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Abstract
With the availability of numerous high-resolution remote sensing images, remote sensing image scene classification has been 
widely used in various fields. Compared with the field of natural images, the insufficient number of labeled remote sensing 
images limits the performance of supervised scene classification, while unsupervised methods are difficult to meet the practi-
cal applications. Therefore, this paper proposes a semi-supervised remote sensing image scene classification method using 
generative adversarial networks. The proposed method introduces dense residual block, pre-trained Inception V3 networks, 
gating unit, pyramidal convolution, and spectral normalization into GANs to promote the semi-supervised classification 
performance. To be specific, the pre-trained Inception V3 network is introduced to extract semantic features to enhance the 
feature discriminant capability. The gating unit is utilized to capture the relationships among features. The pyramidal con-
volution is integrated into dense residual block to capture different levels of details to strengthen the feature representation 
capability. The spectral normalization is introduced to stabilize the GANs training to improve semi-supervised classification 
accuracy. Extensive experimental results on publicly available EuroSAT and UC Merced datasets show that the proposed 
method gains the highest overall accuracy, especially when only a few labeled samples are available.

Keywords  Remote sensing image scene classification · Generative adversarial networks (GANs) · Semi-supervised 
learning · Gating unit · Pyramidal convolution · Spectral normalization

Abbreviations
GANs	� Generative adversarial networks
FMGAN	� Feature-matching GANs
tripleGAN	� Triple GANs
BADGAN	� BAD GANs
REGGAN	� Regularization GANs
SFGAN	� Semantic fusion GANs
PyConv	� Pyramidal convolution
SN	� Spectral normalization
SSGAN	� Semi-supervised GANs

GU	� Gating units
G	� Generative network
D	� Discriminative network
CatGAN	� Categorical GANs
CNNs	� Convolutional neural networks
BN	� Batch normalization
PReLU	� Parametric ReLU
GAP	� Global average pooling
GSD	� Ground sampling distances
OA	� Overall accuracy
CM	� Confusion matrix

1  Introduction

Scene classification of remote sensing image can auto-
matically classify scene images into specified semantic 
categories based on their contents [1]. Currently, super-
vised methods based on deep neural networks are the main-
stream, which usually rely on larger scale labeled samples to 
obtain higher classification accuracy [2]. However, labeling 
remote sensing images is often costly. Unsupervised scene 
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classification methods can learn directly from a large num-
ber of unlabeled samples, but their classification accuracy is 
difficult to meet practical applications because they cannot 
make full use of labels [3]. Semi-supervised scene classi-
fication is a combination of supervised and unsupervised, 
which can learn from a small number of labeled samples and 
a large number of unlabeled samples to obtain satisfactory 
classification accuracy [4].

In recent years, generative adversarial networks (GANs) 
[5] are introduced into semi-supervised image classifica-
tion. GANs can learn the underlying data distribution from 
real training samples to compete with state-of-the-art semi-
supervised image classification methods [6, 7]. Salimans 
et al. [8] proposed feature-matching GANs (FMGAN) by 
extending standard classifier. Li et al. [9] proposed a triple 
GANS (tripleGAN) to achieve excellent semi-supervised 
classification performance using a three-player’s game. Dai 
et al. [10] proposed a new GANs-based semi-supervised 
classification model (BADGAN) to effectively improve 
the classification performance. Lecouat et al. [11] lever-
aged GANs with manifold regularization (REGGAN) for 
semi-supervised image classification. These GAN-based 
methods have achieved better semi-supervised classifica-
tion performance using variants of the standard DCGAN 
[12] on CIFAR10 and SVHN datasets. GAN-based meth-
ods increase the number of training samples using gener-
ated samples for better classification performance. However, 
for complex remote sensing scene images, it is difficult for 
the discriminative network of standard DCGAN to extract 
more discriminative features, which affects the performance 
of semi-supervised classification. Therefore, it is a crucial 
challenge to further investigate more discriminative feature 
extraction to improve the semi-supervised classification 
performance.

