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Abstract
Three-dimensional (3D) human pose recognition techniques based on spatial data have gained attention. However, existing 
models and algorithms fail to achieve desired precision. We propose a 3D human motion pose recognition method using 
deep contrastive learning and an improved Transformer. The improved Transformer removes noise between human motion 
RGB and depth images, addressing orientation correlation in 3D models. Two-dimensional (2D) pose features are extracted 
from de-noised RGB images using a kernel generation module in a graph convolutional network (GCN). Depth features 
are extracted from de-noised depth images. The 2D pose features and depth features are fused using a regression module in 
the GCN to obtain 3D pose recognition results. The results demonstrate that the proposed method captures RGB and depth 
images, achieving high recognition accuracy and fast speed. The proposed method demonstrates good accuracy in 3D human 
motion pose recognition.

Keywords Pose recognition · Three-dimensional human motion · Deep contrastive learning · Improved transformer · Depth 
image · Pose feature

1 Introduction

Human pose recognition, particularly in the context of 
video comprehension, is a crucial area of research in 
computer vision [1, 2]. The aim of human pose recogni-
tion is to enable computers to comprehend and recognize 
human motions in videos, make predictions and identifica-
tions accordingly, and ultimately exhibit more intelligent 
behavior [3]. Currently, three-dimensional (3D) human 
pose recognition techniques based on 3D space are gaining 

increasing importance. However, due to the inherent com-
plexity of this domain, researchers face significant chal-
lenges in achieving the desired detection results, especially 
when applying these findings to real-world scenarios. 
Despite the existence of various models and algorithms 
[4, 5] that have enhanced detection accuracy, the expected 
results remain elusive. Consequently, more accurate 3D 
spatial positioning within 3D space has become a promi-
nent and intricate research topic [6, 7]. To conduct 3D 
human pose recognition, RGB images and depth images 
can be captured using a Kinect camera to record the motion 
process of humans. These images or videos of human 
subjects provide the necessary data for subsequent tasks, 
such as predicting and recognizing human motions [8, 9]. 
While existing models and algorithms have yielded some 
improvements in detection accuracy, scholars continue to 
conduct further research to enhance the precision of 3D 
human pose recognition. Jiang et al. [10] used a Gauss-
ian mixture model to detect foreground in human motion 
images, and employed the stripe flow acceleration model 
to extract features of human motion pose images within the 
foreground detection results. The extracted features were 
then input into a feed-forward neural network to output 
3D human motion pose recognition results. The accuracy 
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of this method for 3D human motion pose recognition is 
relatively high, with a recognition error of 2.5%. However, 
this method does not have de-noising functionality and is 
susceptible to noise interference, which reduces recogni-
tion accuracy. Zhao et al. [11] used a second-order average 
pooling feature aggregation algorithm to extract features 
in human motion images and extracted sequence features 
through a spatiotemporal attention factor-weighted feature 
aggregation algorithm. The two extracted features were 
fused in a fusion manner and input into a full-channel spa-
tiotemporal attention factor generating network to output 
3D human motion pose recognition results. The accuracy 
of this method for 3D human motion pose recognition is 
high. However, this method does not have de-noising func-
tionality, which is susceptible to noise interference, and 
the feature extraction process is relatively complicated, 
which reduces recognition accuracy and efficiency. Deng 
and Wu [12] provided a detailed description of the fea-
ture data extraction process in multi-pose human motion 
scenes, as well as a feature selection method based on 
multi-information fusion. Furthermore, they proposed a 
pose correction algorithm based on the detection of human 
motion coherence, which helps address the problem of 
misjudgment in human motion pose. In the validation 
process, multiple classifiers were used, and various data, 
such as the number of selected features, recognition accu-
racy, and correction results, were examined. However, the 
method does not possess feature extraction capabilities and 
can only roughly recognize human pose. It is unable to 
recognize detailed information about human pose, thereby 
reducing the recognition accuracy of pose recognition. Ma 
and Yan [13] proposed a basketball action pose estima-
tion algorithm based on multi-scale spatiotemporal cor-
relation features. This algorithm utilizes a Transformer-
based human temporal feature capture module to model 
spatiotemporal features at the sequence level, thereby 
mitigating the negative effects caused by motion blur and 
occlusion. Additionally, to address the complexity and var-
iability of human shapes, a deformable convolution-based 
human spatial feature residual fusion module is adopted to 
obtain more comprehensive spatial features. However, the 
method is susceptible to noise, resulting in unsatisfactory 
recognition results. Zhang et al. [14] used hardware equip-
ment based on a two-dimensional (2D) hetero-structure 
of the retina to collect human motion images, combined 
with a frame difference algorithm to extract human motion 
targets in the image, and input them into a conductance 
mapping neural network to output 3D human motion pose 
recognition results. This method can effectively collect 
human motion images and reduce the error of 3D human 
motion pose recognition. However, this method cannot 
collect the depth information of human motion images 
comprehensively, resulting in relatively poor information 

collection completeness, which affects pose recognition 
effectiveness.

