
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2022) 15:89
https://doi.org/10.1007/s44196-022-00146-w

RESEARCH ARTICLE

Measure Identification for the Choquet Integral: A Python Module

Ezgi Türkarslan1,2 · Vicenç Torra3

Received: 20 July 2022 / Accepted: 28 September 2022
© The Author(s) 2022

Abstract
Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of
inputs using fuzzy integrals opens up numerous possibilities for modeling interaction, redundancy, and synergy of inputs.
However, fuzzy integrals need a fuzzy measure to start this aggregation process. This situation pushes us into the fuzzy
measure identification process. This process becomes difficult due to the monotony condition of the fuzzy measure and
the exponential increase on the number of measure parameters. There are in the literature many ways to determine fuzzy
measures. One of them is learning from data. In this paper, our aim is to introduce a new fuzzy measure identification tool
to learn measures from empirical data. It is a Python module which finds the measure that minimizes the difference between
the computed and expected outputs of the Choquet integral. In addition, we study some properties of the learning process.
In particular, we consider k-additive fuzzy measures and belief functions as well as arbitrary fuzzy measures. Using these
variety of measures we examine the effect of k and noisy data on the learning process.

Keywords Fuzzy measure identification · k-additive fuzzy measure · Belief functions · Möbius transform · Python

1 Introduction

Fuzzy integrals [1–3] are used in applications as a useful
tool for data aggregation. Their advantage in aggregation is
that they permit to model interactions between information
sources by means of fuzzy measures. This is not the case
when using e.g. arithmetic means, weighted means, and all
other types of generalized means. Note that in means we
can express our background knowledge on the information
sources by means of weights. Nevertheless, these weights
are assuming independence between the sources. In contrast,

a fuzzy measure permits to express redundancy and comple-
mentarity among the sources (see e.g. [4]).

One of the most challenging problems [5, 6] in order to
apply fuzzy integrals is the determination of fuzzy measures.
They are set functions, so, this means, that given n inputs we
need about 2n parameters. More particularly, we need 2n − 2
parameters as we have boundary conditions for the empty set
and the full set. Since about 2000 there have been research
on how to identify or learn these measures from data or elicit
them from experts.

Some research focuses on supervised techniques. That
is, measure identification problems [7–10] in which one
has access to pairs of input–output data. In other words, the
problem is to consider a data set consisting of a set of inputs
and their expected output, the measure is identified so that
the output is approximated given the input and a particular
fuzzy integral. The input–output pairings may be observed
from experiments or may be simply given by subject mat-
ter experts. Solutions differ depending on which fuzzy inte-
gral is used in the model, which error function or objective
function is considered in the problem, and which additional
constraints are added into the problem. For example, when
the integral is the Choquet integral, the problem can be for-
malized as a quadratic optimization problem with linear con-
straints. An example of additional constraint to the problem

Vicenç Torra have contributed equally to this work.

 * Ezgi Türkarslan
 ezgi.turkarslan@tedu.edu.tr

 Vicenç Torra
 vtorra@cs.umu.se

1 Department of Mathematics, Ankara University, Faculty
of Science, Dögol road, Ankara 06560, Ankara, Turkey

2 Department of Mathematics, TED University, Faculty of Arts
and Science, Ziya Gökalp road, Ankara 06420, Ankara,
Turkey

3 Department of Computing Sciences, Umeå University, MIT
building, Umeå 901 87, Västerbotten, Sweden

http://orcid.org/0000-0002-0368-8037
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00146-w&domain=pdf

 International Journal of Computational Intelligence Systems (2022) 15:89

1 3

 89 Page 2 of 10

is considering entropy or minimum variance of the fuzzy
measure as in [11]. Solution of the problem using genetic
algorithms is given in [12]. A review of methods is provided
in [13] and [14]. Software for solving the problem is avail-
able in KappaLab [15] (last version from 2015), a package
for R which provides several functions to operate with fuzzy
measures and integrals. For example, the package provides
fuzzy integrals (including Sugeno and Choquet integrals),
identification of measures for the Choquet integral (includ-
ing least squares error and variations as the minimum vari-
ance), the Shapley value and Möbius transform.

We have developed an alternative module for Python,
which is one of the most used programming language nowa-
days. The module provides Sugeno and Choquet integrals,
functions for computing Shapley values and interaction indi-
ces, transforms (Möbius and (max,+)-transform), as well as
measure identification for the Choquet integral. In this paper,
we present the software focusing on the identification of
measures for the Choquet integral. We can learn an arbitrary
fuzzy measure, but also restrict the measure to be a belief
function, or to be a k-additive measure for a given k. Both
restrictions are also possible (i.e., a k-additive measure for a
given k which is also a belief measure).