Although some success has been achieved in the classi-
fication of low-resolution images, the GANs-based remote 
sensing scene classification still needs to be improved. 
More recently, Roy et  al. [13] introduced a semantic 
branch into GANs (SFGAN) for semi-supervised satel-
lite image classification to obtain better classification 
performance. However, SFGAN use a standard DCGAN 
structure, which is suitable for processing images with 
relatively simple scenes and low spatial resolution, the 
classification performance is more limited for high-
resolution remote sensing images with complex scenes. 
Inspired by SFGAN, we further investigate methods to 
extract more discriminative features through discrimina-
tive network. Guo et al. [4] proposed a GAN-based semi-
supervised remote sensing scene classification method, 
they introduced a gating unit and a self-attention gating 
(SAG) module into the discriminative network to improve 
semisupervised classification performance (SAGGAN). 
Ledig et al. [14] used GANs with dense residual block 

for super-resolution reconstruction of natural images to 
achieve more realistic image texture structure. Miech et al. 
[15] introduced a learnable nonlinear unit (named context 
gating) that aims to model the interdependencies between 
network activations for video classification. Liu et al. [16] 
proposed gated full convolutional blocks to improve micro 
video scene classification performance. Duta et al. [17] 
proposed pyramidal convolution (PyConv) with different 
sizes, types and depths of filters to extract different levels 
of details in scene image. Miyato et al. [18] introduced 
spectral normalization (SN) into GANs to stabilize the 
training process for improving the performance of GANs.

Inspired by the above works, we propose a novel semi-
supervised remote sensing scene classification model based 
on GANs (SSGAN), which uses gating units (GU), PyConv, 
pre-trained network branch, SN and dense residual block 
to enhance the feature extraction capability of discrimina-
tive network. GU is dedicated to capturing the dependencies 
between features and adaptively focusing on the important 
features of the input image; PyConv is dedicated to captur-
ing the detailed features at different levels in scene images; 
the dense residual blocks are used to replace the convolution 
in GANs, improving the quality of the generated images and 
enhancing the feature discrimination of the discriminative 
network; and SN aims at stabilizing the training process of 
GANs to improve the performance of GANs. Compared with 
SAGGAN [4], in the proposed SSGAN, we introduced the 
dense residual blocks to replace the convolution in SAG-
GAN to enhance feature discrimination ability, integrated 
the PyConv into residual blocks to capture feature details of 
different levels, and introduced SN into both discriminative 
network and generative network to promote the performance 
of GAN. Extensive experiments on EuroSAT [19] and 
UCM Merced [20] datasets show that the proposed SSGAN 
achieves higher classification accuracy than other state-of-
the-art semi-supervised methods based on GANs. The main 
contributions of this paper are summarized as follows. 

1.	 A novel GAN-based semi-supervised SSGAN model is 
proposed, by enhancing the feature exacting ability of 
discriminative network for improving semi-supervised 
scene classification accuracy.

2.	 GU, dense residual block and PyConv are introduced 
into the discriminative network to adaptively focus on 
important features and capture the details at different 
levels for achieving more discriminative feature repre-
sentation.

3.	 SN is integrated into both generative and discriminative 
network to stabilize the training of GANs for improving 
classification accuracy.

4.	 Dense residual block is introduced the generative net-
work to enhance the quality of the generated images for 
augmenting the training samples.
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The remainder of this paper is organized as follows. In 
Sect. 2, the related works of this paper is introduced. In 
Sect. 3, the architecture of SSGAN is presented. In Sect. 4, 
the experimental results and discussions are shown. Finally, 
the conclusions are drawn in Sect. 5.

2 � Related Works

In this section, we review related works on gating mecha-
nisms, PyConv, semi-supervised image classification based 
on GANs, and so on.

2.1 � GANs‑Based Semi‑supervised Image 
Classification

GANs are widely used in semi-supervised classification in 
recent years because of their powerful generation ability to 
effectively augment training samples to improve classifica-
tion performance. However, the traditional GANs-based 
semi-supervised classification methods use the standard 
DCGAN structure, which affects the feature discriminant 
ability of the discriminative network to hinder the perfor-
mance of semi-supervised classification. Therefore, we 
improve the standard DCGAN to further enhance the dis-
criminant ability of the discriminative network to improve 
the semi-supervised classification performance. The princi-
ple of GANs-based semi-supervised image classification is 
detailed below.

