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Abstract
Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of 
inputs using fuzzy integrals opens up numerous possibilities for modeling interaction, redundancy, and synergy of inputs. 
However, fuzzy integrals need a fuzzy measure to start this aggregation process. This situation pushes us into the fuzzy 
measure identification process. This process becomes difficult due to the monotony condition of the fuzzy measure and 
the exponential increase on the number of measure parameters. There are in the literature many ways to determine fuzzy 
measures. One of them is learning from data. In this paper, our aim is to introduce a new fuzzy measure identification tool 
to learn measures from empirical data. It is a Python module which finds the measure that minimizes the difference between 
the computed and expected outputs of the Choquet integral. In addition, we study some properties of the learning process. 
In particular, we consider k-additive fuzzy measures and belief functions as well as arbitrary fuzzy measures. Using these 
variety of measures we examine the effect of k and noisy data on the learning process.

Keywords Fuzzy measure identification · k-additive fuzzy measure · Belief functions · Möbius transform · Python

1 Introduction

Fuzzy integrals [1–3] are used in applications as a useful 
tool for data aggregation. Their advantage in aggregation is 
that they permit to model interactions between information 
sources by means of fuzzy measures. This is not the case 
when using e.g. arithmetic means, weighted means, and all 
other types of generalized means. Note that in means we 
can express our background knowledge on the information 
sources by means of weights. Nevertheless, these weights 
are assuming independence between the sources. In contrast, 

a fuzzy measure permits to express redundancy and comple-
mentarity among the sources (see e.g. [4]).

One of the most challenging problems [5, 6] in order to 
apply fuzzy integrals is the determination of fuzzy measures. 
They are set functions, so, this means, that given n inputs we 
need about 2n parameters. More particularly, we need 2n − 2 
parameters as we have boundary conditions for the empty set 
and the full set. Since about 2000 there have been research 
on how to identify or learn these measures from data or elicit 
them from experts.

Some research focuses on supervised techniques. That 
is, measure identification problems [7–10] in which one 
has access to pairs of input–output data. In other words, the 
problem is to consider a data set consisting of a set of inputs 
and their expected output, the measure is identified so that 
the output is approximated given the input and a particular 
fuzzy integral. The input–output pairings may be observed 
from experiments or may be simply given by subject mat-
ter experts. Solutions differ depending on which fuzzy inte-
gral is used in the model, which error function or objective 
function is considered in the problem, and which additional 
constraints are added into the problem. For example, when 
the integral is the Choquet integral, the problem can be for-
malized as a quadratic optimization problem with linear con-
straints. An example of additional constraint to the problem 
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is considering entropy or minimum variance of the fuzzy 
measure as in [11]. Solution of the problem using genetic 
algorithms is given in [12]. A review of methods is provided 
in [13] and [14]. Software for solving the problem is avail-
able in KappaLab [15] (last version from 2015), a package 
for R which provides several functions to operate with fuzzy 
measures and integrals. For example, the package provides 
fuzzy integrals (including Sugeno and Choquet integrals), 
identification of measures for the Choquet integral (includ-
ing least squares error and variations as the minimum vari-
ance), the Shapley value and Möbius transform.

We have developed an alternative module for Python, 
which is one of the most used programming language nowa-
days. The module provides Sugeno and Choquet integrals, 
functions for computing Shapley values and interaction indi-
ces, transforms (Möbius and (max,+)-transform), as well as 
measure identification for the Choquet integral. In this paper, 
we present the software focusing on the identification of 
measures for the Choquet integral. We can learn an arbitrary 
fuzzy measure, but also restrict the measure to be a belief 
function, or to be a k-additive measure for a given k. Both 
restrictions are also possible (i.e., a k-additive measure for a 
given k which is also a belief measure).

The identification of a fuzzy measure needs to deal with 
the problem of noisy data. We also study this problem using 
our new software. In particular, we study the effect of noise 
in the identification of the fuzzy measure, and we also 
study how a selection of a constrained fuzzy measure (i.e., 
k-additive or belief) affects the effectiveness of the output). 
In other words, we study how different k leads to different 
measures and how suitable they are for approximating the 
original data. We discuss the selection of the right complex-
ity for fuzzy measure selection. In other words, this is about 
the selection of a correct k for a k-additive fuzzy measure.