The identification of a fuzzy measure needs to deal with
the problem of noisy data. We also study this problem using
our new software. In particular, we study the effect of noise
in the identification of the fuzzy measure, and we also
study how a selection of a constrained fuzzy measure (i.e.,
k-additive or belief) affects the effectiveness of the output).
In other words, we study how different k leads to different
measures and how suitable they are for approximating the
original data. We discuss the selection of the right complex-
ity for fuzzy measure selection. In other words, this is about
the selection of a correct k for a k-additive fuzzy measure.

The structure of the paper is as follows. In Section 2, we
present some preliminaries. In Section 3, we discuss the
problem of fuzzy measure identification. We describe the
standard formulation in terms of an optimization problem
and discuss how we build the equations in our case. In Sec-
tion 4, we describe our experiments and results. The paper
finishes with some conclusions and research directions.

2 Preliminaries

In this section, we will briefly describe a few key concepts
related to fuzzy measure and optimization, which will be
directly applied in the following sections.

Definition 1 [1] Let Ω be a finite set and let P(Ω) be power
set of Ω . If

i .)�(∅) = 0,
ii .)�(Ω) = 1,

iii .)A ⊆ B implies �(A) ≤ �(B) (monotonicity),
then the set function � ∶ P(Ω) → [0, 1] is called a fuzzy

measure on Ω .

The Möbius representation of a fuzzy measure is impor-
tant to model interactions between criteria.

Definition 2 [16] The Möbius representation (Möbius trans-
form) of a set function � on Ω is a set function m ∶ P(Ω) → ℝ
defined by

Given a Möbius function m, we can build the fuzzy meas-
ure � using the following equation:

for all A ∈ P(Ω).
It is easy to see that the Möbius representation over sin-

gletons is equal to the fuzzy measure itself. It can also be
proven that given � , if we compute the Möbius transform
using Equation (1), the measure that results from Equa-
tion (2) is precisely � . There are other transforms in the
literature with similar properties. For example, the (max,+)
is one of them.

Fuzzy measure identification is quite computationally
costly since it is defined on the power set. To overcome this
problem, there have been several attempts to define families
of measures with reduced complexity. For example, Gra-
bisch [17] proposed the concept of k-additive fuzzy measure.
We define it below because we are using this family of meas-
ures in the paper. This family has the property that varying
the parameter k, we range from a probability (when k = 1)
to an arbitrary fuzzy measure (when k = |Ω|). A previous
definition of a family of measures with reduced complexity
is the one defined by Sugeno (known as Sugeno �-measures).
A related approach to k-order additive are its generalizations
via t-conorms (see e.g. [18]).

Definition 3 [19] Let Ω be a finite set and let � be a fuzzy
measure on Ω . � is said to be k-additive if its Möbius trans-
form m satisfies m(A) = 0 for all A ⊂ Ω such that ∣ A ∣> k
and there exist at least one subset A ⊂ Ω with ∣ A ∣= k such
that m(A) ≠ 0.

For k-additive measures, the value of k corresponds to its
complexity. When k = 1 we have that the measure is additive
and, thus, the Möbius transform on the singletons define a
probability distribution. No interactions are present. Then,
when we increase k and set it to k = 2 , we have interactions
between pairs of elements in the reference set Ω . The larger

(1)m(A) ∶=
∑

B⊂A

(−1)∣A⧵B∣𝜇(B).

(2)𝜇(A) =
∑

B⊂A

m(B)

International Journal of Computational Intelligence Systems (2022) 15:89

1 3

Page 3 of 10 89

the k, the larger the interactions. Naturally, this means that
we have an increasing number of parameters. Note that for
k = 1 we have only ∣ Ω ∣ parameters to identify (i.e., the val-
ues on the singletons). For k = 2 we have ∣ Ω ∣ parameters
corresponding to the singletons plus (∣ Ω ∣ ×(∣ Ω ∣ −1))∕2
parameters corresponding to the interactions between pairs
of objects. Then, for k =∣ Ω ∣ we naturally have 2∣Ω∣ − 2
parameters.

Not all arbitrary set functions are Möbius transforms of
a measure. The following theorem characterizes when this
holds.

Theorem 1 [16] Let Ω ≠ ∅ be a finite set and let
� ∶ P(Ω) → ℝ be a set function. Then, � is a fuzzy measure
on Ω if and only if its Möbius representation m satisfies

i m(∅) = 0,

ii
∑

B⊂Ω

m(B) = 1,

iii
∑

x∈B⊂A

m(B) ≥ 0 , for all A ⊂ Ω and for all x ∈ A.

To integrate a function with respect to a fuzzy measure
we can use fuzzy integrals. The Choquet integral is one of
them, another one is the Sugeno integral. The concept of the
Choquet integral can be considered as a generalization of the
weighted average where, conceptually, the main difference is
that now we assign a weight to each subset of the universal
set by means of the fuzzy measure instead of only assigning
weights to the singletons as in the weighted average.

