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Abstract

This paper proposes a novel surrogate ensemble-assisted hyper-heuristic algorithm (SEA-HHA) to solve expensive opti-
mization problems (EOPs). A representative HHA consists of two parts: the low-level and the high-level components. In the
low-level component, we regard the surrogate-assisted technique as a type of search strategy and design the four search strategy
archives: exploration strategy archive, exploitation strategy archive, surrogate-assisted estimation archive, and mutation strat-
egy archive as low-level heuristics (LLHs), each archive contains one or more search strategies. Once the surrogate-assisted
estimation archive is activated to generate the offspring individual, SEA-HHA first selects the dataset for model construction
from three principles: All Data, Recent Data, and Neighbor, which correspond to the global and the local surrogate model,
respectively. Then, the dataset is randomly divided into training and validation data, and the most accurate model built by
polynomial regression (PR), support vector regression (SVR), and Gaussian process regression (GPR) cooperates with the
infill sampling criterion is employed for solution estimation. In the high-level component, we design a random selection func-
tion based on the pre-defined probabilities to manipulate a set of LLHs. In numerical experiments, we compare SEA-HHA
with six optimization techniques on 5-D, 10-D, and 30-D CEC2013 benchmark functions and three engineering optimization
problems with only 1000 fitness evaluation times (FEs). The experimental and statistical results show that our proposed
SEA-HHA has broad prospects for dealing with EOPs.

Keywords Surrogate ensemble-assisted (SEA) - Hyper-heuristic algorithm (HHA) - Expensive optimization problems
(EOPs) - High-level and low-level component design

1 Introduction

Evolutionary computation (EC) and swarm intelligence (SI)
have achieved tremendous success in the research field [1-3]
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bines the two belongs to the surrogate-assisted evolutionary
algorithm (SAEA) [7-9].

Up to now, many effective SAEAs have been reported:
Dong et al. [10] extended the surrogate-assisted approach to
the popular and powerful grey wolf optimization (SAGWO).
The radial basis function (RBF) is employed to assist the
meta-heuristic exploration and fitness landscape knowledge
mining. Nishihara et al. [11] noticed that not only the model
settings but also the training data chosen will influence the
estimation performance and designed an adaption scheme
for training data selection, which includes four criteria: All
Data, Current Population, Recent Data, and Neighbor. These
schemes collaborate with differential evolution (DE) for
computationally expensive optimization problems. Wang et
al. [12] proposed a global and local surrogate-assisted DE
(GL-SADE) to solve high-dimensional EOPs. The global
RBF model is trained with all samples to approximate the
tendency of the whole fitness landscape, and the local Kriging
model trained with the local population prefers to select solu-
tions with well-performed prediction and great uncertainty,
which can prevent the search direction from getting trapped
into local optima. The unique reward search strategy in GL-
SADE encourages the re-utilization of the Kriging model
when the solution found by the local Kriging model is the best
so far. Cai et al. [13] introduced the surrogate-assisted tech-
nique to multi-objective EOPs. Two strategies are proposed
to balance the global and local search for multi-objective
optimization: (1) Maximum angle-distance sequential sam-
pling based improved surrogate-based multi-objective local
search method. (2) Diversity-enhanced expected improve-
ment matrix infill criterion-based pre-screening strategy.
In addition, many SAEAs have been employed to deal
with real-world applications: Wang et al. [14] proposed a
committee-based active learning surrogate-assisted particle
swarm optimization (CAL-SAPSO) for an airfoil design
problem, where the best and most uncertain solutions found
by the surrogate ensemble technique are evaluated using the
expensive objective function, and the local surrogate model
is built around the best solution obtained so far. Xiang et al.
[15] proposed a clustering-based surrogate-assisted multi-
objective evolutionary algorithm termed AR-MOEA+SA for
the shelter location planning problem. The RBF is adopted
to approximately calculate the evacuation distance under
the uncertainty of road networks and the clustering strat-
egy is cooperated to estimate the position of communities.
Wakjira et al. [16] proposed a data-driven approach to
determine the load and flexural capacities of reinforced
concrete beams strengthened with fabric-reinforced cementi-
tious matrix composites in flexure. Seven efficient surrogate
models including kernel ridge regression, K-nearest neigh-
bors, support vector regression, classification and regression
trees, random forest, gradient boosted trees, and extreme gra-
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dient boosting are involved to estimate the best predictive
model for this problem.

The introduction of surrogate-assisted techniques has pro-
moted the development of the EC community rapidly and
endowed the optimizers with a stronger ability to tackle more
complex optimization problems at the cost of computational
resources. However, No Free Lunch Theory [17] states that
any pair of black-box optimization algorithms have identi-
cal averaging performance on all possible problems, and if
an algorithm performs well on a specific category of prob-
lems, then, it must degenerate on the remaining problems,
which is the only way for all algorithms to have the same
performance on average across all functions. Thus, many
researchers try to develop a generic optimization framework,
which can dynamically modify the structure of the algorithm
to adapt to the characteristics of certain problems.

Hyper-heuristics framework provides a potential oppor-
tunity to realize that. From the perspective of the hyper-
heuristic algorithm (HHA), an optimization algorithm can
be regarded as a combination of search strategies (e.g. the
genetic algorithm (GA) repeats the crossover and mutation
operators and particle swarm optimization (PSO) iterates the
velocity and location update.), and this sequence of heuris-
tics can also be optimized. As an “off-the-peg” technique
rather than “made-to-measure” meta-heuristics [18], HHA
is a high-level automatic methodology that manipulates a
set of low-level heuristics (LLHs) to search for acceptable
solutions [19]. Meanwhile, many HHAs have been reported
to deal with combinatorial optimization problems [20-23]
whilst only a few have dealt with continuous problems [24].
Therefore, the motivation of this research is to develop a
hyper-heuristic algorithm for continuous optimization prob-
lems.

In this paper, we regard the surrogate-assisted estimation
as a novel search operator and propose a novel surrogate
ensemble-assisted hyper-heuristic algorithm (SEA-HHA)
for continuous and computational EOPs. In the low-level
component of SEA-HHA, we design four search strategy
archives as the low-level heuristics (LLHs): The exploration
strategy archive, exploitation strategy archive, surrogate-
assisted estimation archive, and mutation strategy archive,
each archive contains several search strategies. In the high-
level component design, we apply a probabilistic random
selection function to construct the optimization sequence
dynamically. Specifically, the main contributions of this
paper can be summarized as follows.

(1) Four flexible and easy-implemented search strategy
archives are designed as the LLHs, while the high-level
component acts as the “brain” of SEA-HHA which ran-
domly constructs the optimization sequence based on
the pre-defined probabilities. This high-level component
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design is expected to enhance the diversity of the selected
search strategies and avoid premature.

(2) In the surrogate-assisted estimation archive, we provide
three kinds of data selection fashions: All Data, Recent
Data, and Neighbor, which corresponds to the global
and local concepts. The selected data are randomly sepa-
rated into the training dataset and testing dataset, and the
most accurate model constructed by polynomial regres-
sion (PR), support vector regression (SVR), and Gaussian
process regression (GPR) is chosen for solution estima-
tion, which is hoped to estimate high-quality solutions
and accelerate the convergence of optimization.

(3) We implement a set of experiments on CEC2013 bench-
mark functions [25] and three real-world engineering
optimization problems to evaluate our proposal. Four
meta-heuristics algorithms and two surrogate-assisted
optimization methods are applied as comparative algo-
rithms. Numerical experiments show that our proposed
SEA-HHA is competitive with these popular and state-
of-the-art optimization techniques.

The remainder of this paper is organized as follows: Sect. 2
introduces the related works. Section3 provides a detailed
introduction to our proposal. Section4 covers the numer-
ical experiments and statistical results. Section5 analyzes
our proposal and lists some open topics. Finally, Sect. 6 con-
cludes this paper.

2 Related Works
2.1 Hyper-Heuristic Algorithm (HHA)

Motivated by solving classes of problems rather than one
problem, the appearance of HHA can be traced to the early
1960s [26]. As an advanced methodology, HHA takes the
sequence of strategies as the optimization object based on
the knowledge, which can be described as “Heuristics to
choose heuristics” [19]. Here, a typical structure of the HHA
is shown in Fig. 1.