The structure of the paper is as follows. In Section 2, we 
present some preliminaries. In Section 3, we discuss the 
problem of fuzzy measure identification. We describe the 
standard formulation in terms of an optimization problem 
and discuss how we build the equations in our case. In Sec-
tion 4, we describe our experiments and results. The paper 
finishes with some conclusions and research directions.

2  Preliminaries

In this section, we will briefly describe a few key concepts 
related to fuzzy measure and optimization, which will be 
directly applied in the following sections.

Definition 1 [1] Let Ω be a finite set and let P(Ω) be power 
set of Ω . If

i .)�(∅) = 0,
ii .)�(Ω) = 1,

iii .)A ⊆ B implies �(A) ≤ �(B) (monotonicity),
then the set function � ∶ P(Ω) → [0, 1] is called a fuzzy 

measure on Ω .

The Möbius representation of a fuzzy measure is impor-
tant to model interactions between criteria.

Definition 2 [16] The Möbius representation (Möbius trans-
form) of a set function � on Ω is a set function m ∶ P(Ω) → ℝ 
defined by

Given a Möbius function m, we can build the fuzzy meas-
ure � using the following equation:

for all A ∈ P(Ω).
It is easy to see that the Möbius representation over sin-

gletons is equal to the fuzzy measure itself. It can also be 
proven that given � , if we compute the Möbius transform 
using Equation (1), the measure that results from Equa-
tion (2) is precisely � . There are other transforms in the 
literature with similar properties. For example, the (max,+) 
is one of them.

Fuzzy measure identification is quite computationally 
costly since it is defined on the power set. To overcome this 
problem, there have been several attempts to define families 
of measures with reduced complexity. For example, Gra-
bisch [17] proposed the concept of k-additive fuzzy measure. 
We define it below because we are using this family of meas-
ures in the paper. This family has the property that varying 
the parameter k, we range from a probability (when k = 1 ) 
to an arbitrary fuzzy measure (when k = |Ω| ). A previous 
definition of a family of measures with reduced complexity 
is the one defined by Sugeno (known as Sugeno �-measures). 
A related approach to k-order additive are its generalizations 
via t-conorms (see e.g. [18]).

Definition 3 [19] Let Ω be a finite set and let � be a fuzzy 
measure on Ω . � is said to be k-additive if its Möbius trans-
form m satisfies m(A) = 0 for all A ⊂ Ω such that ∣ A ∣> k 
and there exist at least one subset A ⊂ Ω with ∣ A ∣= k such 
that m(A) ≠ 0.

For k-additive measures, the value of k corresponds to its 
complexity. When k = 1 we have that the measure is additive 
and, thus, the Möbius transform on the singletons define a 
probability distribution. No interactions are present. Then, 
when we increase k and set it to k = 2 , we have interactions 
between pairs of elements in the reference set Ω . The larger 

(1)m(A) ∶=
∑

B⊂A

(−1)∣A⧵B∣𝜇(B).

(2)𝜇(A) =
∑

B⊂A

m(B)
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the k, the larger the interactions. Naturally, this means that 
we have an increasing number of parameters. Note that for 
k = 1 we have only ∣ Ω ∣ parameters to identify (i.e., the val-
ues on the singletons). For k = 2 we have ∣ Ω ∣ parameters 
corresponding to the singletons plus (∣ Ω ∣ ×(∣ Ω ∣ −1))∕2 
parameters corresponding to the interactions between pairs 
of objects. Then, for k =∣ Ω ∣ we naturally have 2∣Ω∣ − 2 
parameters.

Not all arbitrary set functions are Möbius transforms of 
a measure. The following theorem characterizes when this 
holds.

Theorem  1 [16] Let Ω ≠ ∅ be a finite set and let 
� ∶ P(Ω) → ℝ be a set function. Then, � is a fuzzy measure 
on Ω if and only if its Möbius representation m satisfies

i m(∅) = 0,

ii 
∑

B⊂Ω

m(B) = 1,

iii 
∑

x∈B⊂A

m(B) ≥ 0 , for all A ⊂ Ω and for all x ∈ A.

