: A = {i ∈ {1, ...,m} ∶ di ≥ DT2} and 
B = {i ∈ {1, ...,m} ∶ DT1 ≤ di < DT2} . The cardinality of 
finite set X is denoted by #X . In general, the total weights 
assigned to those BUI granules ((yi, di))i∈A will sum up to 
#A∕(#A + #B) and the total weights allocated to those BUI 
granules ((yi, di))i∈B will be #B∕(#A + #B) . In detail, we first 
derive a normalized weight vector wA = (wA

i
)i∈A for the set 

A using the method of quantifier function and then simply 
give the weight 1∕m to each of expert in the set B. In this 
case, we may select a convex quantifier function Q so that 
Q(t) ≤ t because the weight vector generated by such func-
tion is necessarily monotonic non-increasing which can well 
embody our various preferences with different extents over 
more reliable experts; that is, the weight vector generated 
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by a smaller Q corresponds to a stronger preference over 
reliable experts and vice versa, and note that if we choose 
Q with Q(t) = t then it corresponds to that we prefer to con-
sider as more experts as possible and we are fully regardless 
of their reliability as discussed previously.

With the selected quantifier function Q, the normalized 
weight vector wA = (wi)i∈A is derived in two steps in a simi-
lar way to the three-set method [22] such that

(From [22], it can be known that for Q(t) ≤ t , we neces-
sarily have wA

i
≤ wA

j
 whenever di < dj.)

Finally, a normalized weight vector with dimension m, 
w = (wi)

m
i=1

 , is obtained with

One can check that it is normalized by.
∑m

i=1
wi =

∑

k∈A

wA
k
⋅

#A

#A+#B
+

1

m
⋅ #B =

#A

#A+#B
+

#B

#A+#B
= 1.

Note that a recent work [23] has also discussed a method 
with some similar weight allocation mechanism with which 
those BUI granules whose uncertainty degrees are lower 
than a threshold will be equally assigned weights. However, 
that case considered only one threshold (not three) and had 
not considered other screening rules. With the eventually 
obtained normalized weight vector w = (wi)

m
i=1

 assigned 
to each individual in the refined experts set {Ei}

m
i=1

 , one 
can aggregate the corresponding vector of BUI granules 
((xi, ci))

m
i=1

 in which (xi, ci) is offered by expert Ei to evaluate 
a certain object.

3 � An Integrated Decision Model 
with Comprehensive Decision Rules, 
Preferences and Uncertainties

This section provides an integrated decision model which 
includes a thorough process of evaluation problem descrip-
tion, experts’ invitation and data preparation, weights alloca-
tion process, and final evaluation and decision-taking.

Stage 1: Evaluation problem description.
Step 1: Set a decision space S = {si}i∈Λ (with Λ being an 

index set) including different choices for deciding.
Step 2: Give an object under evaluation related to that 

decision problem and the evaluation result will directly 
affect the final decision choice to that problem.

Stage 2: Experts invitation and data preparation.

(5)wA
i
=

Q
[

#{k∈A∶dk≤di}
#A

]

− Q
[

#{k∈A∶dk<di}

#A

]

#{k ∈ A ∶ dk = di}

(6)
w
i
= w

A

i
⋅

#A

#A+#B
(when i ∈ A)

w
i
= 1∕m (when i ∈ B)

Step 1: Invite n experts who are denoted by {Ei}
n
i=1

 . For 
each of them give a BUI granule (yi, di) in which yi is the 
reliability of expert Ei and di is the certainty degree of this 
reliability yi ; that is, they can be also altogether denoted by 
a BUI vector ((yi, di))ni=1.

Step 2: Require each invited expert to offer a BUI granule 
(xi, ci) as uncertain evaluation value for the object in which 
xi is the evaluation value while ci is the certainty degree, 
both offered by expert Ei ; that is, they can be also altogether 
denoted by a BUI vector ((xi, ci))ni=1.

Step 3: Preset an “enough low” threshold DT1 ∈ [0, 1] and 
an “enough high” threshold DT2 ∈ [0, 1] (with DT1 < DT2 ) 
for certainty degrees di ; preset an “enough low” threshold 
RT ∈ [0, 1] for reliability extents yi ; preset an “enough low” 
threshold CT1 ∈ [0, 1] for certainty degree ci.

Step 4: Use Screen Rules 1–3 as proposed in the pre-
ceding section to obtain a refined experts set {Ei}

m
i=1

 with 
m ≤ n . Set a minimum number 0 < l ≤ n of experts to invite. 
If m < l , then further invite more (until m = l ) experts who 
will not be ruled out under the three screen rules. Obtain the 
refined or adjusted m experts {Ei}

m
i=1

 with the BUI vector 
((yi, di))

m
i=1

 and the BUI vector ((xi, ci))mi=1.
Stage 3: Weights allocation process.
Step 1: For the refined or adjusted BUI vector ((yi, di))mi=1 , 

define two sets: A = {i ∈ {1, ...,m} ∶ di ≥ DT2} and 
B = {i ∈ {1, ...,m} ∶ DT1 ≤ di < DT2}.