A classic HHA contains two constituents: the low-level
component and the high-level component. The low-level
component includes problem representation, the objective
function(s), initial solutions, and a set of low-level heuristics
(LLHs). The high-level component dominates the LLHs and
constructs the sequence of heuristics. The move acceptance
principle judges whether the generated offspring are accepted
or rejected. Feedback is utilized as the reward to dynam-
ically adjust the LLHs selection module. Here, we briefly
review some works of literature on HHA approaches: Zhao
etal. [29] proposed a cooperative multi-stage hyper-heuristic
(CMS-HH) algorithm for combinatorial optimization, the
GA is introduced to perturb the initial solution while an
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Fig. 1 Representative architecture of the HHA [27, 28]. LLHs i: the
ith low-level heuristics

online learning mechanism based on the multi-armed bandits
and relay hybridization technology is adopted to improve the
quality of solutions. Qin et al. [30] developed a reinforcement
learning-based hyper-heuristic algorithm to solve a practical
heterogeneous vehicle routing problem. The policy-based
reinforcement learning is a high-level selection strategy
while several meta-heuristics with different characteristics
are employed as low-level heuristics. Zhang et al. [31] pro-
posed a hyper-heuristic algorithm for time-dependent green
location routing problems with time windows, the Tabu
search is adopted as the high-level selection module, and
the greedy scheme is taken as the acceptance criterion. Most
research focuses on combinatorial optimization problems.

2.2 Surrogate Models

In the usage of the surrogate-assisted technique, we concen-
trate on the performance indicators of the surrogate model,
such as the robustness, computational complexity, flexibil-
ity, approximation ability, and so on. Polynomial regression
(PR), support vector regression (SVR), and Gaussian process
regression (GPR) are the three most popular and well-studied
surrogate models, and the SAEAs can benefit from their
easy implementation and excellent regression ability while
the computational budget is affordable. Therefore, we adopt
these three surrogate models to construct the surrogate-
assisted estimation archive, and the detailed introduction is
as follows.

2.2.1 Polynomial Regression (PR)

PR technique is an efficient and well-known model to solve
the regression task, and the relationship between independent

@ Springer
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Fig.2 Demonstration of SVR

decision variables X = {x1, x3, ..., x,} and the dependent
variables Y = {y{, y2, ..., ¥} is described as an n’ h polyno-
mial in X [32]:

Ei(y|X) = wiXi + waX? +w3X; + -+ w, X! + by
()

From the matrix computation form, Eq. (1) can be rewritten
to

1 x x12 e x’lﬂ_
Vi . 2 m | | W b
x x e x
» 2 M 2 w) by
1 x3 x2 ... xm b
3| = 343 3 w3 41631, (2)
y 2 m w b
n 1 x, x5 e xn n n

And this estimation can be approximated by least squares
analysis [33]:

min ) (¥; — E; (y1X)?, 3)

i=1

where X; is the ith sample, Y; is the true solution of x;, and
E;(y|X;) is the predicted solution of X; by PR model.

2.2.2 Support Vector Regression (SVR)

SVR is a non-parametric machine learning technique that
was first identified by Vladimir et al. in 1992 [34], which
attempts to find a flat hyperplane that is within the tolerance
margin (¢). Here, Fig.2 demonstrates the SVR model in a
regression task.

@ Springer

Mathematically, the optimization of SVR can be expressed
in Eq. (4):

1 S
min S lwl® +C )l (B (51X0), ;) “)

i=1

where E;(y|X;) has similar structure to Eq. (1), C is a con-
stant for regularization. /,(E;(y|X;), ¥;) is a e-insensitive
loss function that

0, if [E;(y|Xi)—Yi|<e
L (B 1xp), v = | 1B O =nil<e
|E; (y|X;) — Y;| — &, otherwise.

More details can be found in [35].

2.2.3 Gaussian Process Regression (GPR)

A GP is a collection of random variables, any finite set of
which have a joint Gaussian distribution and is completely
specified by its mean function m (x) and the covariance func-
tion k(x, x’):

f(x) ~GPR (m(x), k (x, x’)) . 6)

In the regression problem, the prior distribution of output
y can be denoted as

v~ N0k (v, x) + 7). %)

where N (-) is the normal distribution. anz denotes the noise
term. Assuming the distribution of testing dataset x” and
training dataset x are identical, then, the prediction y’ would
follow a joint prior distribution with the training output y as
[36]:

y k(x,x)—i—onzl,, k(x,x/)
|:—/:| ~ N |0, T , (8)
y k(x,x’) k(x’,x’)

where k(x, x), k(x, x") and k(x’, x") represent the covariance
matrices among inputs from the training dataset, the training
and testing dataset, as well as the testing dataset.

To guarantee the performance of the GPR, some hyper-
parameters 6 in the covariance function require to be
optimized with n samples in the training process. One effi-
cient optimization solution is to minimize the negative log
marginal likelihood L () as [37]:

_! Lory-t "
L) = 5 log |:detk(9) + 2y AT @)y + > 10g(27‘[)} ©

AO) = k(0) + 071,
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After the hyper-parameters optimization of the GPR, the
prediction y’ can be obtained at data set x” through calculating
the corresponding conditional distribution p(y’|x’, x, y) as

p(YIx',x,y) ~ N (Y'Y, cov(y))

y =k (x,x’)T [k(x,x) + crnzln]_l y
10
cov (y') =k (x', x’) —k(x,x’)T (10

[k(x, x) + 031,1]_1 k (x, x/) ,

where ' stands for values of prediction. cov(y’) denotes
a variance matrix to reflect the uncertainty range of these
predictions. More details of the GPR model can be found in
[38].

3 Our Proposal: SEA-HHA

The overall optimization framework of the proposed SEA-
HHA can be summarized in Fig.3. Specifically, in the
low-level component of SEA-HHA, we design four gen-
eration archives containing the various LLHs: Exploration
strategy archive, exploitation strategy archive, surrogate-
assisted estimation archive, and mutation strategy archive.
Besides, each archive has one or more search strategies,

and different strategies in the same archive have an unbias
probability to be chosen. In the high-level component of
SEA-HHA, a stochastic selection function based on pre-
defined probabilities is employed as the decision function
to determine the optimization sequence dynamically.

3.1 Exploration Strategy Archive

The differential-based search strategy is first proposed in
DE [39] and has been adopted in many bio-inspired EAs to
describe the foraging behaviors of natural organism [40—43].
In this paper, we also use the basic form of the differential-
based search strategy in the exploration strategy archive and
provide three different ways to select the base individual:

Xi—H = Xpase + F - (Xr2 - Xr3) (11)

where X0 is randomly selected from { X;, Xpess, X1} with
equal probability. X; is the ith individual, Xp.s; represents
the best solution in the current population, and X,1, X,» and
X,3 are mutually different solutions which randomly sam-
pled from the current population. F is a scaling vector and
each element is randomly sampled from [—0.8, 0.8] [44].

The pseudocode of the exploration operation is shown in
Algorithm 1.

@ Springer
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Algorithm 1 Exploration operation

Require: Dimension: D, Population: P, Fitness: Fit, Current index: i
Ensure: Offspring: O

1: r < rand()

2:rl,r2,r3 <—rands() # r1, r2 and r3 are mutually different
:if r < 1/3 then

Xpase < Xi

: else if r < 2/3 then

Xpase < Plargmin(Fit)] # select the current best solution
: else

Xpase < Xr1

9: end if

10: Construct a D-dimensional scaling vector F

11: O « Xpase + F - (XI‘Z - Xr3)

12: Ensure the O is within the search space

13: return O

AR A

3.2 Exploitation Strategy Archive

Rather than using the complex mechanism and parameters to
realize the exploitation operation, we only adopt two param-
eters to determine the exploitation search strategy: the search
direction D and the exploitation radius R. In addition, these
operators can be described in Eq. (12):

Xi+1 = Xpase + D - R (12)

Xpase 18 randomly selected from {X;, Xpesr, Xr1} as well. D
isarandom vector and R is a constant. Once these two param-
eters are specified, the location of X, can be identified. In
our experiment settings, each element in D is uniformly sam-
pled from [—1, 1] and R = 2 as suggested in [45].

The pseudocode of the exploitation operation is shown in
Algorithm 2.