To integrate a function with respect to a fuzzy measure 
we can use fuzzy integrals. The Choquet integral is one of 
them, another one is the Sugeno integral. The concept of the 
Choquet integral can be considered as a generalization of the 
weighted average where, conceptually, the main difference is 
that now we assign a weight to each subset of the universal 
set by means of the fuzzy measure instead of only assigning 
weights to the singletons as in the weighted average.

Definition 4 [20] Let Ω =
{
o1, ..., on

}
 be a finite set and let � 

be a fuzzy measure on Ω . The Choquet integral of a function 
f ∶ Ω → [0, 1] with respect to � is defined by

where  the  sequence  
{
o(k)

}n

k=0
 i s  t he  per mu-

t a t i o n  o f  t h e  s e qu e n c e  
{
ok
}n

k=0
 s u ch  t h a t 

0 = f (o(0)) ≤ f (o(1)) ≤ f (o(2)) ≤ ... ≤ f (o(n))  a n d 
E(k) ∶=

{
o(k), o(k+1), ..., o(n)

}
.

In applications, the problem of building data-driven mod-
els (i.e., learning models from data) is a crucial one. The 
identification of fuzzy measures from a training data set has 
always been a difficult problem for practical use of fuzzy 
measures. It is well known that minimizing a squared error 
criterion results in a quadratic program. We will describe 
this problem.

Let X be the set of examples to be used in the learn-
ing process, corresponding to m examples, records or 
instances. Let xj represent the jth example. Each example 

(3)(C)∫
Ω

f d� ∶=

n∑

k=1

(
f (o(k)) − f (o(k−1))

)
�(E(k)),

is described in terms of n attributes, variables or criteria. 
Let Y = (y1, ..., ym) be the expected output for these exam-
ples. We use P to denote the decision matrix that includes 
both inputs X and outputs Y: P = [x

j

1
..., x

j
n ∣ y

j] for each 
j = 1, ...,m . In this paper we consider the problem of fuzzy 
measure identification from the matrix P. It is a supervised 
approach, using the machine learning jargon.

More concretely, we use the Choquet integral as our 
model. Then, the integral is used to aggregate each jth exam-
ple in the P matrix. An error term is formed between the 
aggregated value and the expected outcome. By the mini-
mizing error term, the fuzzy measure is identified.

Let ej = yj − CI�(x
j

1
, ..., x

j
n) be the error term yj and 

between the Choquet integral with respect to fuzzy meas-
ure � . The identification of fuzzy measures by minimizing 
a quadratic error term is defined below. In addition to the 
error, we also need to consider some constraints related to 
the fuzzy measure. I.e., the set function we are searching 
needs to satisfy the constrains of a fuzzy measure.

This problem can be formulated as a quadratic optimization 
problem. The constraints related to the fuzzy measure are 
linear ones. Thus, the optimization problem can also be seen 
as follows for appropriate matrix Q, appropriate vector q and 
appropriate matrix R (see e.g. [21]).

3  Fuzzy Measure Identification

In this section, we describe how we solve this problem in 
practice in our software in Python. We will represent sub-
sets of Ω in terms of their dyadic representation. That is, 
for Ω = {o1, o2, o3, o4} we represent subsets as (0, 0, 0, 0), 
(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), .... The first one represents 
the empty set, then (0, 0, 0, 1) represents {o1} as the last 
position can be understand as the bit for 1, (0, 0, 1, 0) corre-
sponds to {o2} , (0, 0, 1, 1) corresponds to {o1, o2} and so on.

(4)

min
𝜇

m∑

j=1

(yj − CI𝜇(x
j

1
, ..., xj

n
))2

s.t. 𝜇(�) = 0,

𝜇(Ω) = 1,

If A ⊆ B then, 𝜇(A) ⊆ 𝜇(B).