Step 2: Preset a convex quantifier function Q with 
Q(t) ≤ t . Smaller quantifier corresponds to the preference 
over more reliable experts with sacrificing representative-
ness while larger quantifier corresponds to the preference 
of considering more experts regardless of their reliability.

Step 3: Obtain the intermediate normalized weight vector 
wA = (wi)i∈A by (5).

Step 4: Obtain the final normalized weight vector with 
dimension m, w = (wi)

m
i=1

 by (6).
Stage 4: Final evaluation and decision-taking.
Step 1: With the obtained weight vector w = (wi)

m
i=1

 for 
the refined m experts and a BUI vector ((xi, ci))mi=1 offered 
by them, take the weighted average of this BUI vector [13] 
to yield the output of a final BUI granule (x, c) such that 
(x, c) = (

∑m

i=1
wixi,

∑m

i=1
wici).

Step 2: Set some decision rules corresponding to the deci-
sion space S = {si}i∈Λ ; check which rule (x, c) can satisfy 
and make the final decision accordingly from the decision 
space S = {si}i∈Λ.

4 � A Numerical Case in Business 
Management and Decision‑Making

Suppose a company needs to decide to which scale it will 
manufacture a new product according to the opinions of 
invited several experts.
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In Stage 1 (Evaluation problem description), deci-
sion-makers in that company set a decision space 
S = {si}

4

i=1
 = {1 large scale, 2 medium scale, 3 small scale, 

4 no production}. The object under evaluation is the “mar-
ket prospect” of the new product which is a subjective 
evaluation and a relatively abstract concept that is then 
more suitable to be measured by fuzzy information.

In Stage 2 (Experts invitation and data preparation), 
suppose we originally invite a panel of five experts (i.e., 
n = 5 ) {Ei}

5

i=1
 and decision-makers in that company judge 

that they are with different reliability degrees and the judg-
ment for the reliability degrees are with different uncertain-
ties. In summary, they can be concisely expressed by a BUI 
vector ((yi, di))5i=1 = ((0.8, 0.3), (0.2, 0.8), (0.5, 0.6), (0.7, 0.9)
, (1, 0.9)) in which higher value of yi represents expert 
Ei is more reliable (or with more experience/higher 
ability) and higher di indicates the fact that “ Ei is with 
reliability yi ” is more certain. Suppose the five origi-
nally invited experts altogether offer a BUI vector 
((xi, ci))5i=1 = ((0.7, 0.5), (0.8, 0.9), (0.3, 0.3), (0.8, 0.1), (0.6,
0.7)) in which xi is the evaluation value for the object under 
evaluation and ci is its certainty, both given by expert Ei.

Next, for certainty degrees of reliabilities of experts di , 
suppose decision-makers preset an “enough low” threshold 
DT1 = 0.3 and an “enough high” threshold DT2 = 0.7 , pre-
set an “enough low” threshold RT = 0.3 for reliabilities of 
experts yi , and preset an “enough low” threshold CT1 = 0.3 
for certainty degree ci offered by experts for their given eval-
uation values for the object under evaluation.

Subsequently, using Screen Rules 1–3 as proposed 
in Sect. 2 to refine the original experts set {Ei}

5

i=1
 . Set a 

minimum number 0 < l = 4 ≤ 5 = n of experts to invite. 
By simple observation, we find that for the expert E2 , the 
associated BUI granule (y2, d2) = (0.2, 0.8) makes him/her 
to be excluded due to Screen Rule 2 ( y2 = 0.2 < 0.3 = RT  
and d2 = 0.8 > 0.7 = DT2 ); we also find that for the 
expert E4 , the BUI granule (x4, c4) = (0.8, 0.1) offered by 
him/her renders him/her to be ruled out via Screen Rule 
3 ( c4 = 0.1 < 0.3 = CT1 ). Since the number of remaining 
experts is m = 3 < 4 = l , then we should invite one more 
expert who will not be ruled out by Screen Rules 1–3. 
For example, suppose we have successfully invited such 
a qualified expert and the new refined panel of experts is 
denoted by {Ei}

4

i=1
 (i.e., m = 4 ) with the refined BUI vec-

tor ((yi, di))4i=1 = ((0.8, 0.3), (0.5, 0.6), (1, 0.9), (0.6, 0.7)) and  
the refined BUI vector ((x

i
, c

i
))4
i=1

= ((0.7, 0.5), (0.3, 0.3),

(0.6, 0.7), (0.4, 0.7)).
In Stage 3 (Weights allocation process), according to 

((yi, di))
4

i=1
= ((0.8, 0.3), (0.5, 0.6), (1, 0.9), (0.6, 0.7)) , we first 

define two sets: A = {i ∈ {1, ..., 4} ∶ d
i
≥DT2 = 0.7} = {3, 4} 

and B = {i ∈ {1, ..., 4}:DT1 = 0.3 ≤ di < 0.7 = DT2} = {1
, 2} . Next, suppose the convex quantifier func-
tion Q satisfies Q(t) = t2 , representing a moderate 

preference over more reliable experts. Then, by (5) we 
obtain wA = (w3,w4) = (0.75, 0.25) and by (6) we further 
have w = (wi)

4

i=1
= (0.25, 0.25, 0.375, 0.125).