Algorithm 2 Exploitation operation

Require: Dimension: D, Population: P, Fitness:F', Current index:i,
Radius:R

Ensure: Offspring: O

1: r < rand()

2:rl,r2,r3 <—rands() # r1, r2 and r3 are mutually different

:if r < 1/3 then

Xpase < Xi

: else if r < 2/3 then

Xpase < P[argmin(F)]

: else

Xpase < Xr1

9: end if

10: fori =0to D do

11: 0" <X}, +R-rand(—1,1)

12: end for

13: Ensure the O is within the search space

14: return O

A U

@ Springer

3.3 Surrogate-Assisted Estimation Archive

We regard surrogate-assisted estimation as a kind of search
strategy to generate high-quality solutions, and the basic
process is as follows. We first choose the dataset selection
fashionamong All Data, Recent Data, and Neighbor ran-
domly, then, the dataset is randomly divided into the training
dataset and the validation dataset with the proportion of 80%
and 20% respectively. Three kinds of models described in
Sect. 2.2 are employed to construct the approximation model,
and we use an extra DE to estimate the best solution in the
surrogate model which has the highest accuracy on the vali-
dation dataset. This estimated solution will be evaluated by
the real objective function and participate in the optimiza-
tion as an offspring individual. Next, we will introduce the
selection training dataset and the surrogate model selection
principles in detail.

Inspired by the SADE-ATDSC [11], three different strate-
gies for selecting training datasets are applied in the archive:
All Data, Recent Data, and Neighbor. All Data utilizes
all solutions from optimization beginning to approximate the
overview of the fitness landscape. Recent Data represents
the recent k£ generated solutions which are selected as the
dataset to describe the regularity of solution movements in
the optimization. And Neighbor denotes the nearest-k solu-
tions of X5, determined by the Manhattan distance, which
can depict the characteristics of the fitness landscape near the
current best solution. In our experimental setting, the k is set
to 100, and a general demonstration of dataset selection is
shown in Fig. 4.

A subsequent problem is which model can approximate
the fitness landscape better with these selected solutions.
As we mentioned before, the selected dataset is randomly
separated into two parts: The training dataset with the 80%
proportion of the original data and the validation dataset with
the remaining 20% proportion. Then, three kinds of mod-
els are constructed based on the training dataset, and the
model that has the lowest mean squared error (MSE) loss on
the validation dataset is considered the most accurate in this
regression task. The calculation of MSE is in Eq. (13):

n

1
MSE =~ (E (yxi) = )°, (13)
i=1

where n is the size of the dataset, E(y|x;) is the expectation
of the model given the solution x;, and y; is the real fitness
value of x;, and the well-performed solution in the surrogate
model is considered as a high-quality solution on the real
fitness landscape and will be evaluated by the real objective
function and participate in the optimization process.
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Fig. 4 Demonstration of dataset selection criteria, blue points are
solutions in the 1st generation, green points are solutions in the 2nd
generation, the red star represents the current best solution, and the
selected dataset scale k is five in this example. The grey boundary point

The pseudocode of the surrogate-assisted estimation strategy
is shown in Algorithm 3.

3.4 Mutation Strategy Archive

The mutation strategy archive only contains one strategy that
Xiv1 =X +r - (Xup — X1p) (14)

r is a uniform random value from [0, 1]. X;; and X,,;, are the
lower and upper bound of search space respectively. Simply,

(d)

represents the selected data for model construction. a The original dis-
tribution of solutions. b All Data principle. ¢ Recent Data principle.
d Neighbor principle

we randomly generate a new solution in the search space to
endow an ability to SEA-HHA to get rid of the local optimum.

In summary, the involved search operators are summarized
in Table 1, and the pseudocode of SEA-HHA is shown in
Algorithm 4.

Algorithm 4 line 7 means to determine a specific search
strategy from our designed four archives, and line 8 applies
this sampled strategy to generate the offspring. Different
from most EAs in which the search strategy is applied to
the whole population, the object of the search strategy in
our proposed SEA-HHA is applied to the individual. Each
individual in the population has a high opportunity to gen-

@ Springer
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Table 1 Low-level heuristics (LLHs) in SEA-HHA

Objective

Type Description
Exploration strategies Algorithm 1
Exploitation strategies Algorithm 2
Surrogate-assisted estimation Algorithm 3

Mutation strategy Equation (14)

Strengthen the exploration ability of SEA-HHA
Strengthen the exploitation ability of SEA-HHA
Estimate elite solutions to accelerate the optimization

Endow a capacity to get rid of local optima

Algorithm 3 Surrogate-assisted estimation

Require: Data archive: D A, Model archive: M A
Ensure: Estimated solution: S

1: r < rand()

2: if r < 1/3 then

3 SD < All(DA) # All Data

4: else if r < 2/3 then

5 SD < Recent(DA) # Recent Data
6: else
7

8

9

SD < Neighbor(DA) # Neighbor
. end if
: TD,VD <« split(SD) # 80% Training data and 20% Validation
data
10: Train the models in M A with T D
11: Validate the models in M A with V D
12: Estimate the best solution S on the most accurate model in terms
of the DE
13: Ensure the S is within the search space
14: return S

Algorithm 4 SEA-HHA

Require: Dimension: D, Population size: P S, Maximum iteration: M,
Pre-defined probability: P R, Search strategy archives: SSA,
Ensure: Global Optimum: G O
1: P < LHS(D, PS) # Latin hypercube sampling for population ini-
tialization
: GO < best(P)
: Data archive DA < P
g=0
: while g < M do
fori =0to PS do
Determine a certain search strategy from search strategy
archives by pre-defined probability

8: Construct the offspring O; with sampled search strategy
9: Save the O; to DA
10:  end for

11:  Survive the best-P S solutions among population and offspring
12: GO < best(P)

13: g=g+1

14: end while

15: return GO

erate offspring individual with various strategies, which is
expected to enhance the diversity of the population and pre-
vent premature convergence.

@ Springer

4 Numerical Experiments

We implement a set of experiments to evaluate the perfor-
mance of our proposed SEA-HHA. Section4.1 introduces
the experiment settings, and Sect.4.2 shows the experimen-
tal results.

4.1 Experiment Settings
4.1.1 Experiment Environment

The proposed SEA-HHA is programmed with Python 3.11

and implemented in Hokkaido University’s high-performance
intercloud supercomputer equipped with a CentOS operating
system, Intel Xeon Gold 6148 CPU, and 384GB RAM.

4.1.2 Benchmark Functions

We evaluate the performance of SEA-HHA on the 5-D, 10-
D, and 30-D of 28 CEC2013 benchmark functions and three
complex engineering problems, and the detailed features of
the CEC2013 suite are listed in Table 2.

In addition, three famous engineering optimization prob-
lems include Cantilever Beam Design [46], Tension/Compre-
ssion Spring Design [47], and Pressure Vessel Design [48].

Cantilever Beam Design: This problem is a structural
engineering optimization problem that is related to the weight
optimization of a cantilever beam with a square cross section.
Equation (15) shows the mathematical model of this problem:

minimize

f(X) =0.0624 (x1 + x2 + x3 + x4 + x5)

subject to

g@)z%+i—§+%+:—z+x—é—lfo (1)
where

0.01 <x; <100,i =1,2,...,5

Tension/Compression Spring Design: The objective
of this problem is to minimize the weight of a ten-
sion/compression spring under the constraints of minimum
deflection, shear stress, surge frequency, and outside diame-
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Table2 Summary of the

CEC2013 suite: Uni. unimodal Fun Description Feature Optimum

funct?on, Multi. multimoﬁal fi Sphere Function Uni. — 1400

function, Comp. composition . . L .

function b Rotated High Conditioned Elliptic Function —1300
NE) Rotated Bent Cigar Function —1200
fa Rotated Discus Function -1100
fs Different Powers Function —1000
fe Rotated Rosenbrock’s Function Multi. -900
f1 Rotated Schaffers F7 Function -800
I3 Rotated Ackley’s Function -700
fo Rotated Weierstrass Function -600
fio Rotated Griewank’s Function -500
fi1 Rastrigin’s Function —400
f12 Rotated Rastrigin’s Function -300
f13 Non-Continuous Rotated Rastrigin’s Function -200
f1a Schwefel’s Function —-100
fis Rotated Schwefel’s Function 100
fi6 Rotated Katsuura Function 200
fi7 Lunacek Bi-Rastrigin Function 300
f1s Rotated Lunacek Bi-Rastrigin Function 400
fio Expanded Griewank’s plus Rosenbrock’s Function 500
fo Expanded Scaffer’s F6 Function 600
a1 Composition Function 1 (n = 5, Rotated) Comp. 700
f2 Composition Function 2 (n = 3, Unrotated) 800
123 Composition Function 3 (n = 3, Rotated) 900
foa Composition Function 4 (n = 3, Rotated) 1000
fas Composition Function 5 (n = 3, Rotated) 1100
f Composition Function 6 (n = 5, Rotated) 1200
7 Composition Function 7 (n = 5, Rotated) 1300
fr8 Composition Function 8 (n = 5, Rotated) 1400

ter limitation. The formulation is presented in Eq. (16):

minimize
F(X) = (x3 + 2)xoxt
subject to

3
L34 <0
71785x]
4x§ — X1X2 1

—1 <

12566(xpx7 — x7)  5108x?