The standard GANs have two components, the discrimi-
native network D and generative network G. G synthesizes 
fake samples G(z) by random noise z, D distinguishes 
between real and fake samples [5], and GANs accomplish 
the related task by a min–max game between G and D. The 
value function V(G, D) can be expressed as follows:

where z is a random noise vector that is generated following 
a priori distribution (z ∼ pz(z)) , pdata denotes real data dis-
tribution, G(z) is image generated from G, D(x) represents 

(1)
min
G

max
D

V(D,G) = Ex∼pdata(x)
[log D(x)]

+ Ez∼pz(z)
[log(1 − D(G(z)))],

class probability that x is from real sample, and D(G(z)) 
denotes the probability that the sample is generated by G. 
The goal of D is to maximize the probability of the real 
sample, and the goal of G is to increase the probability of the 
generated sample being classified as a real image.

Springenberg et al. [21] proposed categorical genera-
tive adversarial networks (CatGAN) for semi-supervised 
image classification by using a multi-classifier to substi-
tute binary classifier. Salimans et al. [8] further extended 
standard classifier. They add images generated from G as 
a new category y = K + 1 , then the output dimension of 
D becomes logits = {l1, l2,… , lK+1} . These logits are con-
verted into the class probabilities using softmax function. 
Then, the probability that x is a real sample of the j-th 
category is as follows:

and the probability that x is fake sample is as follows:

For the semi-supervised classification model, labeled 
samples are trained in a supervised manner, while unla-
beled samples are trained in an unsupervised manner. The 
network framework for GANs-based semi-supervised clas-
sification is shown in Fig. 1. One can observe from Fig. 1 
that the inputs of D consist of real labeled samples, real 
unlabeled samples and samples generated by G. Therefore, 
the loss object of D is as follows:

where Ls presents the supervised loss, Lun denotes the 
unsupervised loss. The first term in Lun indicates the loss 
of real unlabeled sample, and the second term is the loss 
of fake sample. For unsupervised learning, D only outputs 

(2)pmodel(y = j�x, j < K + 1) =
exp(lj)

∑ K+1
K=1

(exp(lk))
,

(3)pmodel(y = K + 1�x) =
exp(lK+1)∑ K+1
K=1

(exp(lk))
,

(4)

LD = −Ex,y∼pdata(x,y)
[log(pmodel(y|x, y < K + 1))]

− {Ex∼pdata(x)
log([1 − pmodel(y = K + 1|x))]

+ Ex∼G[log(pmodel(y = K + 1|x))]}
= Ls + Lun,

Fig. 1   The network framework 
of semi-supervised classifica-
tion using GANs
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true or false without distinguishing categories, so it can be 
expressed by Eq. (5).

Substituting Eq. (5) into Lun , we can obtain Eq. (6) as 
follows.

The loss LG of G can be expressed as follows.

where f(x) is the activation of middle layer from D to match 
the features between real samples and generated samples, 
and x̂ denotes generated samples. The first term in Eq. (9) 
denotes the feature matching term, which drives G to gener-
ate an sample that matches the manifold of real samples, 
so that D can better distinguish real sample from sample 
generated by G.

More recently, Lecouat et al. [11] leveraged GANs with 
manifold regularization for semi-supervised image classifi-
cation. Li et al. [9] proposed a Triple-GAN, which included 
G, D, and a separate classifier C to simultaneously achieve 
superior classification performance and a good image gen-
eration. Dai et al. [10] analyzed why good semi-supervised 
classification performance and good generator cannot be 
obtained at the same time. They proposed a BAD-GAN 
based on their analysis to improve classification performance 
on multiple benchmark datasets.

Traditional GANs-based semi-supervised classifica-
tion methods use the standard DCGAN structure, which 
limits the scene classification performance of remote sens-
ing images with complex scenes. Ledig et al. [14] used 
GANs with the dense residual structure for super-resolution 
reconstruction of natural images to achieve the more real-
istic image texture structure. Inspired by [14], we replace 
standard convolutional structure in the SFGAN with dense 
residual block.