Definition 4 [20] Let Ω =
{
o1, ..., on

}
 be a finite set and let �

be a fuzzy measure on Ω . The Choquet integral of a function
f ∶ Ω → [0, 1] with respect to � is defined by

where the sequence
{
o(k)

}n

k=0
 i s t he per mu-

t a t i o n o f t h e s e qu e n c e
{
ok
}n

k=0
 s u ch t h a t

0 = f (o(0)) ≤ f (o(1)) ≤ f (o(2)) ≤ ... ≤ f (o(n)) a n d
E(k) ∶=

{
o(k), o(k+1), ..., o(n)

}
.

In applications, the problem of building data-driven mod-
els (i.e., learning models from data) is a crucial one. The
identification of fuzzy measures from a training data set has
always been a difficult problem for practical use of fuzzy
measures. It is well known that minimizing a squared error
criterion results in a quadratic program. We will describe
this problem.

Let X be the set of examples to be used in the learn-
ing process, corresponding to m examples, records or
instances. Let xj represent the jth example. Each example

(3)(C)∫
Ω

f d� ∶=

n∑

k=1

(
f (o(k)) − f (o(k−1))

)
�(E(k)),

is described in terms of n attributes, variables or criteria.
Let Y = (y1, ..., ym) be the expected output for these exam-
ples. We use P to denote the decision matrix that includes
both inputs X and outputs Y: P = [x

j

1
..., x

j
n ∣ y

j] for each
j = 1, ...,m . In this paper we consider the problem of fuzzy
measure identification from the matrix P. It is a supervised
approach, using the machine learning jargon.

More concretely, we use the Choquet integral as our
model. Then, the integral is used to aggregate each jth exam-
ple in the P matrix. An error term is formed between the
aggregated value and the expected outcome. By the mini-
mizing error term, the fuzzy measure is identified.

Let ej = yj − CI�(x
j

1
, ..., x

j
n) be the error term yj and

between the Choquet integral with respect to fuzzy meas-
ure � . The identification of fuzzy measures by minimizing
a quadratic error term is defined below. In addition to the
error, we also need to consider some constraints related to
the fuzzy measure. I.e., the set function we are searching
needs to satisfy the constrains of a fuzzy measure.

This problem can be formulated as a quadratic optimization
problem. The constraints related to the fuzzy measure are
linear ones. Thus, the optimization problem can also be seen
as follows for appropriate matrix Q, appropriate vector q and
appropriate matrix R (see e.g. [21]).

3 Fuzzy Measure Identification

In this section, we describe how we solve this problem in
practice in our software in Python. We will represent sub-
sets of Ω in terms of their dyadic representation. That is,
for Ω = {o1, o2, o3, o4} we represent subsets as (0, 0, 0, 0),
(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), The first one represents
the empty set, then (0, 0, 0, 1) represents {o1} as the last
position can be understand as the bit for 1, (0, 0, 1, 0) corre-
sponds to {o2} , (0, 0, 1, 1) corresponds to {o1, o2} and so on.

(4)

min
𝜇

m∑

j=1

(yj − CI𝜇(x
j

1
, ..., xj

n
))2

s.t. 𝜇(�) = 0,

𝜇(Ω) = 1,

If A ⊆ B then, 𝜇(A) ⊆ 𝜇(B).

(5)

min
�

1

2
�tQ� + qT�

s.t. �(�) = 0,

�(Ω) = 1

0 ≤ � ≤ 1,

R� ≥ 0.

 International Journal of Computational Intelligence Systems (2022) 15:89

1 3

 89 Page 4 of 10

3.1 Implementation of the Solution

We follow here the approach previously described by Imai
et al. [21]. See also e.g. [14, 22]. That is, we formulate the
problem as a quadratic optimization problem with linear
constraints as in Equation 5. The Choquet integral of a func-
tion with respect to a measure can be expressed as a vector
multiplication of the Möbius transform of the measure and
a vector built from the input. This formulation is advan-
tageous for the identification problem. This is so because
then the Choquet integral is just a linear combination. As
a consequence, the objective function becomes a quadratic
expression in terms of matrix multiplication. The optimiza-
tion problem is then about finding the Möbius transform of
the measure instead of finding the measure itself. We detail
these steps in the next sections. First the objective function,
and then we discuss the constraints.