140.45x, (16)
$BX)=1-—75—<0

X5X3
X1+ x2

— —1<0
1.5

gi(X)=1-

g(X) =

g4(X) =
where
0.05<x; <2
025<x <13

2<x3<15

Pressure Vessel Design: This problem attempts to min-
imize the cost of the pressure vessel including the cost of
forming, material, and welding. And this optimization prob-
lem can be expressed in Eq. (17):

minimize

F(X) = 0.6224x1x3x4 + 1.7781x2x3 4 3.1661x7 x4
+ 19.84x7x3

subject to

g1(X) = —x1 +0.0193x3 <0

£2(X) = —x2 +0.00954x3 < 0

4
g3(X) = —mx3xg — gnxg + 1296000 < 0
g4(X) =x4—-240=0

where
0<x1 <9

@ Springer
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Table 3 Compared optimization

techniques and their parameter Method Parameters Value
configuration SEA-HHA Radius R 2
Sample size for model construction k 100
Exploration probability 0.33
Exploitation probability 0.33
Surrogate-assisted estimation probability 0.33
Mutation probability 0.01
SFO (2019) [50] Coefficients of power attack A and ¢ 4 and 0.001
DSIDE (2020) [51] Mutation strategy DE/rand/1/bin
POA (2022) [52] Parameter-free
SCSO (2022) [53] Sensitivity range rg [0, 2]
Phases control range R [-2rg, 2rg]
aRBF-NFO (2022) [54] Surrogate model RBF
basic optimizer NFO [55]
SHEALED (2023) [56] Surrogate model RBFNmv
Scaling factor F' 0.5
Crossover rate Cr 0.8
Probability of mutation Pm 0.3
Probability of crossover Pc 0.8
0<x<99 4.2 Experimental Results
10 < x3 < 200 o . -
10 < x4 < 200 a7 This section shows the experimental and statistical results

More detailed explanations and visual demonstrations of
these engineering optimization problems can be found in
[49].

4.1.3 Compared Methods and Parameters

We compare our proposal SEA-HHA with four EAs and two
SAEAs, which are listed in Table 3. The selected probability
for each search strategy archive in SEA-HHA plays an impor-
tant role in guiding the optimization sequence construction.
However, the determination of these parameters is also a dif-
ficult task. In this research, we fix the exploration probability,
exploitation probability, surrogate-assisted estimation prob-
ability, and mutation probability with 0.33, 0.33, 0.33, and
0.01 respectively, which are also corresponding to the intu-
ition of optimization algorithm design.

For all compared algorithms, the population size is 100,
the maximum FEs by the real objective function in both the
CEC2013 suite and engineering optimization problems are
1000, the sample size of the random search for promising
solutions in surrogate models is 1000, which follows the rec-
ommend parameter setting in [11], and the independent trial
run for each method is 30.

@ Springer

among seven compared optimization methods on CEC2013
benchmark functions and engineering optimization prob-
lems. Here, we collect the optimal fitness values in 30 trial
runs of each optimization algorithm, and the Friedman test is
applied to determine the significance. If significance exists,
the Mann—Whitney U test is used to estimate the p value
of every pair of algorithms, and the Holm multiple com-
parison test [57] corrects the p value obtained from the
Mann—Whitney U test and further identifies the statistical
significance.

+, ~, and — are applied to represent that our proposed
SEA-HHA is significantly better, with no significance, and
significantly worse with the compared method, and the best
fitness value is in bold. In addition, the convergence curve
of representative functions (i.e., unimodal functions: f, and
fa; multimodal functions: fg, fo, fi1, f12, f13, f14, and fis;
composite functions: fs5, fag, and f2g) of in 5-D and 30-D
are provided in Figs.5 and 6.

4.2.1 Optimization on CEC2013 Suite

Tables 4, 5, and 6 provide the experimental and statistical
results on CEC2013 benchmark functions. The mean and
standard deviation (std) are calculated at the end of the opti-
mization within 30 trial runs.
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Fig.5 Convergence graphs of 5-D representative functions in the CEC2013 suite
4.2.2 Optimization on Engineering Optimization Problems to the individual which violates the constraint in the mini-

mization optimization. For the sake of simplicity, we equip

The original SEA-HHA cannot solve the constrained opti-  the SEA-HHA and all compared algorithms with a death
mization problems while the real-world engineering prob-  penalty function to deal with constrained optimization prob-

lems presented in Sect. 4.1.2 contain constraints.

Therefore,  lems. Tables 7 and 8 show the comparative results on the

we need to introduce a constraint-handling technique to SEA-  Cantilever Beam Design problem, Tables 9 and 10 show
HHA. Coello et al. [58] summarized the various penalty  the optimization results on the Tension/Compression Spring

functions including static, dynamic, simulated

annealing,  Design problem, and Tables 11 and 12 show the results on

adaptive, and death penalty. As one of the simplest meth-  the Pressure Vessel Design problem.
ods, the death penalty assigns an enormous fitness value

@ Springer
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5 Discussion

5.1 Computational Complexity Analysis of SEA-HHA

In this section, we analyze the computational complexity of
SEA-HHA. Supposing the population size is N, the dimen-
sion of the problem is D, the maximum iteration is 7', and
the computational complexity for surrogate-assisted estima-
tion is C. For the sake of simplicity, we analyze each process
independently.

population initialization: O(N - D).
exploitative search operator: O(N - D).
explorative search operator: O (N - D).
surrogate-assisted estimation: O (C).
mutation search operator: O(N - D).
selection operator: O (N).
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Table 7 Optimization results on the Cantilever Beam Design problem

Alg worst mean best std

SFO 2.6355 1.6819 =~ 1.3817 0.3057
DSIDE 2.2361 1.9216 + 1.5831 0.2121
POA 4.0492 21715 + 1.5684 0.5524
SCSO 2.3415 1.6918 =~ 1.4204 0.2177
aRBF-NFO 5.9947 4.1311 + 2.2430 0.9052
SHEALED 2.1880 1.8121 + 1.3539 0.2142
SEA-HHA 2.1469 1.6504 1.4036 0.2175

Therefore, the total computational complexity of SEA-HHA
can be summarized by Eq. (18):

O(N-D)+T - -(O(max(N -D,C))+ O(N)) (18)
= O(T -max(N - D, C)).

In numerical experiments, the real CPU time of C is larger
than N - D since the surrogate-assisted estimation involves
the construction of the mathematical model and the sampling
process based on the model.

5.2 Performance Analysis of Optimization on
CEC2013

From the overview performance on CEC2013 benchmark
functions among seven optimization techniques, our pro-
posed SEA-HHA is competitive with these advanced algo-
rithms, and we will analyze the performance of SEA-HHA
from two perspectives: exploitation ability and exploration
ability.

5.2.1 Exploitation Ability of SEA-HHA

In the CEC2013 suite, functions f; through f5 are uni-
modal so that they are allowed to evaluate the exploitation
ability of optimization algorithms. It’s worth noting that in
f1, SHEALED outperforms our proposed SEA-HHA across
three scales, which proves the efficiency and effectiveness
of SHEALED in addressing such optimization problems.
However, excluding f;, SEA-HHA consistently matches or

even outperforms SHEALED, and the superior exploitation
ability of SEA-HHA can be observed from these functions.
When compared to other optimization algorithms on uni-
modal functions, our proposal outperforms them in most
scenarios. Thus, experimental and statistical results provide
adequate support for the excellent exploitation capacity of
SEA-HHA.

However, the deterioration of SEA-HHA on f4 can be
observed in Tables 4, 5, 6 and Figs.5, 6, and this degener-
ation can be explained by the No Free Lunch Theory [17].
No Free Lunch Theory states that all stochastic optimization
algorithms have identical average performance on all pos-
sible problems, and if an algorithm is well-performed on a
category of the problem, it must compensate for the rest prob-
lems. Therefore, we can reasonably infer that the designed
LLHs in SEA-HHA may not be good at dealing with this
specific problem. Furthermore, as the dimension of the prob-
lem increases, the deterioration has been amplified, and we
speculate that one reason is due to the curse of dimension-
ality [59]. As the dimension of the problem increases, the
search space will increase exponentially, and the presence of
this phenomenon can degenerate the accuracy of the surro-
gate model rapidly and further affect the quality of estimated
solutions.