2.2 � Gating Mechanism

More recently, Srivastava et al. [22] leveraged adaptive gat-
ing units to train deep neural networks. Miech et al. [15] 
proposed a context gating unit to aim at capturing interde-
pendencies among network activations for improving video 
classification performance. Liu et al. [16] introduced the 
gated fully convolutional blocks to improve micro-video 
venue classification performance. Guo et al. [4] proposed a 
self-attention gating module by combining a gating unit and 
a self-attention block to capture the long-range dependencies 

(5)D(x) = 1 − pmodel(y = K + 1|x),

(6)Lun = −{Ex∼pdata
logD(x) + Ez∼pz(z)

log(1 − D(G(z)))},

(7)
LG = Ex∼pdata(x)

f (x) − Ez∼Gf (x̂)
2
2

− Ex∼G log[1 − pmodel(y = K + 1|x)],

among feature maps to focus on crucial regions adaptively. 
Their experiments demonstrate that the GU can focus on 
important areas in the scene to eliminate the background 
effectively improving feature discrimination. Inspired by 
above mentioned works, we introduce the combination 
of gating units and residual blocks into GANs to further 
enhance feature discriminant ability for improving classifi-
cation performance.

2.3 � Pyramidal Convolution

Convolutional neural networks (CNNs) have become the 
core architecture for current computer vision applications. 
The core of CNNs are convolutional layers, which are used 
for visual recognition by learning spatial kernels. Typically, 
most CNNs utilize relatively smaller kernel sizes (e.g., 3 × 3 ) 
which can greatly reduce the number of parameters and 
computational complexity. However, smaller kernels limit 
receptive field of CNNs, which lost useful details to affect 
the performance of visual tasks. To address this issue, Yu 
et al. [23] used dilation convolution to aggregate multi-scale 
contextual information to effectively improve the accuracy 
of semantic segmentation. In addition, Zhao et al. [24] used 
a pyramid pooling module to interpret scenes to extract dif-
ferent levels of details. Dilated convolutions with irregular 
spatial pyramidal pooling are introduced into the literature 
[25] to encode global context using image-level features 
for improving semantic segmentation performance. How-
ever, these are additional blocks that need to be embedded 
in the CNNs, which remarkably increase model parameters 
and computational complexity. Duta et al. [17] introduced 
PyConv to process the input samples at multiple-scale fil-
ters. PyConv consists of a pyramidal kernel in which each 
layer contains of different types, sizes and depths of filters to 
capture different levels of details for enhancing feature dis-
criminant ability. Recently, Guo et al. [3] introduce PyConv 
into each residual block of the discriminative network to 
capture the different levels of details from multiple-scale 
filters for enhancing the features discriminant ability. Their 
experiments show that PyConv is able to capture different 
levels of detailed features to effectively improve feature dis-
crimination. Inspired by the above works, we replace the 
middle layer convolution in residual block of discriminative 
network with PyConv to capture more details for further 
enhancing the feature discriminant capability of discrimina-
tive networks.

3 � Proposed Method

The proposed SSGAN is described in detail below.
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3.1 � Structure of Proposed SSGAN

As described in Sect. 2, the GAN-based semi-supervised 
classification model has the similar structure to the origi-
nal GANs [5]. Following the structures in SRGAN [14], 
the dense residual block in SRGAN is used to replace the 
standard convolution in SFGAN construct the generative 
and discriminative network in SSGAN. Figure 2 illustrates 
the network framework of the proposed SSGAN. The gen-
erative network is composed of four residual blocks. The 
residual block is shown as the G_Block block in Fig. 2, 
which includes an upsampling layer, a batch normaliza-
tion (BN), a parametric ReLU activation (PReLU), and 
two convolutional layers separated by a BN. In addition, a 
GU is added after the first residual block. The discrimina-
tive network contains five residual blocks and one global 
average pooling layer (GAP).