(5)

min
�

1

2
�tQ� + qT�

s.t. �(�) = 0,

�(Ω) = 1

0 ≤ � ≤ 1,

R� ≥ 0.
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3.1  Implementation of the Solution

We follow here the approach previously described by Imai 
et al. [21]. See also e.g. [14, 22]. That is, we formulate the 
problem as a quadratic optimization problem with linear 
constraints as in Equation 5. The Choquet integral of a func-
tion with respect to a measure can be expressed as a vector 
multiplication of the Möbius transform of the measure and 
a vector built from the input. This formulation is advan-
tageous for the identification problem. This is so because 
then the Choquet integral is just a linear combination. As 
a consequence, the objective function becomes a quadratic 
expression in terms of matrix multiplication. The optimiza-
tion problem is then about finding the Möbius transform of 
the measure instead of finding the measure itself. We detail 
these steps in the next sections. First the objective function, 
and then we discuss the constraints.

3.2  Implementing the Choquet Integral

More formally, let xi be an input vector with n values and let 
the function f (oj) = xi

j
 for Ω = {o1, o2, ..., on} , then the Cho-

quet integral of xi can be expressed in terms of a 2n − 1 vec-
tor that we call a+

i
 . Then, a+(A) for any � ≠ A ⊂ Ω represents 

the value:

F o r  e x a m p l e ,  g i v e n  f (o
1
) = 11 ,  f (o2) = 3  , 

f (o
3
) = 7  ,  f (o4) = 11 ,  w e  h av e  t h e  v e c t o r 

a+
i
= (11, 3, 3, 7, 7, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1) . The linear prod-

uct of a+ and the Möbius transform leads to the Choquet 
integral. Here a+ and the Möbius transform m need to be 
correctly aligned. To make this alignment, in the software 
we use the correspondence above and the first position of 
m+ corresponds to the set represented by (0, 0, 0, 1), second 
position to (0, 0, 1, 0), the third to (0, 0, 1, 1). We will use 
m+ to represent the Möbius transform of all subsets of Ω 
except the empty set. More formally, given data xi , if a+

i
 is 

the vector associated to data xi , we can compute the Choquet 
integral of xi with respect to the Möbius transform m+ of � 
as follows: CI�(xi) = a+

i
m+ . That is, the Choquet integral is 

the product of two vector. This transformation is achieved in 
our program in python by coefCIMobius (which returns 
a instead of a+ and thus including a zero associated to the 
empty set). The function receives f (on),… , f (o1) . So, in the 
order of the vector of bits.

a+(A) = min
o∈Ω

f (o).

3.3  Implementing the Objective Function

Let us consider again the error of the ith example:

We can express this expression in matrix form as 
e = y − (a+)Tm+ . Then, the objective function, or estima-
tion error can be expressed as follows:

This expression is of the form (1∕2)zTQz + qTz . Note that m+ 
plays the role of z, so Q = 2(a+)Ta+ and then qT = −2(a+)Ty.

We have two functions related to the objective function 
in our python module. One that given some data evaluates 
the objective function and returns its value. This func-
tion is called ciModel_of. The other function computes 
from the data the matrices P and q, assuming that the vari-
able is the vector of the Möbius transform m+ . This other 
function is called buildOFMobius.

3.4  Implementing the Inequality Constraints

The monotonicity condition establishes that for all B ⊂ A , 
we need to have �(B) ≤ �(A) . This condition can be estab-
lished equivalently for Möbius transform. In any case, 
from the point of view of the optimization problem, we do 
not need to consider all pairs of sets A, B such that B ⊂ A . 
It is enough to consider sets A and subsets B that differ in 
only one element, say x0 ∈ Ω.

Then, it is also noticeable that given a set B = A ⧵ {x0} , 
we may assume that the measure of this set will be zero or 
positive. So, �(A) will be larger than or equal to �(B) when 
the Möbius transform of 

∑
B�⊆B 𝜇(B

� ∪ {x0}) ≥ 0 . That is, 
as an equation:

This is the way we have used to define the monotonic-
ity conditions in our implementation. Figure 1 represents 
these inequalities. We include A and B in the figure where 

ei = yi − CI�(x
i) = yi − a+

i
m+.

(6)

MSE(m) =
∑

ei ∗ ei = eTe

= (y − (a+)Tm+)T (y − (a+)Tm+)
= (yTy − 2(a+)Tym+ + m+(a+)Ta+m+).