5.2.2 Exploration Ability of SEA-HHA

Considering that functions fg through f>¢ are multimodal,
and f>; through f>g are composition functions, these func-
tions exhibit complex fitness landscapes and many local
optima. Thus, they are allowed to evaluate the exploration
capacity of optimization techniques. Through the experimen-
tal and statistical results in Tables 4, 5, and 6, the superior
performance of SEA-HHA can be observed, and we owe
this excellent performance to the diverse search strategy and
effective surrogate-assisted estimation.

However, we also notice that slight degeneration exists
in some benchmark functions such as f7, fig, and fa;.
These types of degeneration happen when the dimension of
the problem increases, and we reasonably believe that this
degeneration is also caused by the curse of dimensionality,

Table 8 Optimum found by

optimization techniques on the Ale " 2 3 4 s cons. obj

g;r{fﬂffr Beam Design SFO 6.534790  4.653559 4241771 4377597 2335527  —0.0033  1.3817
DSIDE 9.409405 4737502 5.103161  3.361869 2758319  —0.2039  1.5831
POA 6.426340 4766779  7.823874  3.184123 293497  —0.1324  1.5684
SCSO 5745827 5346359  4.685947  3.114073  3.872125  —0.0026 1.4204
aRBE-NFO  9.324028  7.978926  4.897215  8.857559  4.889085 —0.6715 2.2430
SHEALED 5752486 5717425  4.170125 3936549 2121631  —0.0001 13539
SEA-HHA 53868787 5417096  5.144122 3389277  3.157643  —0.0258  1.4036
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Table 9 Optimization results on the Tension/Compression Spring
Design problem. If more than 1 of 30 trial runs does not find a fea-
sible solution, the worst, mean, and std cannot be calculated and we
manually fill them with Nan. Statistical analysis is also meaningless

Alg worst mean best std
SFO Nan Nan 0.0132 Nan
DSIDE 0.1551 0.0433 ~ 0.0138 0.0286
POA 0.0603 0.0285 ~ 0.0133 0.0123
SCSO Nan Nan 0.0131 Nan
aRBF-NFO Nan Nan 0.0204 Nan
SHEALED 0.0420 0.0230 ~ 0.0130 0.0085
SEA-HHA 0.0548 0.0314 0.0135 0.0100

which further affects the quality of solutions estimated by the
approximation model, and how to overcome this issue will
be considered in our future research.

5.3 Performance Analysis of Optimization on Three
Engineering Problems

These engineering optimization problems contain multiple
constraints and complex fitness landscapes, the optimiza-
tion performance on these problems can reflect the ability
of the algorithm to deal with the real-world tasks. Besides,
this research focuses on solving EOPs, and only 1000 FEs
are assigned for each task optimization, which is a severe
challenge for optimization techniques.

Statistical results in Tables 7, 9, and 11 show that SEA-
HHA at least is not inferior to any optimization method
for any problem and can outperform in some problems
(e.g. compared with DSIDE, aRBF-NFO, and SHEALED
in Cantilever Beam Design). Another advantage of SEA-
HHA is that the optimization process is stable even under the
FEs limitation. In the Tension/Compression Spring Design
problem, SEA-HHA can find a feasible solution in any inde-
pendent trial run while SFO, SCSO, and aRBF-NFO can
not at least once. In the Pressure Vessel Design, the worst
solution found by SEA-HHA is apparently better than the
compared methods and the standard deviation is also small.
These experimental results reveal the excellent exploration
and exploitation abilities of SEA-HHA in engineering opti-
mization problems, which has great potential to deal with
real-world applications.

5.4 Potential and Future Topics

Through the above analyses, we have known that our pro-
posed SEA-HHA has broad prospects for dealing with EOPs.
However, as a new optimization technique, there are still
many aspects for further improvement. Here, we list some
open topics.

5.4.1 More Powerful and Efficient Operators

Three exploration and exploitation strategies and one muta-
tion strategy are employed as our basic search strategy
archive. Without complex parameter tuning, our designed
search strategies are the most common and easy-implemented.
Meanwhile, Cruz et al. [24] summarizes ten search operations
from well-known meta-heuristics such as Random Sample,
Random Walk, Firefly Dynamic, Gravitational Search, and
so on, which can also be absorbed into our proposed SEA-
HHA to strengthen the diversity of the search strategy.

5.4.2 Dealing with High-Dimensional and Large-Scale EOPs

We implement the optimization experiments of SEA-HHA
on relatively low-dimensional problems and have achieved
satisfactory performance. However, we also observed the
deterioration of SEA-HHA as the dimension of the prob-
lem increases, and how to alleviate the negative effect of the
curse of dimensionality is a challenging topic. Inspired by
the divide-and-conquer, cooperative coevolution (CC) [60]
framework is a mature approach to solving high-dimensional
and large-scale optimization problems, which divides the
original problems into several sub-components and opti-
mizes them separately. The remaining problem is how to
decompose the original problems properly. To the best of our
knowledge, merged differential grouping (MDG) [61] is the
lightest decomposition method that only consumes 6.41e3
for CEC2013 large-scale benchmark functions on average
with high accuracy. Therefore, the collaboration of MDG
and our proposed optimizer SEA-HHA is promising to deal
with high-dimensional and large-scale EOPs.

5.4.3 Determining the Optimization Sequence More
Intelligently

As our first attempt to introduce the surrogate-assisted tech-
nique to the hyper-heuristic algorithm, we simply determine
the sequence of heuristics by probabilistic selection func-
tion with pre-defined probabilities in this paper. Actually,
many effective methodologies can contribute to the opti-
mization sequence construction, such as Genetic Algorithm
(GA) [62, 63], Reinforcement Learning techniques [28, 64],
improvement-based choice function [65, 66], and so on.
In our future research, we want to design a more flexible
and intelligent method to determine the construction of the
optimization sequence. A primary idea is to evaluate the gen-
erated solutions of different archives by the surrogate model
and dynamically adjust the selected probability, which can
fully utilize the surrogate model and is computationally cheap
for EOPs.
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Table 10 Optimum found by optimization techniques on the Tension/Compression Spring Design problem

Alg X1 X2 X3 cons.1 cons.2 cons.3 cons.4 obj.
SFO 0.053517 0.393260 9.745187 —0.0065 —-0.0184 —3.9872 —0.7021 0.0132
DSIDE 0.056095 0.466966 7.392016 —0.0589 —0.0094 —3.8877 —0.6512 0.0138
POA 0.050000 0.313423 15.000000 —0.0293 —0.0099 —3.7658 —0.7577 0.0133
SCSO 0.053946 0.412892 8.965602 —0.0380 —0.0011 —3.9571 —0.6887 0.0131
aRBF-NFO 0.066801 0.812510 3.645216 —0.3678 —0.0301 —2.8987 —0.4137 0.0204
SHEALED 0.050000 0.315625 14.575956 —0.0214 —0.0044 —3.8362 —0.7562 0.0130
SEA-HHA 0.058430 0.540130 5.358699 —0.0091 —0.0023 —4.2493 —0.6009 0.0135
o the Pressure Vewel Design M worst mean best s
problem SFO 182308.88 37182.20 ~ 6811.07 53,171.32
DSIDE 286301.67 71823.97 + 16,446.54 49,198.51
POA 122179.92 60392.19 + 16,118.21 31,410.21
SCSO 240564.27 85641.49 + 21,920.95 50,317.78
aRBF-NFO 19,2761.70 25,873.81 ~ 7117.16 38,378.12
SHEALED 155,058.38 42,531.62 + 6811.27 31,670.85
SEA-HHA 29877.51 13509.01 6648.46 4690.01
Table 12 Optimum found by optimization techniques on the Pressure Vessel Design problem
Alg X1 X2 X3 X3 cons. 1 cons.2 cons.3 cons.4 obj.
SFO 0.97065 0.56005 48.77169 108.81143 —0.02 —-0.09 —3080.51 —131.18 6811.07
DSIDE 1.57724 1.31905 43.38856 195.95323 -0.73 —-0.90 —205066.52 —44.04 16446.54
POA 1.78198 0.93542 56.50870 99.64362 —0.69 —0.39 —459457.48 —140.35 16118.21
SCSO 1.42960 0.85228 72.49971 155.19587 —0.03 —0.16 —2862965.50 —84.80 21920.95
aRBF-NFO 1.14105 0.58046 56.86348 51.92381 —0.04 —0.03 —1626.53 —188.07 7117.10
SHEALED 1.00300 0.46802 47.03495 123.86394 —0.09 —0.01 —730.81 —116.13 6811.27
SEA-HHA 1.00388 0.53724 51.45276 87.45941 —0.01 —0.04 —1978.28 —152.54 6648.46

6 Conclusion

In this paper, we propose a novel surrogate ensemble-assisted
hyper-heuristic algorithm (SEA-HHA) to solve EOPs. In the
high-level component design, the random selection function
based on the pre-defined probabilities is adopted to dominate
the LLHs. In the low-level component, we design four search
strategy archives as LLHs: exploration strategy archive,
exploitation strategy archive, surrogate-assisted estimation
archive, and mutation strategy archive, each search strategy
is easy-implemented. Besides, in the surrogate-assisted esti-
mation archive, three different data selection principles are
applied for model construction: All Data, Recent Data,
and Neighbor, which correspond to the global and local
concepts, and the most accurate model constructed by PR,
SVR, and GPR is utilized to estimate the promising solutions.