To improve the GANs-based semi-supervised classifica-
tion performance, inspired by SFGAN [13], we extend the 
original discriminative network. First, a pre-trained Incep-
tion V3 network is introduced as a new branch to extend the 
discriminative network, which can extract semantic features 
by fine-tuning, and then a GAP operation is performed on 
the extracted feature maps. Second, the second convolutional 
layer of residual block in D is superseded by the PyConv 
to capture the longer range of contextual information. In 
addition, a GU is added to the discriminative network to 
adaptively focus on the crucial regions and filter the use-
less background. Specifically, the GU is added after the first 
residual block and GAP in the original discriminative net-
work, and the GU is placed after the GAP in the Inception 
V3 branch. Finally, the two feature vectors from the Incep-
tion V3 and original discriminative network are concate-
nated and fed into the softmax function for semi-supervised 
scene classification.

Fig. 2   The framework of the proposed SSGAN
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In addition, the instability in the training of GANs is a 
major factor affecting performance. Miyato et al. [18] stabi-
lized the training of GANs using SN to constrain Lipschitz 
constant of the discriminative network to satisfy 1-Lip-
schitz continuity. Zhang et al. [26] demonstrated that SN 
can achieve better performance when it is introduced into 
both generative and discriminative network. Inspired by [18, 
26], we use spectral norm to achieve 1-Lipschitz continu-
ity in residual blocks of both generative and discriminative 
network simultaneously to ensure the stability of SSGAN 
training.

3.2 � Structure of Gating Unit

Most GANs-based semi-supervised methods use standard 
convolution to construct discriminative network. The con-
volution operation is limited by receptive field, and it is diffi-
cult to capture the dependencies among feature maps, which 
affects the semi-supervised classification performance.

Inspired by gating mechanism [16], the GU is designed 
and introduced after the first residual block of original 

discriminative network and after GAP of both branches to 
enhance the feature description capability. The Fig. 3 illus-
trates the structure of GU. The derivation of GU is briefly 
described below.

The input of GU can be any intermediate layer feature 
map F from the discriminative network, and GU can convert 
F into new feature FGU . The derivation process is as follows.

where �(⋅) presents sigmoid function, fGU(⋅) denotes gat-
ing function, and after the sigmoid operation, the result is 
a weight matrix with values in the range [0,1]. fc(⋅) repre-
sents the fully connection, fGU is the output of gating unit, 
and ⊙ denotes the dot product operation. The gating unit 
can effectively extract the dependencies between feature 
maps, eliminate irrelevant background, and enhance feature 
representation.

3.3 � Structure of Pyramidal Convolution

Owing to the complexity of remote sensing scene images, 
different ground objects present different sizes in different 
scenes, and even the same ground objects in the same scene 
may display different sizes, so it is difficult to capture the 
diversity effectively using the traditional 3 × 3 convolution. 
Duta et al. [17] proposed the PyConv, which introduces 
pyramidal kernels with different filters to extract different 
levels of details. PyConv with n groups of different kernels 
can be represented as shown in Fig. 4. The residual block 
D_Block of discriminative network is constructed following 
PyConv in this paper, and the structure is shown as D_block 

(8)fGU(F) = �(fc(F)),

(9)FGU = fGU(F)⊙ F,

Fig. 3   The structure of GU

Fig. 4   The structure of PyConv [17]
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in the bottom leftmost corner of Fig. 2, where the second 
convolution is replaced with PyConv. In this paper, we refer 
to the structure of PyConvHGResNet and use four groups of 
PyConv with different filter sizes to capture different levels 
of details.

where FMi denotes the feature map of the middle layer as 
the input of PyConv and FMo denotes the output of PyConv. 
PyConv consists of four groups of filters with different sizes 
and depths, and the residual blocks with PyConv can capture 
different levels of feature details to enhance feature repre-
sentation ability in discriminative network.

4 � Experimental Results and Analysis

In this section, comprehensive experiments are conducted 
on the EuroSAT and UCM Merced benchmark datasets to 
validate the effectiveness of the proposed SSGAN method.