(7)

𝜇(B) ≤𝜇(A)
=
∑

B�⊆A

m(B�) =
∑

B�⊆B

m(B�) +
∑

B�⊆A

m(B� ∪ {x0})

=𝜇(B) +
∑

B�⊆A

m(B� ∪ {x0})
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B = A ⧵ {x0} , and also a subset B′ of B which produces 
A� = B� ∪ {x0} when adding the element x0.

This approach naturally also works when A is a singleton, 
therefore B is the empty set, and, thus, A = {x0} . Naturally, 
in this case, the inequality simply means that m({x0}) ≥ 0.

Observe again that this construction works well because 
the property holds by induction. That is, the singletons will 
be positive, and then assuming that this works for sets B then 
the inequality will work well for A = B ∪ {x0}.

As a summary, we include below the algorithm to define 
these inequalities. We can observe that in general for each 
set A we need to consider all subsets B of A. Thus, in gen-
eral, the computational cost of this process is 

(
2∣Ω∣

)
×
(
2∣Ω∣

)
 

which is (22∣Ω∣) . 

Step 1  For all A,

Step 2     For all x0 in A

Step 3        Add the following equation: 

This process is provided by the function buildEqua-
tionsMobius (n) where n represents the number of 
elements in Ω . This function returns the matrix with the left 
hand side of Equation 8 and a vector with the zeros in the 
right hand side of the same equation.

(8)
∑

A�⊆A⧵{x0}

m(A� ∪ {x0}) ≥ 0

3.5  Variations: Belief Functions, k‑Additive 
Measures, and Shapley Values

When we define the optimization problem it is easy to 
require that the measure is a belief measure, that it is k-addi-
tive, and that its Shapley value is of a given form. We have 
implemented these variations in our software. This is imple-
mented as follows.

• To require that the solution is a belief function we need 
to add the following constraints: 

 This is provided by the function buildEquation
sMobiusPositive(n), that creates all required 
constraints given the number of elements n in Ω (as for 
the other inequality constraints, the function returns the 
matrix corresponding to the left hand side of the equa-
tion and the vector corresponding to the right hand side 
of the equation).

• To require that the solution is a k-additive measure, we 
need to add the following constraints: 

 I n  t h i s  c a s e ,  i t  i s  t h e  f u n c t i o n 
buildEquationsKAdditive(n, k) which cre-
ates the corresponding matrix and vector. Naturally, we 
need the number of elements n in Ω and also the value k.

• To require that the solution has a given Shapley value, 
we consider the expression of Shapley value given the 
Möbius transform. That is, the Shapley value correspond-
ing to xi is 

∑
xi∈S

m(S)∕�S� . The function buildEqua-
tionsShapley (n, shapley) constructs the cor-
responding equations for a given vector of Shapley values 
(parameter shapley).

3.6  Implementation of Python

Our solution in python has been implemented by the func-
tion ciSolveMSE which given the data (input and expected 
output) returns the solution of the quadratic problem with 
linear constraints. We use the functions mentioned above to 
build the matrices of the objective function and the ones for 
the constraints. Then, we solve the problem using cvxopt 
and the function solvers.qp. This function returns the 
Möbius transform of the fuzzy measure, and then using the 
function fromMoebius2FM we can build the fuzzy meas-
ure itself. This corresponds to Definition 2.

m(A) ≥ 0 for all A ⊆ Ω.

m(A) = 0 for all A such that |A| ≥ k.

Fig. 1  Graphical representation of the inequality constraints with 
respect to the Möbius transform. We consider all B′ ⊆ B and then 
A� = B{x

0
}
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The function that identifies a measure includes param-
eters that permit us to choose a belief function, a k-additive 
measure (or both), or just an arbitrary measure. By default, 
we identify an arbitrary measure. As an example, we can call 
this function with:

to solve an example called data85 supplied in the soft-
ware, which is taken from [22].

The software is available at [23].

4  Experiments

We have studied two different aspects related to the identifi-
cation of fuzzy measures. First, we study the effect of k for 
k-additive measures in terms of the error of test and training 
data. Second, we study how noise affects the learning of the 
measure identification problem. Third, we have applied our 
software to larger data sets to check the computation times.