In Stage 4 (Final evaluation and decision-taking), 
with the obtained weight vector w = (w

i
)4
i=1

= (0.25,

0.25, 0.375, 0.125) and the BUI vector ((x
i
, c

i
))4
i=1

=

((0.7, 0.5), (0.3, 0.3), (0.6, 0.7), (0.4, 0.7))   ,  t a k e 
the weighted average of this BUI vector to yield 
the output of a final BUI granule (x, c) such that 
(x, c) = (

∑4

i=1
wixi,

∑4

i=1
wici) = (0.525, 0.55).

Finally, with rules-based decision-making method, deci-
sion-makers can set some decision rules corresponding to 
the decision space S = {si}

4

i=1
 = {1 large scale, 2 medium 

scale, 3 small scale, 4 no production}; for example, we may 
set some disjoint and exhaustive decision rules:

(a) if both the evaluation value x and the certainty degree 
c are very high (say, 0.8), then the company will manufac-
ture the new product with “1 large scale”;

(b) if the evaluation value x is very high and the certainty 
degree c is relatively high (say, 0.5), or the evaluation value 
x is relatively high and the certainty degree c is very high, 
then the decision “2 large scale” will be chosen;

(c) if the evaluation value x is very low (say, 0.2) and the 
certainty degree c is very high, then the company will not 
produce any of such product and thus the decision “4 no 
production” will be chosen;

(d) else, the decision “3 small scale” will be chosen from 
the decision space.

Accordingly, we may devise a relevant decision function 
H ∶ B → S (where B is the set of all BUI granules) such that.

H(x, c) = 1 only if (x, c) ∈ [0.8, 1]2;
H(x, c) = 2  o n l y  i f  (x, c) ∈ [0.8, 1] × [0.5, 1]∪

[0.5, 1] × [0.8, 1];
H(x, c) = 4 only if (x, c) ∈ [0, 0.2] × [0.8, 1];
H(x, c) = 3 if (x, c) ∉ H−1({1, 2, 4}).
Since we have (x, c) = (0.525, 0.55) , then clearly 

H(0.525, 0.55) = 3 and therefore the decision “manufac-
turing the new product with small scale” is suggested to 
managers.

5 � Conclusions

A common uncertain decision environment is discussed 
where a panel of experts are invited and each of them 
required to offer his/her individual evaluation value for a 
certain object under evaluation. This environment involves 
three different types of inducing information. This first one 
is related to the certainty degree for his/her offered evalu-
ation value which is also offered by him/her. The second 
one is about the reliability degree for each of the invited 
experts which is provided by decision-makers. The third one 
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is concerned with the certainty degree for each provided 
reliability degree which is also provided by decision-makers.

Since the repeated uses of induced weights allocation 
with the three different preferences are sometimes not rea-
sonable in human cognition, we proposed some compre-
hensive rules-based and preferences induced weights allo-
cation method to be considered. In this integrated method, 
we first screen out some unqualified experts according to 
the three well designed screen rules. It is reasonable to 
rule out those experts who offer evaluation values but with 
low certainty degrees for the values. It is also sensible 
that if decision-makers feel quite sure that some experts 
are with very low reliability degrees, then those experts 
should be ruled out, and if decision-makers themselves 
cannot be sure of the experts’ reliability degrees, then 
those experts should also be screened out.

When a refined group of experts is decided, we then 
divide them into two subgroups. If the certainty degrees 
for the reliability degrees of experts are lower than a preset 
threshold, then those experts are assigned equal weights. If 
the certainty degrees for the reliability degrees of experts 
are higher than that preset threshold, then we use pref-
erence induced weights allocation method to allocate 
weights to them with more weights allocated to those with 
high reliabilities. With the weights for experts obtained 
and all individual evaluation values aggregated, some 
decision rules are explicitly made to judge which decision 
should be chosen from a given decision space. A numeri-
cal example in business management and decision-making 
is presented to show the decision method has potential in 
more complex preferences and uncertain environments.

The proposed method has some limitations. For exam-
ple, the involved thresholds sometimes are not easy to 
determine, or they might not be given by real numbers but 
by uncertain information. In future works, we may inves-
tigate how to effectively decide such thresholds and study 
the decisional situations where the thresholds are given by 
different uncertain information instead of real numbers.
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