4.1 � DataSet Description

EuroSAT dataset: EuroSAT [19] is a recently released 
remote sensing image dataset acquired by Sentinel-2 sat-
ellite, which includes 10 different categories. In total, the 
dataset consists of 27,000 images with 64 × 64 pixels, which 
ground sampling distances (GSD) ranges from 10 to 60 m.

UC Merced dataset: The UC Merced [20] includes 21 
different categories and has become benchmark dataset for 
remote sensing images classification. Each category has 100 
images, and all images are 256 × 256 pixels in size.

To validate the semi-supervised classification perfor-
mance of SSGAN, the EuroSAT dataset was split into three 
pieces as suggested in [13, 19]: the training samples are 80% 
and the rest are further divided into 90% for testing and 10% 
for validation, i.e., 216,00 samples for training set and the 
rest 5,400 samples are further divided into 4860 for testing 
and 540 for validation. UC Merced dataset was divided in 
same ratio. The number ( M = Xl ) of tagged training samples 
is set in accordance with SAGGAN [5]. More specifically, 
the M is set to 100, 1000, 2000, and 21,600 at EuroSAT data-
set, the M was set to 100, 200, 400, and 1680 at UC Merced 
dataset, and the rest are treated as unlabeled samples ( Xu).

4.2 � Experimental Setup and Evaluation Metrics

All experiments were performed in PyTorch framework 
on a 64-bit Ubuntu 16.04 server with an 8-core Intel Gold 
6048 CPU and four TITAN V GPUs. During training, the 
parameters are set following SFGAN [13] and SRGAN [14]. 
The SSGAN is trained by adaptive moment estimation opti-
mization algorithm (Adam) with parameters �_1 = 0.5 and 
�_2 = 0.9 . The minimum batch is set to 128, and the epoch 
is set to 200. The initial learning rate is set to 0.0003, and 

the decay rate is 0.9. All comparison methods follow the 
original settings to ensure impartiality and objectivity.

For the following experiments, the proposed SSGAN will 
be evaluated using the overall accuracy (OA) and confusion 
matrix (CM) on the EuroSAT and UCM Merced datasets.

OA: OA indicates the number of correctly classified sam-
ples divided by the total number of ones. The formula can 
be derived as follows:

where T represents the sample number correctly classified, 
and F indicates the sample number misclassified.

CM: CM is an information table to represent the con-
fusion ratio among different categories. The row denotes 
the real category, and the column indicates the predicted 
category. The row-column intersection indicates the pro-
portion of real categories classified as column categories, 
from which it is easy to observe whether these categories 
are confused and confusion ratio.

In addition, to ensure the reliability of experiments, all 
experimental results are the mean of 10 replicate experi-
ments with randomly selected samples.

4.3 � Experimental Analysis

In this section, classification accuracies of the proposed 
SSGAN and several representative methods are compared on 
EuroSAT and UCM Merced datasets. CNNs (from scratch) 
is the supervised classification method, Inception V3 is the 
method based on transfer learning. The rest are semi-super-
vised classification methods based on GANs, which include 
SAGGAN [4], tripleGAN [9], BADGAN [10], SFGAN [13], 
FMGAN [8], and REGGAN [11]. Overall accuracies of sev-
eral methods are presented in Table 1.

One can see the following results from Table 1. 

1.	 The proposed SSGAN achieves the highest OA on two 
datasets because of the introduction of GU, PyConv, SN 
and Inception V3 branch and dense residual block to 
further enhance feature discriminant capability. SAG-
GAN ranks second because of the introduction of self-
attention gating module and gating unit to enhance fea-
ture discriminative capability. SFGAN [13] ranks third 
in performance, it is probably owing to the use of pre-
trained Inception V3 network to strengthen feature dis-
criminant capability of discriminative network. Incep-
tion V3 method outperforms other methods besides 
SAGGAN, SFGAN and proposed SSGAN because 
Inception V3 is pre-trained on the large-scale ImageNet 
dataset and able to extract more discriminative features 
in remote sensing images by fine-tuning the network. 
SAGGAN, SFGAN and SSGAN outperform Inception 

(10)OA =
T

T + F
,
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V3 because such three methods introduce a pre-trained 
Inception V3 branch into the discriminative network. 
CNNs (from scratch) has the lowest OA, which might 
be since that CNNs trained from scratch can be trained 
only using labeled samples in a fully supervised manner.