In the numerical experiments, we compare our proposed
SEA-HHA with six advanced optimization techniques on

@ Springer

the CEC2013 benchmark functions and three popular engi-
neering optimization problems. Experimental and statistical
results show that SEA-HHA has broad prospects for solving
EOPs.

At the end of this paper, we list some open topics to fur-
ther develop the SEA-HHA. In the future, we will focus on
combining the learning-based methods to determine the opti-
mization sequence more intelligently and extend SEA-HHA
to solve high-dimensional EOPs.

Acknowledgements This work was supported by JSPS KAKENHI
Grant Number JP20K 11967, JST SPRING Grant Number JPMJSP2119,
and Interdisciplinary large-scale computer system (Supercomputing
system), Information Initiative Center, Hokkaido University.

Author Contributions RZ: Conceptualization, methodology, investi-
gation, writing-original draft, writing-review & editing, and fund-
ing acquisition. JY: formal analysis, investigation, methodology, and
writing—review & editing. CZ: formal analysis, resources, and writing-
review & editing. MM: methodology, writing-review & editing, and



International Journal of Computational Intelligence Systems

(2023) 16:169

Page190f21 169

project administration. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding This work was supported by JSPS KAKENHI Grant number
JP20K11967 and JST SPRING Grant number JPMJSP2119.

Data Availability The source code of this research can be downloaded
from https://github.com/RuiZhong961230/SEA-HHA.

Declarations

Conflict of Interest The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Al-Sahaf,H.,Bi, Y., Chen, Q.,Lensen, A., Mei, Y., Sun, Y., Tran, B.,
Xue, B., Zhang, M.: A survey on evolutionary machine learning.
J. R. Soc. N. Z. 49(2), 205-228 (2019). https://doi.org/10.1080/
03036758.2019.1609052

2. Wang, Z., Sobey, A.: A comparative review between genetic algo-
rithm use in composite optimisation and the state-of-the-art in
evolutionary computation. Compos. Struct. 233, 111739 (2020).
https://doi.org/10.1016/j.compstruct.2019.111739

3. Tan, K.C., Feng, L., Jiang, M.: Evolutionary transfer optimiza-
tion - a new frontier in evolutionary computation research. IEEE
Comput. Intell. Mag. 16(1),22-33 (2021). https://doi.org/10.1109/
MCI.2020.3039066

4. Fernandes Junior, FE., Yen, G.G.: Particle swarm optimization of
deep neural networks architectures for image classification. Swarm
Evol. Comput. 49, 62-74 (2019). https://doi.org/10.1016/j.swevo.
2019.05.010

5. Telikani, A., Gandomi, A.H., Shahbahrami, A.: A survey of evo-
lutionary computation for association rule mining. Inf. Sci. 524,
318-352 (2020). https://doi.org/10.1016/j.ins.2020.02.073

6. Zhao, F.,, He, X., Wang, L.: A two-stage cooperative evolutionary
algorithm with problem-specific knowledge for energy-efficient
scheduling of no-wait flow-shop problem. IEEE Trans. Cybern.
51(11), 5291-5303 (2021). https://doi.org/10.1109/TCYB.2020.
3025662

7. Chatterjee, T., Chakraborty, S., Chowdhury, R.: A critical review
of surrogate assisted robust design optimization. Arch. Com-
put. Methods Eng. 26, 245-274 (2019). https://doi.org/10.1007/
s11831-017-9240-5

8. Gu, H., Wang, H., Jin, Y.: Surrogate-assisted differential evolu-
tion with adaptive multi-subspace search for large-scale expensive
optimization. IEEE Trans. Evol. Comput. (2022). https://doi.org/
10.1109/TEVC.2022.3226837

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Wang, Y., Lin, J., Liu, J., Sun, G., Pang, T.: Surrogate-assisted dif-

ferential evolution with region division for expensive optimization
problems with discontinuous responses. IEEE Trans. Evol. Com-
put. 26(4), 780-792 (2022). https://doi.org/10.1109/TEVC.2021.
3117990

Dong, H., Dong, Z.: Surrogate-assisted grey wolf optimization for
high-dimensional, computationally expensive black-box problems.
Swarm Evol. Comput. 57, 100713 (2020). https://doi.org/10.1016/
j-swevo.2020.100713

Nishihara, K., Nakata, M.: Surrogate-assisted differential evolu-
tion with adaptation of training data selection criterion. In: 2022
IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 1675-1682 (2022). https://doi.org/10.1109/SSCI51031.2022.
10022105

Wang, W., Liu, H.-L., Tan, K.C.: A surrogate-assisted differential
evolution algorithm for high-dimensional expensive optimization
problems. IEEE Trans. Cybern. 53(4), 2685-2697 (2023). https://
doi.org/10.1109/TCYB.2022.3175533

Cai, X., Ruan, G., Yuan, B., Gao, L.: Complementary surrogate-
assisted differential evolution algorithm for expensive multi-
objective problems under a limited computational budget. Inf. Sci.
632, 791-814 (2023). https://doi.org/10.1016/].ins.2023.03.005
Wang, H., Jin, Y., Doherty, J.: Committee-based active learning for
surrogate-assisted particle swarm optimization of expensive prob-
lems. IEEE Trans. Cybern. 47(9), 2664—-2677 (2017). https://doi.
org/10.1109/TCYB.2017.2710978

Xiang, X., Tian, Y., Xiao, J., Zhang, X.: A clustering-based
surrogate-assisted multiobjective evolutionary algorithm for shel-
ter location problem under uncertainty of road networks. IEEE
Trans. Ind. Inf. 16(12), 7544—7555 (2020). https://doi.org/10.1109/
TI1.2019.2962137

Wakjira, T.G., Ibrahim, M., Ebead, U., Alam, M.S.: Explainable
machine learning model and reliability analysis for flexural capac-
ity prediction of rc beams strengthened in flexure with frcm. Eng.
Struct. 255, 113903 (2022). https://doi.org/10.1016/j.engstruct.
2022.113903

Wolpert, D.H., Macready, W.G.: No free lunch theorems for opti-
mization. IEEE Trans. Evol. Comput. 1(1), 67-82 (1997). https://
doi.org/10.1109/4235.585893

Dowsland, K.A.: Off-the-peg or made-to-measure? Timetabling
and scheduling with sa and ts. In: Burke, E., Carter, M. (eds.) Prac-
tice and Theory of Automated Timetabling II, pp. 37-52. Springer,
Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0055880
Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach
to scheduling a sales summit. In: Burke, E., Erben, W. (eds.)
Practice and Theory of Automated Timetabling III, pp. 176—190.
Springer, Berlin (2001). https://doi.org/10.1007/3-540-44629-
X_11

Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for
rapid prototyping in scheduling and optimisation. In: Applications
of Evolutionary Computing, pp. 1-10. Springer, Berlin (2002).
https://doi.org/10.1007/3-540-46004-7_1

Ozcan, E., Kheiri, A.: A hyper-heuristic based on random gradient,
greedy and dominance. In: Computer and Information Sciences
IL pp. 557-563. Springer, London (2012). https://doi.org/10.1007/
978-1-4471-2155-8_71