3.2 Implementing the Choquet Integral

More formally, let xi be an input vector with n values and let
the function f (oj) = xi

j
 for Ω = {o1, o2, ..., on} , then the Cho-

quet integral of xi can be expressed in terms of a 2n − 1 vec-
tor that we call a+

i
 . Then, a+(A) for any � ≠ A ⊂ Ω represents

the value:

F o r e x a m p l e , g i v e n f (o
1
) = 11 , f (o2) = 3 ,

f (o
3
) = 7 , f (o4) = 11 , w e h av e t h e v e c t o r

a+
i
= (11, 3, 3, 7, 7, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1) . The linear prod-

uct of a+ and the Möbius transform leads to the Choquet
integral. Here a+ and the Möbius transform m need to be
correctly aligned. To make this alignment, in the software
we use the correspondence above and the first position of
m+ corresponds to the set represented by (0, 0, 0, 1), second
position to (0, 0, 1, 0), the third to (0, 0, 1, 1). We will use
m+ to represent the Möbius transform of all subsets of Ω
except the empty set. More formally, given data xi , if a+

i
 is

the vector associated to data xi , we can compute the Choquet
integral of xi with respect to the Möbius transform m+ of �
as follows: CI�(xi) = a+

i
m+ . That is, the Choquet integral is

the product of two vector. This transformation is achieved in
our program in python by coefCIMobius (which returns
a instead of a+ and thus including a zero associated to the
empty set). The function receives f (on),… , f (o1) . So, in the
order of the vector of bits.

a+(A) = min
o∈Ω

f (o).

3.3 Implementing the Objective Function

Let us consider again the error of the ith example:

We can express this expression in matrix form as
e = y − (a+)Tm+ . Then, the objective function, or estima-
tion error can be expressed as follows:

This expression is of the form (1∕2)zTQz + qTz . Note that m+
plays the role of z, so Q = 2(a+)Ta+ and then qT = −2(a+)Ty.

We have two functions related to the objective function
in our python module. One that given some data evaluates
the objective function and returns its value. This func-
tion is called ciModel_of. The other function computes
from the data the matrices P and q, assuming that the vari-
able is the vector of the Möbius transform m+ . This other
function is called buildOFMobius.

3.4 Implementing the Inequality Constraints

The monotonicity condition establishes that for all B ⊂ A ,
we need to have �(B) ≤ �(A) . This condition can be estab-
lished equivalently for Möbius transform. In any case,
from the point of view of the optimization problem, we do
not need to consider all pairs of sets A, B such that B ⊂ A .
It is enough to consider sets A and subsets B that differ in
only one element, say x0 ∈ Ω.

Then, it is also noticeable that given a set B = A ⧵ {x0} ,
we may assume that the measure of this set will be zero or
positive. So, �(A) will be larger than or equal to �(B) when
the Möbius transform of

∑
B�⊆B 𝜇(B

� ∪ {x0}) ≥ 0 . That is,
as an equation:

This is the way we have used to define the monotonic-
ity conditions in our implementation. Figure 1 represents
these inequalities. We include A and B in the figure where

ei = yi − CI�(x
i) = yi − a+

i
m+.

(6)

MSE(m) =
∑

ei ∗ ei = eTe

= (y − (a+)Tm+)T (y − (a+)Tm+)
= (yTy − 2(a+)Tym+ + m+(a+)Ta+m+).

(7)

𝜇(B) ≤𝜇(A)
=
∑

B�⊆A

m(B�) =
∑

B�⊆B

m(B�) +
∑

B�⊆A

m(B� ∪ {x0})

=𝜇(B) +
∑

B�⊆A

m(B� ∪ {x0})

International Journal of Computational Intelligence Systems (2022) 15:89

1 3

Page 5 of 10 89

B = A ⧵ {x0} , and also a subset B′ of B which produces
A� = B� ∪ {x0} when adding the element x0.

This approach naturally also works when A is a singleton,
therefore B is the empty set, and, thus, A = {x0} . Naturally,
in this case, the inequality simply means that m({x0}) ≥ 0.

Observe again that this construction works well because
the property holds by induction. That is, the singletons will
be positive, and then assuming that this works for sets B then
the inequality will work well for A = B ∪ {x0}.

As a summary, we include below the algorithm to define
these inequalities. We can observe that in general for each
set A we need to consider all subsets B of A. Thus, in gen-
eral, the computational cost of this process is

(
2∣Ω∣

)
×
(
2∣Ω∣

)

which is (22∣Ω∣) .

Step 1 For all A,

Step 2 For all x0 in A

Step 3 Add the following equation:

This process is provided by the function buildEqua-
tionsMobius (n) where n represents the number of
elements in Ω . This function returns the matrix with the left
hand side of Equation 8 and a vector with the zeros in the
right hand side of the same equation.

(8)
∑

A�⊆A⧵{x0}

m(A� ∪ {x0}) ≥ 0

3.5 Variations: Belief Functions, k‑Additive
Measures, and Shapley Values

When we define the optimization problem it is easy to
require that the measure is a belief measure, that it is k-addi-
tive, and that its Shapley value is of a given form. We have
implemented these variations in our software. This is imple-
mented as follows.