4.1  Methodology

These studies are done using the following process.

• � = Generate at random a fuzzy measure.
• (XTr,XTe) = Generate a training and testing sets of given 

sizes (nTr, nTe). To generate these sets, we use uniform 
distribution on the space of data, which is the interval 
[0,10].

• (yTr, yTe) = Find the outcome of both training and test data 
sets (using the Choquet integral with respect to � ). That 
is, yTr = CI�(XTr) and yTe = CI�(XTe).

• (yTr, yTe) = Add noise to both yTr and yTe . Noise follows 
a Gaussian distribution N(0, nL) where nL is the noise 
level. We have different noise levels for the test and the 
training sets. Say nLTr and nLTe.

• �′ = identify a fuzzy measure from the data (XTr, y
�
Tr
).

• ŷTe = Estimate yTe using �′ . That is, ŷTe = CI𝜇� (XTe).
• error = Compute the error between the ŷTe and yTe . That 

is, 

Due to the random factors, each execution of this proce-
dure will lead to different results. Because of that, we repeat 
the whole process nIt times and compute the average of the 
error.

4.2  The Effect of k

As we have stated above, for k-additive measures, the value 
of k represents its complexity. From a machine learning per-
spective, the more parameters, the more we may have over-
fitting. It is crucial to have an appropriate selection of the 
complexity of the problem. That is, in the case of k-additive 
measures, to select an appropriate k. If k is too small the 
complexity of the measure is not enough to represent the 
complexity of the data. If k is too large, then we may be 
learning not only the data but also the error.

Because of that, we have studied the effect of k in the 
learning process. In Figure 2 we represent the average error 
when we learn a measure from a set of 400 examples and 80 

(9)error = ||yTe − ŷTe||2 = ||yTe − CI𝜇� (XTe)||2.

Fig. 2  Error of the objective function (Equation 9) for the training and test sets when the measure is a belief function (left) and when it is an 
arbitrary measure (right). We use here Equation (9) to compute the error
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examples are used as test. We used the approach described 
in Section 4.1 with 8 inputs, nLTr = 2 and nLTe = 0 (i.e., zero 
error in the test data and proportional to two in the training 
data). Note that as the number of examples in the training 
set is 400 and 80 for the test, the error for test data should 
be about 5 times the one of train set.

• The figure shows a nice pattern when the measure learned 
is an arbitrary fuzzy measure. For the training data, the 
error decreases when we increase complexity. In contrast, 
for the test data error only decreases for k = 1 and k = 2 . 
After this point, the test error increases. That is, we have 
that the optimal complexity is with k = 2 and larger k 
does not help.

• For belief functions this pattern is not so clear. For the 
training set the error decreases when k increases, but not 
so significantly. Then, for the test set, there is a clear 
improvement with k = 2 and from this complexity there 

is some improvement but not so significant. It seems 
somehow that k = 2 is also a good choice.

Therefore, for this data set it seems that a k-additive meas-
ure with k = 2 is the best alternative. This applies for both 
general fuzzy measures and belief functions. Larger values 
of k can further reduce the error of the training set but it is 
not clear that the performance is better with respect to test 
sets. In addition, larger values of k imply larger complexity 
in the definition of the fuzzy measure and its interpretability. 
Therefore, k = 2 provides a good trade-off between measure 
complexity and quality of the result.

4.3  The Effect of the Noise Level

We have also studied the effect of noise in measure identi-
fication. We consider values at nLTr = 0.05, 1, 1.5, ..., 4 and 
nLTe = 0 . Figure 3 shows the estimation error (difference 

Fig. 3  Error for the training (top) and test (bottom) sets when the measure is a belief function (left) and when it is an arbitrary measure (right). 
Mean of 10 executions
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between expected and computed outcome – Equation 9) in 
terms of noise in the training data. we can see, as expected, 
that the estimated error steadily increases when the noise 
level increases. For the training data, this effect is mainly 
the same independently of the complexity of the measure 
complexity used (k = 1, ..., k = 8) . In contrast, the results are 
not so similar in what respects test data.