2.	 The four methods FMGAN, triple GAN, BADGAN 
and REGGAN use the standard DCGAN structure, 
the OA is significantly lower than SSGAN, SAGGAN 
and SFGAN. However, tripleGAN achieves higher OA 
due to the introduction of a separate classifier network. 
FMGAN effectively improves the OA by using the fea-
ture matching term, and the OA is slightly lower than 
tripleGAN. The OA of REGGAN is the lowest among 
these four methods, which indicates that manifold regu-
larization is less effective for remote sensing image 
scene classification with complex scenes.

3.	 For all methods, the higher the number of labeled sam-
ples, the higher the OA. Furthermore, the proposed 
SSGAN at M = 1000 exceeds CNNs (from scratch) at 
M = 21,600 on EuroSAT dataset. Interestingly, SSGAN 
still has higher accuracy than pre-trained Inception V3 
network even when M = 21,600. It may be because 
SSGAN utilizes the samples generated by G for addi-
tionally training, while these generated samples are not 
available for CNNs (from scratch) and pre-trained Incep-
tion V3. The same trend is found on UCM Merced data-
set. These demonstrate that SSGAN can achieve higher 
OA using fewer labeled samples.

4.	 On the EuroSAT dataset, the OA of SSGAN reaches 
78.56.2%, 89.02%, 91.53% and 95.50% at M = 100 , 
1000, 2000 and 21,600, which is 1.77%, 0.30%, 0.87% 
and 1.18% higher than SAGGAN, respectively.This 
is probably mainly due to the introduction of dense 
residual blocks, PyConv, and SN in SSGAN. Similarly, 
the OA is 9.96%, 2.92%, 2.53% and 2.30% higher than 
SFGAN, respectively. These show that SSGAN is indeed 
effective. In particular, the overall accuracies of SSGAN 
at m = 100 is 9.96% and 1.77% higher than SFGAN 

and SAGGAN, which indicates that SSGAN can obtain 
higher performance with fewer labeled samples. Similar 
results can be seen on UC Merced dataset.

5.	 On the UC Merced dataset, the OA of SSGAN is only 
59.52%, 76.13%, 83.86% and 91.02% at M = 100 , 200, 
400 and 1680, which is because the total training sam-
ples is insufficient, and that limits GANs-based semi-
supervised classification performance. But, SSGAN 
shows the highest OA compared to other methods.

To further evaluate the performance of proposed 
SSGAN, confusion matrices were generated at M = 100 , 
1000, 2000 and 21,600 on EuroSAT dataset, respectively. 
The following observations can be obtained from the con-
fusion matrix in Fig. 5. 

1.	 As the number M of labeled samples increases, the accu-
racy of each category increases accordingly, while con-
fusion ratio decreases. The accuracy of 8 among 10 cat-
egories is higher than 80% at M = 100 , which indicates 
that the proposed SSGAN obtains higher classification 
accuracy with few labeled data.

2.	 By comparing the two confusion matrices at M = 100 , 
2000, the accuracy of categories 1, 2, 6, 7, and 8 
improves by 23%, 34%, 28%, 21%, and 21%, respec-
tively, which indicates that as the number of labeled 
samples increases, the classification accuracy of each 
category increases significantly.

3.	 In the case of M = 21,600, the classification accuracy 
of 9 among all 10 categories is higher than 95%, which 
shows that the proposed SSGAN can achieve good semi-
supervised classification performance.

In short, the proposed SSGAN is effective.