Jackson, W.G., Ozcan, E., Drake, J.H.: Late acceptance-based
selection hyper-heuristics for cross-domain heuristic search. In:
2013 13th UK Workshop on Computational Intelligence (UKCI),
pp. 228-235 (2013). https://doi.org/10.1109/UKCI.2013.6651310
Kheiri, A., Keedwell, E.: Selection hyper-heuristics. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference
Companion. GECCO ’22, pp. 983-996. Association for Comput-
ing Machinery, New York, NY, USA (2022). https://doi.org/10.
1145/3520304.3533655

@ Springer


https://github.com/RuiZhong961230/SEA-HHA
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/03036758.2019.1609052
https://doi.org/10.1080/03036758.2019.1609052
https://doi.org/10.1016/j.compstruct.2019.111739
https://doi.org/10.1109/MCI.2020.3039066
https://doi.org/10.1109/MCI.2020.3039066
https://doi.org/10.1016/j.swevo.2019.05.010
https://doi.org/10.1016/j.swevo.2019.05.010
https://doi.org/10.1016/j.ins.2020.02.073
https://doi.org/10.1109/TCYB.2020.3025662
https://doi.org/10.1109/TCYB.2020.3025662
https://doi.org/10.1007/s11831-017-9240-5
https://doi.org/10.1007/s11831-017-9240-5
https://doi.org/10.1109/TEVC.2022.3226837
https://doi.org/10.1109/TEVC.2022.3226837
https://doi.org/10.1109/TEVC.2021.3117990
https://doi.org/10.1109/TEVC.2021.3117990
https://doi.org/10.1016/j.swevo.2020.100713
https://doi.org/10.1016/j.swevo.2020.100713
https://doi.org/10.1109/SSCI51031.2022.10022105
https://doi.org/10.1109/SSCI51031.2022.10022105
https://doi.org/10.1109/TCYB.2022.3175533
https://doi.org/10.1109/TCYB.2022.3175533
https://doi.org/10.1016/j.ins.2023.03.005
https://doi.org/10.1109/TCYB.2017.2710978
https://doi.org/10.1109/TCYB.2017.2710978
https://doi.org/10.1109/TII.2019.2962137
https://doi.org/10.1109/TII.2019.2962137
https://doi.org/10.1016/j.engstruct.2022.113903
https://doi.org/10.1016/j.engstruct.2022.113903
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1007/BFb0055880
https://doi.org/10.1007/3-540-44629-X_11
https://doi.org/10.1007/3-540-44629-X_11
https://doi.org/10.1007/3-540-46004-7_1
https://doi.org/10.1007/978-1-4471-2155-8_71
https://doi.org/10.1007/978-1-4471-2155-8_71
https://doi.org/10.1109/UKCI.2013.6651310
https://doi.org/10.1145/3520304.3533655
https://doi.org/10.1145/3520304.3533655

169

Page 20 of 21

International Journal of Computational Intelligence Systems

(2023) 16:169

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Cruz-Duarte, J.M., Amaya, 1., Ortiz-Bayliss, J.C., Conant-Pablos,
S.E., Terashima-Marin, H.: A primary study on hyper-heuristics
to customise metaheuristics for continuous optimisation. In: 2020
IEEE Congress on Evolutionary Computation (CEC), pp. 1-8
(2020). https://doi.org/10.1109/CEC48606.2020.9185591

Liang, J., Qu, B., Suganthan, P., Herndndez-Diaz, A.: Problem def-
initions and evaluation criteria for the cec 2013 special session on
real-parameter optimization. Technical Report 201212, Computa-
tional Intelligence Laboratory, Zhengzhou University, Zhengzhou
China (2013)

Fisher, H.: Probabilistic learning combinations of local job-shop
scheduling rules. Ind. Sched., 225-251 (1963)

Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G.,
Ozcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the
art. J. Oper. Res. Soc. 64(12), 1695-1724 (2013). https://doi.org/
10.1057/jors.2013.71

Choong, S.S., Wong, L.-P., Lim, C.P.: Automatic design of hyper-
heuristic based on reinforcement learning. Inf. Sci. 436-437, 89—
107 (2018). https://doi.org/10.1016/j.ins.2018.01.005

Zhao, F., Di, S., Cao, J., Tang, J.: Jonrinaldi: a novel cooperative
multi-stage hyper-heuristic for combination optimization prob-
lems. Complex Syst. Model. Simul. 1(2), 91-108 (2021). https://
doi.org/10.23919/CSMS.2021.0010

Qin, W., Zhuang, Z., Huang, Z., Huang, H.: A novel reinforcement
learning-based hyper-heuristic for heterogeneous vehicle routing
problem. Comput. Ind. Eng. 156, 107252 (2021). https://doi.org/
10.1016/j.cie.2021.107252

Zhang, C., Zhao, Y., Leng, L.: A hyper-heuristic algorithm for
time-dependent green location routing problem with time win-
dows. IEEE Access 8, 83092-83104 (2020). https://doi.org/10.
1109/ACCESS.2020.2991411

Ostertagovd, E.: Modelling using polynomial regression. Proc.
Eng. 48, 500-506 (2012). https://doi.org/10.1016/j.proeng.2012.
09.545. (Modelling of Mechanical and Mechatronics Systems)
Ake Bjorck: Least squares methods. Handbook of Numeri-
cal Analysis, vol. 1, pp. 465-652. Elsevier (1990). https://doi.
org/10.1016/S1570-8659(05)80036-5. https://www.sciencedirect.
com/science/article/pii/S1570865905800365

Vapnik, V.: The nature of statistical learning theory (1995). https://
doi.org/10.1007/978-1-4757-2440-0

Awad, M., Khanna, R.: Support Vector Regression, pp. 67—
80. Apress, Berkeley (2015). https://doi.org/10.1007/978-1-4302-
5990-9_4

Yang, D., Zhang, X., Pan, R., Wang, Y., Chen, Z.: A novel gaussian
process regression model for state-of-health estimation of lithium-
ion battery using charging curve. J. Power Sources 384, 387-395
(2018). https://doi.org/10.1016/j.jpowsour.2018.03.015

Liu, D., Pang, J., Zhou, J., Peng, Y., Pecht, M.: Prognostics for
state of health estimation of lithium-ion batteries based on com-
bination gaussian process functional regression. Microelectron.
Reliab. 53(6), 832-839 (2013). https://doi.org/10.1016/j.microrel.
2013.03.010

Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine
learning (gpml) toolbox. J. Mach. Learn. Res. 11, 3011-3015
(2010)

Storn, R.: On the usage of differential evolution for function opti-
mization. In: Proceedings of North American Fuzzy Information
Processing, pp. 519-523 (1996). https://doi.org/10.1109/NAFIPS.
1996.534789

Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen,
H.: Harris hawks optimization: algorithm and applications. Futur.
Gener. Comput. Syst. 97, 849-872 (2019). https://doi.org/10.1016/
j-future.2019.02.028

Braik, M.S.: Chameleon swarm algorithm: a bio-inspired optimizer
for solving engineering design problems. Expert Syst. Appl. 174,
114685 (2021). https://doi.org/10.1016/j.eswa.2021.114685

@ Springer

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Abdollahzadeh, B., Soleimanian Gharehchopogh, F., Mirjalili, S.:
Artificial gorilla troops optimizer: a new nature-inspired meta-
heuristic algorithm for global optimization problems. Int. J. Intell.
Syst. (2021). https://doi.org/10.1002/int.22535

Trojovska, E., Dehghani, M., Trojovsky, P.: Zebra optimization
algorithm: a new bio-inspired optimization algorithm for solving
optimization algorithm. IEEE Access 10, 49445-49473 (2022).
https://doi.org/10.1109/ACCESS.2022.3172789

Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution
algorithm with strategy adaptation for global numerical optimiza-
tion. IEEE Trans. Evol. Comput. 13(2), 398-417 (2009). https://
doi.org/10.1109/TEVC.2008.927706

Yu, J.: Vegetation evolution: an optimization algorithm inspired by
the life cycle of plants. Int. J. Comput. Intell. Appl. (2022). https://
doi.org/10.1142/51469026822500109

Chickermane, H., Gea, H.C.: Structural optimization using
a new local approximation method. Int. J. Numer. Methods
Eng. 39(5), 829-846 (1996). https://doi.org/10.1002/(SICI)1097-
0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U

Arora, J.S.: Copyright. In: Arora, J.S. (ed.) Introduction to Opti-
mum Design (Fourth Edition), 4th edn. Academic Press, Boston
(2017). https://doi.org/10.1016/B978-0-12-800806-5.00025-1
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer.
Adv. Eng. Softw. 69, 46-61 (2014). https://doi.org/10.1016/j.
advengsoft.2013.12.007