• To require that the solution is a belief function we need
to add the following constraints:

 This is provided by the function buildEquation
sMobiusPositive(n), that creates all required
constraints given the number of elements n in Ω (as for
the other inequality constraints, the function returns the
matrix corresponding to the left hand side of the equa-
tion and the vector corresponding to the right hand side
of the equation).

• To require that the solution is a k-additive measure, we
need to add the following constraints:

 I n t h i s c a s e , i t i s t h e f u n c t i o n
buildEquationsKAdditive(n, k) which cre-
ates the corresponding matrix and vector. Naturally, we
need the number of elements n in Ω and also the value k.

• To require that the solution has a given Shapley value,
we consider the expression of Shapley value given the
Möbius transform. That is, the Shapley value correspond-
ing to xi is

∑
xi∈S

m(S)∕�S� . The function buildEqua-
tionsShapley (n, shapley) constructs the cor-
responding equations for a given vector of Shapley values
(parameter shapley).

3.6 Implementation of Python

Our solution in python has been implemented by the func-
tion ciSolveMSE which given the data (input and expected
output) returns the solution of the quadratic problem with
linear constraints. We use the functions mentioned above to
build the matrices of the objective function and the ones for
the constraints. Then, we solve the problem using cvxopt
and the function solvers.qp. This function returns the
Möbius transform of the fuzzy measure, and then using the
function fromMoebius2FM we can build the fuzzy meas-
ure itself. This corresponds to Definition 2.

m(A) ≥ 0 for all A ⊆ Ω.

m(A) = 0 for all A such that |A| ≥ k.

Fig. 1 Graphical representation of the inequality constraints with
respect to the Möbius transform. We consider all B′ ⊆ B and then
A� = B{x

0
}

 International Journal of Computational Intelligence Systems (2022) 15:89

1 3

 89 Page 6 of 10

The function that identifies a measure includes param-
eters that permit us to choose a belief function, a k-additive
measure (or both), or just an arbitrary measure. By default,
we identify an arbitrary measure. As an example, we can call
this function with:

to solve an example called data85 supplied in the soft-
ware, which is taken from [22].

The software is available at [23].

4 Experiments

We have studied two different aspects related to the identifi-
cation of fuzzy measures. First, we study the effect of k for
k-additive measures in terms of the error of test and training
data. Second, we study how noise affects the learning of the
measure identification problem. Third, we have applied our
software to larger data sets to check the computation times.

4.1 Methodology

These studies are done using the following process.

• � = Generate at random a fuzzy measure.
• (XTr,XTe) = Generate a training and testing sets of given

sizes (nTr, nTe). To generate these sets, we use uniform
distribution on the space of data, which is the interval
[0,10].

• (yTr, yTe) = Find the outcome of both training and test data
sets (using the Choquet integral with respect to �). That
is, yTr = CI�(XTr) and yTe = CI�(XTe).

• (yTr, yTe) = Add noise to both yTr and yTe . Noise follows
a Gaussian distribution N(0, nL) where nL is the noise
level. We have different noise levels for the test and the
training sets. Say nLTr and nLTe.

• �′ = identify a fuzzy measure from the data (XTr, y
�
Tr
).

• ŷTe = Estimate yTe using �′ . That is, ŷTe = CI𝜇� (XTe).
• error = Compute the error between the ŷTe and yTe . That

is,

Due to the random factors, each execution of this proce-
dure will lead to different results. Because of that, we repeat
the whole process nIt times and compute the average of the
error.

4.2 The Effect of k

As we have stated above, for k-additive measures, the value
of k represents its complexity. From a machine learning per-
spective, the more parameters, the more we may have over-
fitting. It is crucial to have an appropriate selection of the
complexity of the problem. That is, in the case of k-additive
measures, to select an appropriate k. If k is too small the
complexity of the measure is not enough to represent the
complexity of the data. If k is too large, then we may be
learning not only the data but also the error.

Because of that, we have studied the effect of k in the
learning process. In Figure 2 we represent the average error
when we learn a measure from a set of 400 examples and 80

(9)error = ||yTe − ŷTe||2 = ||yTe − CI𝜇� (XTe)||2.

Fig. 2 Error of the objective function (Equation 9) for the training and test sets when the measure is a belief function (left) and when it is an
arbitrary measure (right). We use here Equation (9) to compute the error

International Journal of Computational Intelligence Systems (2022) 15:89

1 3

Page 7 of 10 89

examples are used as test. We used the approach described
in Section 4.1 with 8 inputs, nLTr = 2 and nLTe = 0 (i.e., zero
error in the test data and proportional to two in the training
data). Note that as the number of examples in the training
set is 400 and 80 for the test, the error for test data should
be about 5 times the one of train set.