For test data, recall that we use nLTe = 0 – no noise. Then, 
we observe that there is a larger estimation error and that this 
estimation error is greater when we increase the noise level 
in the training set. That is, it is more and more difficult to 
identity the correct measure and the graphs does not seem 
to show a clear conclusion for which is the best complexity 
(value of k). For belief functions, k = 4 seems the one better 
suited as it has a more consistent low error.

Figure 4 displays the standard deviation of the error of the 
10 same executions we have described above. We can see 

that, in general, when the noise level in the data increases 
the standard deviation of the error in the objective function 
also increases. It is also very clear that for k = 1 the standard 
deviation is rather large even with a noise level equal to zero. 
So, we may conclude here that k = 2 is the minimum value 
of k that seems acceptable.

4.4  Belief Functions

The results displayed so far permit to make also a compari-
son of belief functions against arbitrary k-additive meas-
ures, and fuzzy measures in general. Belief functions seems 
to be less sensitive to overfitting. Figure 2 is the best one 
to visualize this fact. As we have discussed above, for an 
arbitrary fuzzy measure increasing k reduces the training 
error but for values k > 2 the test error increases. The test 
error for the belief functions do not have the same behavior, 

Fig. 4  Standard deviations for the training (top) and test (bottom) sets when the measure is a belief function (left) and when it is an arbitrary 
measure (right). Mean of 10 executions
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which is possibly because overfitting does not take place. 
This is naturally due to the fact that belief functions have 
less freedom than other measures as the Möbius should be 
always positive.

4.5  Larger Data Sets

We have applied our software to larger data sets available in 
sklearn. We have considered two regression problems, 
Diabetes and California. The first consists of 442 records 
and 10 inputs. The second one 20640 records and 8 inputs.

We have determined fuzzy measures for data sets with 
different number of records, from a small number of records 
to the full data set, and k-additive measures for different val-
ues of k. For example for the California data set, considering 
arbitrary fuzzy measures with either k = 2 or k = 3 , we get 
in a regular laptop (Intel(R) Core(TM) i7-8665U CPU @ 
1.90GHz) execution times of less of 1 second for 10 records, 
between 1 and 5 seconds for 100 instances, and 30 seconds 
for 1000 instances, and 940 seconds for the full set of 20640 
instances. For the California data set, learning the measure 
takes longer, as expected, as the number of parameters to 
identify goes from 28 − 2 to 210 − 2 . More precisely, it takes 
about 70 seconds for identifying a measure for the full data 
set of 442 instances.

5  Conclusions and Future Work

In this paper, we present a Python package that includes 
several alternatives for learning fuzzy measures from data. 
We also describe two types of experiments conducted using 
this package. The first one is for k-additive fuzzy measures: 
we know that as k increases, the number of interactions 
increases between criteria. It means that as k changes, the 
noise level in the numerical application changes. We inves-
tigate the effect of k on the noise level. As a result, we obtain 
that the training error decreases when the complexity of the 
model increases. Nevertheless, with respect to the test data, 
the error decreases only for k = 1 and k = 2 . The test error 
increases after this point. That is, we can see that k = 2 is the 
optimal complexity and that larger k does not help. Among 
the measures studied, this is more clearly seen with belief 
functions. The second experiment is about the effects of 
noise in learning. We have seen, as expected, that the noise 
on the data makes more difficult the identification of the 
measure. We have also seen that the variance on the square 
error increases when the noise in the training data increases. 
The experiments also show that the standard deviation of the 
square error on different executions can also help on select-
ing a good parameter k in k-additive measures.

The Python module provides some basic functions to 
operate with fuzzy measures. This includes Sugeno and 

Choquet integral, Möbius and (max,+)-transform, and meas-
ure identification for the Choquet integral. One of the limita-
tions of the software is that it does not provide a solution for 
the Sugeno integral. This is a non-linear and non-quadratic 
problem. We leave as future work to provide functions for 
measure identification for the Sugeno integral, as well as 
considering additional constraints on the identified measure. 
For example, sparsity conditions for the fuzzy measure for 
models based on the Choquet integral.

Our package is available at [23].
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