Bayzidi, H., Talatahari, S., Saraee, M., Lamarche, C.-P.: Social
network search for solving engineering optimization problems.
Comput. Intell. Neurosci. 2021, 1-32 (2021). https://doi.org/10.
1155/2021/8548639

Shadravan, S., Naji, H.R., Bardsiri, V.K.: The sailfish optimizer:
a novel nature-inspired metaheuristic algorithm for solving con-
strained engineering optimization problems. Eng. Appl. Artif.
Intell. 80, 20-34 (2019). https://doi.org/10.1016/j.engappai.2019.
01.001

Zhong, X., Cheng, P.: An improved differential evolution algo-
rithm based on dual-strategy. Math. Probl. Eng. 2020, 1-14 (2020).
https://doi.org/10.1155/2020/9767282

Trojovsky, P., Dehghani, M.: Pelican optimization algorithm: a
novel nature-inspired algorithm for engineering applications. Sen-
sors (2022). https://doi.org/10.3390/522030855

Seyyedabbasi, A., Kiani, F.: Sand cat swarm optimization: a nature-
inspired algorithm to solve global optimization problems. Eng.
Comput. (2022). https://doi.org/10.1007/s00366-022-01604-x
Yu, M., Liang, J., Zhao, K., Wu, Z.: An arbf surrogate-assisted
neighborhood field optimizer for expensive problems. Swarm Evol.
Comput. 68, 100972 (2022). https://doi.org/10.1016/j.swevo.2021.
100972

Wu, Z., Chow, T.W.: Neighborhood field for cooperative opti-
mization. Soft. Comput. 17(5), 819-834 (2013). https://doi.org/
10.1007/s00500-012-0955-9

Liu, Y., Wang, H.: Surrogate-assisted hybrid evolutionary algo-
rithm with local estimation of distribution for expensive mixed-
variable optimization problems. Appl. Soft Comput. 133, 109957
(2023). https://doi.org/10.1016/j.as0c.2022.109957

Holm, S.: A simple sequentially rejective multiple test procedure.
Scand. J. Stat. 6(2), 65-70 (1979)

Coello Coello, C.A.: Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a sur-
vey of the state of the art. Comput. Methods Appl. Mech.
Eng. 191(11), 1245-1287 (2002). https://doi.org/10.1016/S0045-
7825(01)00323-1

Koppen, M.: The curse of dimensionality. In: 5th Online World
Conference on Soft Computing in Industrial Applications (WSC5),
vol. 1, pp. 4-8 (2000)

Potter, M.A., De Jong, K.A.: A cooperative coevolutionary
approach to function optimization. In: Lecture Notes in Computer


https://doi.org/10.1109/CEC48606.2020.9185591
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1016/j.ins.2018.01.005
https://doi.org/10.23919/CSMS.2021.0010
https://doi.org/10.23919/CSMS.2021.0010
https://doi.org/10.1016/j.cie.2021.107252
https://doi.org/10.1016/j.cie.2021.107252
https://doi.org/10.1109/ACCESS.2020.2991411
https://doi.org/10.1109/ACCESS.2020.2991411
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/S1570-8659(05)80036-5
https://doi.org/10.1016/S1570-8659(05)80036-5
https://www.sciencedirect.com/science/article/pii/S1570865905800365
https://www.sciencedirect.com/science/article/pii/S1570865905800365
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1007/978-1-4302-5990-9_4
https://doi.org/10.1007/978-1-4302-5990-9_4
https://doi.org/10.1016/j.jpowsour.2018.03.015
https://doi.org/10.1016/j.microrel.2013.03.010
https://doi.org/10.1016/j.microrel.2013.03.010
https://doi.org/10.1109/NAFIPS.1996.534789
https://doi.org/10.1109/NAFIPS.1996.534789
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.eswa.2021.114685
https://doi.org/10.1002/int.22535
https://doi.org/10.1109/ACCESS.2022.3172789
https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/10.1142/S1469026822500109
https://doi.org/10.1142/S1469026822500109
https://doi.org/10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
https://doi.org/10.1016/B978-0-12-800806-5.00025-1
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1155/2021/8548639
https://doi.org/10.1155/2021/8548639
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1155/2020/9767282
https://doi.org/10.3390/s22030855
https://doi.org/10.1007/s00366-022-01604-x
https://doi.org/10.1016/j.swevo.2021.100972
https://doi.org/10.1016/j.swevo.2021.100972
https://doi.org/10.1007/s00500-012-0955-9
https://doi.org/10.1007/s00500-012-0955-9
https://doi.org/10.1016/j.asoc.2022.109957
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1016/S0045-7825(01)00323-1

International Journal of Computational Intelligence Systems

(2023) 16:169

Page210f21 169

61.

62.

63.

64.

Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 866 LNCS, 249-257
(1994)

Ma, X., Huang, Z., Li, X., Wang, L., Qi, Y., Zhu, Z.: Merged dif-
ferential grouping for large-scale global optimization. IEEE Trans.
Evol. Comput. 26(6), 1439-1451 (2022). https://doi.org/10.1109/
TEVC.2022.3144684

FANG, H.: A promising genetic algorithm approach to job-shop
scheduling, rescheduling, and open-shop scheduling problems.
Proc. the 5th International Conference on Genetic Algorithms,
375-382 (1993)

Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using
an evolving heuristically driven schedule builder. Evol. Comput.
6(1), 61-80 (1998). https://doi.org/10.1162/evco.1998.6.1.61
Zhang, Y., Bai, R., Qu, R., Tu, C., Jin, J.: A deep reinforcement
learning based hyper-heuristic for combinatorial optimisation with
uncertainties. Eur. J. Oper. Res. 300(2), 418427 (2022). https://
doi.org/10.1016/j.ejor.2021.10.032

65.

66.

Choong, S.S., Wong, L.-P,, Lim, C.P.: An artificial bee colony
algorithm with a modified choice function for the traveling sales-
man problem. In: 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 357-362 (2017). https://doi.org/
10.1109/SMC.2017.8122629

Choong, S.S., Wong, L.-P., Lim, C.P.: An artificial bee colony algo-
rithm with a modified choice function for the traveling salesman
problem. Swarm Evol. Comput. 44, 622-635 (2019). https://doi.
org/10.1016/j.swevo.2018.08.004

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1109/TEVC.2022.3144684
https://doi.org/10.1109/TEVC.2022.3144684
https://doi.org/10.1162/evco.1998.6.1.61
https://doi.org/10.1016/j.ejor.2021.10.032
https://doi.org/10.1016/j.ejor.2021.10.032
https://doi.org/10.1109/SMC.2017.8122629
https://doi.org/10.1109/SMC.2017.8122629
https://doi.org/10.1016/j.swevo.2018.08.004
https://doi.org/10.1016/j.swevo.2018.08.004

	Surrogate Ensemble-Assisted Hyper-Heuristic Algorithm for Expensive Optimization Problems
	Abstract
	1 Introduction
	2 Related Works
	2.1 Hyper-Heuristic Algorithm (HHA)
	2.2 Surrogate Models
	2.2.1 Polynomial Regression (PR)
	2.2.2 Support Vector Regression (SVR)
	2.2.3 Gaussian Process Regression (GPR)


	3 Our Proposal: SEA-HHA
	3.1 Exploration Strategy Archive
	3.2 Exploitation Strategy Archive
	3.3 Surrogate-Assisted Estimation Archive
	3.4 Mutation Strategy Archive

	4 Numerical Experiments
	4.1 Experiment Settings
	4.1.1 Experiment Environment
	4.1.2 Benchmark Functions
	4.1.3 Compared Methods and Parameters

	4.2 Experimental Results
	4.2.1 Optimization on CEC2013 Suite
	4.2.2 Optimization on Engineering Optimization Problems


	5 Discussion
	5.1 Computational Complexity Analysis of SEA-HHA
	5.2 Performance Analysis of Optimization on CEC2013
	5.2.1 Exploitation Ability of SEA-HHA
	5.2.2 Exploration Ability of SEA-HHA

	5.3 Performance Analysis of Optimization on Three Engineering Problems
	5.4 Potential and Future Topics
	5.4.1 More Powerful and Efficient Operators
	5.4.2 Dealing with High-Dimensional and Large-Scale EOPs
	5.4.3 Determining the Optimization Sequence More Intelligently


	6 Conclusion
	Acknowledgements
	References