• The figure shows a nice pattern when the measure learned
is an arbitrary fuzzy measure. For the training data, the
error decreases when we increase complexity. In contrast,
for the test data error only decreases for k = 1 and k = 2 .
After this point, the test error increases. That is, we have
that the optimal complexity is with k = 2 and larger k
does not help.

• For belief functions this pattern is not so clear. For the
training set the error decreases when k increases, but not
so significantly. Then, for the test set, there is a clear
improvement with k = 2 and from this complexity there

is some improvement but not so significant. It seems
somehow that k = 2 is also a good choice.

Therefore, for this data set it seems that a k-additive meas-
ure with k = 2 is the best alternative. This applies for both
general fuzzy measures and belief functions. Larger values
of k can further reduce the error of the training set but it is
not clear that the performance is better with respect to test
sets. In addition, larger values of k imply larger complexity
in the definition of the fuzzy measure and its interpretability.
Therefore, k = 2 provides a good trade-off between measure
complexity and quality of the result.

4.3 The Effect of the Noise Level

We have also studied the effect of noise in measure identi-
fication. We consider values at nLTr = 0.05, 1, 1.5, ..., 4 and
nLTe = 0 . Figure 3 shows the estimation error (difference

Fig. 3 Error for the training (top) and test (bottom) sets when the measure is a belief function (left) and when it is an arbitrary measure (right).
Mean of 10 executions

 International Journal of Computational Intelligence Systems (2022) 15:89

1 3

 89 Page 8 of 10

between expected and computed outcome – Equation 9) in
terms of noise in the training data. we can see, as expected,
that the estimated error steadily increases when the noise
level increases. For the training data, this effect is mainly
the same independently of the complexity of the measure
complexity used (k = 1, ..., k = 8) . In contrast, the results are
not so similar in what respects test data.

For test data, recall that we use nLTe = 0 – no noise. Then,
we observe that there is a larger estimation error and that this
estimation error is greater when we increase the noise level
in the training set. That is, it is more and more difficult to
identity the correct measure and the graphs does not seem
to show a clear conclusion for which is the best complexity
(value of k). For belief functions, k = 4 seems the one better
suited as it has a more consistent low error.

Figure 4 displays the standard deviation of the error of the
10 same executions we have described above. We can see

that, in general, when the noise level in the data increases
the standard deviation of the error in the objective function
also increases. It is also very clear that for k = 1 the standard
deviation is rather large even with a noise level equal to zero.
So, we may conclude here that k = 2 is the minimum value
of k that seems acceptable.

4.4 Belief Functions

The results displayed so far permit to make also a compari-
son of belief functions against arbitrary k-additive meas-
ures, and fuzzy measures in general. Belief functions seems
to be less sensitive to overfitting. Figure 2 is the best one
to visualize this fact. As we have discussed above, for an
arbitrary fuzzy measure increasing k reduces the training
error but for values k > 2 the test error increases. The test
error for the belief functions do not have the same behavior,

Fig. 4 Standard deviations for the training (top) and test (bottom) sets when the measure is a belief function (left) and when it is an arbitrary
measure (right). Mean of 10 executions

International Journal of Computational Intelligence Systems (2022) 15:89

1 3

Page 9 of 10 89

which is possibly because overfitting does not take place.
This is naturally due to the fact that belief functions have
less freedom than other measures as the Möbius should be
always positive.

4.5 Larger Data Sets

We have applied our software to larger data sets available in
sklearn. We have considered two regression problems,
Diabetes and California. The first consists of 442 records
and 10 inputs. The second one 20640 records and 8 inputs.

We have determined fuzzy measures for data sets with
different number of records, from a small number of records
to the full data set, and k-additive measures for different val-
ues of k. For example for the California data set, considering
arbitrary fuzzy measures with either k = 2 or k = 3 , we get
in a regular laptop (Intel(R) Core(TM) i7-8665U CPU @
1.90GHz) execution times of less of 1 second for 10 records,
between 1 and 5 seconds for 100 instances, and 30 seconds
for 1000 instances, and 940 seconds for the full set of 20640
instances. For the California data set, learning the measure
takes longer, as expected, as the number of parameters to
identify goes from 28 − 2 to 210 − 2 . More precisely, it takes
about 70 seconds for identifying a measure for the full data
set of 442 instances.