Table 1   OA(%) of SSGAN and 
other compared approaches. The 
bold shows the highest, and the 
underlined denotes the second

Methods Number of tagged samples on Euro-
SAT

Number of tagged samples on UC 
Merced

100 1000 2000 21,600 100 200 400 1680

CNNs (from scratch) [13] 29.30 46.10 59.00 83.20 18.45 32.75 43.55 62.08
InceptionV3 [13] 63.90 84.60 87.90 91.50 55.35 71.11 81.05 85.39
FMGAN [8] 63.05 75.81 78.36 86.92 43.55 69.17 74.48 80.22
tripleGAN [9] 56.32 83.26 85.71 88.83 39.96 70.52 80.59 84.13
BADGAN [10] 59.03 76.02 78.13 86.76 18.45 32.75 43.55 62.08
REGGAN [11] 64.71 72.82 76.35 82.28 40.36 55.39 63.54 72.30
SFGAN [13] 68.60 86.10 89.00 93.20 55.48 72.49 82.56 82.34
SAGGAN [4] 76.79 88.72 90.66 94.32 57.10 75.69 83.33 90.48

SSGAN 78.56 89.02 91.53 95.50 59.52 77.13 84.86 91.32
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4.4 � Ablation Experiments

Compared with other semi-supervised image classification 
methods, the proposed SSGAN achieves the best perfor-
mance by enhancing discriminative networks. In this sec-
tion, the effectiveness of pre-trained Inception V3 branch, 
GU, PyConv and SN is verified. Four variants of proposed 
SSGAN are investigated individually: (1) SSGAN-GU is the 
variant without GU, (2) SSGAN-I is the variant without pre-
trained Inception V3 branches, (3) SSGAN-P is the variant 
without PyConv, and (4) SSGAN-SN is the variant without 
SN.

For a fair comparison, extensive experiments were con-
ducted in this paper at same experimental setup on same 
datasets. As shown from the experimental results in Table 2, 
Inception V3 branch, SN, PyConv, and GU all contribute to 
improving SSGAN performance on two datasets. Among 
them, SSGAN-I has the lowest OA in two datasets, which 
indicates that Inception V3 branch is the most effective 
because it can extract high-level semantic information from 

scene images and then feed extracted semantic features 
into GU to further enhance feature discriminative ability. 
The second most effective one is PyConv, because it can 
obtain different levels of details through multiple groups of 
PyConv operations with different kernel sizes to enhance 
feature representation. The third effective one is GU and the 
least effective one is SN, but the accuracy is also improved 
significantly on both datasets. Interestingly, SSGAN-SN has 
significantly lower accuracy than SSGAN when the number 
of labeled M is larger, which suggests that SN performs bet-
ter under more labeled training samples.

5 � Conclusion

In this paper, we propose a new GANs-based semi-super-
vised method for remote sensing scene classification using 
dense residual block, GU, PyConv, pre-trained Inception 
V3 network and SN. The proposed method achieves higher 
semi-supervised classification accuracy using a few labeled 

Fig. 5   The confusion matrices generated by proposed SSGAN on EuroSAT dataset at M = 100 , 1000, 2000 and 21,600

Table 2   The comparison results 
of ablation study

The bold indicates the highest accuracy, and the italic indicates the second highest accuracy

Methods The labeled sample number on EuroSAT The labeled sample number on UC 
Mereced

100 1000 2000 21,600 100 200 400 1680

SSGAN-I 69.57 84.22 87.31 92.45 52.34 71.31 80.36 86.65
SSGAN-P 71.88 85.48 88.53 93.62 54.92 73.03 81.76 87.81
SSGAN-GU 73.65 87.24 89.73 94.38 57.88 75.37 82.72 88.51
SSGAN-SN 77.83 88.06 90.51 94.17 58.82 76.57 83.53 89.89

SSGAN 78.56 89.02 91.53 95.50 59.52 77.13 84.86 91.32
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and numerous unlabeled samples. Specially, the pre-trained 
Inception V3 network is introduced into the discriminative 
network as a new branch to extract semantic features; the 
GU and PyConv are integrated into dense residual block to 
strengthen the feature discriminant capability of discrimi-
native network; and SN is introduced into both genera-
tive and discriminative network to stabilize the training of 
GANs to improve semi-supervised classification accuracy. 
Comprehensive experimental results illustrate the proposed 
approach gains higher overall accuracy compared with other 
comparison methods, especially, when only there are a few 
labeled samples. In the future, it is planned to investigate 
unsupervised remote sensing image scene classification 
based on GANs, which is more difficult in the field of com-
puter vision.
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