5 Conclusions and Future Work

In this paper, we present a Python package that includes
several alternatives for learning fuzzy measures from data.
We also describe two types of experiments conducted using
this package. The first one is for k-additive fuzzy measures:
we know that as k increases, the number of interactions
increases between criteria. It means that as k changes, the
noise level in the numerical application changes. We inves-
tigate the effect of k on the noise level. As a result, we obtain
that the training error decreases when the complexity of the
model increases. Nevertheless, with respect to the test data,
the error decreases only for k = 1 and k = 2 . The test error
increases after this point. That is, we can see that k = 2 is the
optimal complexity and that larger k does not help. Among
the measures studied, this is more clearly seen with belief
functions. The second experiment is about the effects of
noise in learning. We have seen, as expected, that the noise
on the data makes more difficult the identification of the
measure. We have also seen that the variance on the square
error increases when the noise in the training data increases.
The experiments also show that the standard deviation of the
square error on different executions can also help on select-
ing a good parameter k in k-additive measures.

The Python module provides some basic functions to
operate with fuzzy measures. This includes Sugeno and

Choquet integral, Möbius and (max,+)-transform, and meas-
ure identification for the Choquet integral. One of the limita-
tions of the software is that it does not provide a solution for
the Sugeno integral. This is a non-linear and non-quadratic
problem. We leave as future work to provide functions for
measure identification for the Sugeno integral, as well as
considering additional constraints on the identified measure.
For example, sparsity conditions for the fuzzy measure for
models based on the Choquet integral.

Our package is available at [23].

Author Contributions Both authors contributed in the design of the
research, the experiments, and the analysis of the results. Text was
written and revised by both authors. Software was written by VT.

Funding This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. Vicenç Torra is supported
by WASP. Ezgi Türkarslan has been supported by The Scientific and
Technological Research Council of Turkey (TÜBİTAK) 2214 Doctoral
Research Grant 1059B142100223.

Data Availability Software is available in the web. Description is in
the text.

Declarations

Conflict of interest Not applicable.

Ethical approval and consent to participate Not applicable.

Consent for publication All authors agreed with the content of this
paper.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Sugeno, M.: Theory of Fuzzy Integrals and Its Applications.
Tokyo Institute of Technology,, Ph.D. Thesis (1974)

 2. Torra, V., Narukawa, Y., Sugeno, M.: Non-Additive Meas-
ures, Theory and Applications, Studies in Fuzziness and Soft
Computing. Springer, Berlin (2013). https:// doi. org/ 10. 1007/
978-3- 319- 03155-2

 3. Dimuro, P.G., Fernandez, J., Bedregal, B., Mesiar, R., Sanz, J.A.,
Lucca, G., Bustince, H.: The state-of-art of the generalizations
of the choquet integral: From aggregation and pre-aggregation
to ordered directionally monotone functions. Inf. Sci. 57, 27–43
(2020). https:// doi. org/ 10. 1016/j. inffus. 2019. 10. 005

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-03155-2
https://doi.org/10.1007/978-3-319-03155-2
https://doi.org/10.1016/j.inffus.2019.10.005

 International Journal of Computational Intelligence Systems (2022) 15:89

1 3

 89 Page 10 of 10

 4. Torra, V.: On a family of fuzzy measures for data fusion with
reduced complexity. Proc. 3rd Int. Conf on Information Fusion,
TuCa17-23 (2000). https:// doi. org/ 10. 1109/ IFIC. 2000. 862689

 5. Saleh, E., Valls, A., Moreno, A., Romero-Aroca, P., Bustince, H.,
Torra, V.: A hierarchically ⟂-decomposable fuzzy measure-based
approach for fuzzy rules aggregation. Int. J. Uncertain. Fuzziness
Knowl. Based Syst. 27, 59–76 (2019). https:// doi. org/ 10. 1142/
S0218 48851 94000 38

 6. Marco-Detchart, C., Lucca, G., Lopez-Molina, C., De Miguel, L.,
Dimuro, P.G., Bustince, H.: Neuro-inspired edge feature fusion
using choquet integrals. Inf. Sci. 581, 740–754 (2021). https://
doi. org/ 10. 1016/j. ins. 2021. 10. 016

 7. Beliakov, G.: Construction of aggregation functions from data
using linear programming. Fuzzy Sets and Systems 160, 65–75
(2009). https:// doi. org/ 10. 1016/j. fss. 2008. 07. 004

 8. Javier, M., Serge, G., Pilar, B.: k-maxitive fuzzy measures: A scal-
able approach to model interactions. Fuzzy Sets and Systems 324,
33–48 (2017). https:// doi. org/ 10. 1016/j. fss. 2017. 04. 011

 9. Beliakov, G., Wu, J.Z.: Learning fuzzy measures from data: Sim-
plifications and optimisation strategies. Information Sciences 494,
100–113 (2019). https:// doi. org/ 10. 1016/j. ins. 2019. 04. 042

 10. Grabisch, M.: New algorithm for identifying fuzzy measures and
its application to pattern recognition. IEEE International Confer-
ence on Fuzzy Systems (1995)

 11. Kojadinovic, I.: Minimum variance capacity identification.
European Journal of Operational Research 177, 498–514 (2007).
https:// doi. org/ 10. 1016/j. ejor. 2005. 10. 059

 12. Combarro, E.F.: Identification of fuzzy measures from sample
data with genetic algorithms. Computers & Operations Research
33, 3046–3066 (2006). https:// doi. org/ 10. 1016/j. cor. 2005. 02. 034

 13. Grabisch, M., Marichal, J.L., Mesiar, R.: Aggregation Functions,
Encyclopedia of Mathematics and Its Applications. Cambridge
University Pres, ??? (2009). https:// doi. org/ 10. 1017/ CBO97 81139
644150

 14. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for
capacity identification in choquet integral based multi-attribute

utility theory: Applications of the kappalab r package. European
Journal of Operational Research 186, 766–785 (2008). https:// doi.
org/ 10. 1016/j. ejor. 2007. 02. 025

 15. Grabisch, M., Kojadinovic, I., Meyer, P.: Non-Additive Measure
and Integral Manipulation Functions, (kappalab package in R).
https:// CRAN.R- proje ct. org/ packa ge= kappa lab (2015)

 16. Rota, G.C.: On the foundations of combinatorial theory. i. the
theory of möbius functions. Z. Wahrscheinlichkeitstheorie verw
Gebiete 2, 340–368 (1964). https:// doi. org/ 10. 1007/ BF005 31932

 17. Grabisch, M.: The application of fuzzy integrals in multi criteria
decision making. European Journal of Operational Research 89,
445–456 (1996). https:// doi. org/ 10. 1016/ 0377- 2217(95) 00176-X

 18. Mesiar, R.: Generalizations of k-order additive discrete fuzzy
measures. Fuzzy Sets and Systems 102, 423–428 (1999). https://
doi. org/ 10. 1142/ S0218 48859 90004 89

 19. Grabisch, M.: k-order additive discrete fuzzy measures and their
representation. Fuzzy Sets and Systems 92, 167–189 (1997).
https:// doi. org/ 10. 1016/ S0165- 0114(97) 00168-1

 20. Choquet, G.: Theory of capacities. Annales de L’Institut Fourier
5, 131–295 (1954). https:// doi. org/ 10. 5802/ aif. 53

 21. Imai, D. H. Asano, Sato, Y.:An algorithm based on alternative
projections for a fuzzy measure identification problem. In:Torra,
V. (ed.) Information Fusion in Data Mining. Studies in Fuzziness
and Soft Computing, pp. 149–158. Springer, Berlin, Heidelberg
(2003). https:// doi. org/ 10. 1007/ 978-3- 540- 72434-6

 22. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion
and Aggregation Operators. Springer, Berlin, Heidelberg (2007).
https:// doi. org/ 10. 1007/ 978-3- 540- 68791-7

 23. http:// www. mdai. cat/ ifao/

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/IFIC.2000.862689
https://doi.org/10.1142/S0218488519400038
https://doi.org/10.1142/S0218488519400038
https://doi.org/10.1016/j.ins.2021.10.016
https://doi.org/10.1016/j.ins.2021.10.016
https://doi.org/10.1016/j.fss.2008.07.004
https://doi.org/10.1016/j.fss.2017.04.011
https://doi.org/10.1016/j.ins.2019.04.042
https://doi.org/10.1016/j.ejor.2005.10.059
https://doi.org/10.1016/j.cor.2005.02.034
https://doi.org/10.1017/CBO9781139644150
https://doi.org/10.1017/CBO9781139644150
https://doi.org/10.1016/j.ejor.2007.02.025
https://doi.org/10.1016/j.ejor.2007.02.025
https://CRAN.R-project.org/package=kappalab
https://doi.org/10.1007/BF00531932
https://doi.org/10.1016/0377-2217(95)00176-X
https://doi.org/10.1142/S0218488599000489
https://doi.org/10.1142/S0218488599000489
https://doi.org/10.1016/S0165-0114(97)00168-1
https://doi.org/10.5802/aif.53
https://doi.org/10.1007/978-3-540-72434-6
https://doi.org/10.1007/978-3-540-68791-7
http://www.mdai.cat/ifao/

	Measure Identification for the Choquet Integral: A Python Module
	Abstract
	1 Introduction
	2 Preliminaries
	3 Fuzzy Measure Identification
	3.1 Implementation of the Solution
	3.2 Implementing the Choquet Integral
	3.3 Implementing the Objective Function
	3.4 Implementing the Inequality Constraints
	3.5 Variations: Belief Functions, k-Additive Measures, and Shapley Values
	3.6 Implementation of Python

	4 Experiments
	4.1 Methodology
	4.2 The Effect of k
	4.3 The Effect of the Noise Level
	4.4 Belief Functions
	4.5 Larger Data Sets

	5 Conclusions and Future Work
	References