Despite some progress in previous research on 3D human 
pose recognition, there are still limitations, such as noise 
interference, orientation dependencies, and complex feature 
extraction, which reduce the accuracy and efficiency of rec-
ognition. To address these issues, we propose a 3D human 
pose estimation method based on deep contrastive learn-
ing and improved Transformer models, aiming to improve 
the accuracy and efficiency of recognition. An improved 
Transformer is used to de-noise human motion images. The 
improved Transformer can better refine the detailed informa-
tion of the image, resulting in superior de-noising effect. To 
improve the recognition accuracy of pose recognition, deep 
contrastive learning is used to extract human pose features, 
which effectively improves the recognition accuracy and 
generalization performance of feature extraction by address-
ing the problem of difficult sample selection. To further 
improve the accuracy of pose recognition, a Kinect camera 
is used to capture RGB images of 2D human motion and 
depth images of human motion, effectively collecting depth 
information of human motion images for subsequent pose 
recognition. The main contributions of this paper are as fol-
lows: (1) We propose the recognition method of 3D human 
motion pose with deep contrastive learning and improved 
transformer to improve the recognition effect of 3D human 
motion pose. (2) Using the improved Transformer to remove 
the internal noise of human motion RGB and depth images. 
(3) Extracting 2D human motion pose features in the de-
noised human motion RGB images using deep contrastive 
learning; extracting the depth features of human motion pose 
in the de-noised human motion depth images using the ker-
nel generation module in the graph convolutional networks 
(GCN). (4) Based on the fusion processing of the regression 
module in the GCN, the 2D human motion pose features and 
depth features are extracted to obtain the result of 3D human 
motion pose recognition.

2  Methodology

2.1  Overview of the Proposed Method

The traditional Transformer model relies solely on encoding 
and decoding the input image sequences, which limits its 
ability to handle noise and local errors in the input data. This 
may result in the model’s inability to accurately recover and 
remove noise, leading to inaccurate results in human motion 
pose estimation tasks. Self-supervised learning is a learn-
ing method that does not require manually annotated data. 
By designing appropriate self-supervised tasks and intro-
ducing noise or randomness during the training process, it 
simulates noise and variations in real-world scenarios. By 
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learning meaningful feature representations from unan-
notated data, the model can better understand noise and 
errors and improve its ability to handle them. Through this 
approach, the Transformer model can enhance its ability 
to handle noisy data, thereby improving the accuracy of 

motion estimation. Pixel un-shuffle and pixel shuffle tech-
niques are then used to improve the model’s recognition and 
understanding of noisy images, enhancing the accuracy and 
robustness of human motion image noise processing. There-
fore, 3D human motion pose recognition is accomplished 

Fig. 1  The architecture of 3D 
human motion pose recognition
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using deep contrastive learning and an improved Trans-
former, and the overall architecture of the method is shown 
in Fig. 1.

According to Fig. 1, first, the Kinect camera is used to 
capture RGB and depth images of human motions. Then, 
the collected human motion RGB and depth images are de-
noised using an improved Transformer. Second, 2D human 
motion pose features are extracted from the de-noised human 
motion RGB images using deep contrastive learning. Finally, 
the depth features of the human motion pose are extracted 
from the de-noised human motion depth images using the 
kernel generation module in the GCN. The extracted 2D 
human motion pose features and depth features are fused 
using a regression module to obtain the recognition results 
of 3D human motion pose.

2.2  Human Motion Image De‑noising Based 
on Improved Transformer

Through the Kinect camera, RGB and depth images of 
human motion are captured. As the Kinect contains both a 
color camera and a depth camera [15, 16], it can effectively 
capture RGB and depth images of human motions.

2.2.1  Low‑Dimensional Embedding

Use a 2*2 convolutional layer to embed the collected human 
motion image I into a low-dimensional feature K0.

2.2.2  Deep Feature Transformation

Use a symmetric encoder–decoder to transform K0 into a 
deep feature Kd . Each level of the encoder–decoder contains 
several transformer modules [17, 18]. In order of resolution 
from largest to smallest, K0 is sequentially input into the 
encoder, and pixel reassembly [19, 20] is performed on K0 
by down-sampling. The input of the decoder is the low-reso-
lution latent feature of pixel reshuffling K0 , which is restored 
to the high-resolution part of K0 , and the refined feature Kr is 
obtained. The pixel reshuffling is performed to Kr.

2.2.3  Motion Image Generation

The residual human motion image I′ is generated based on 
the pixel-reorganized Kr using a 2*2 convolutional layer [21, 
22], expressed as

The loss function calculates the pixel-level difference 
between the reconstructed image and the original image, 
takes the sum of squares, and computes the average. This 

(1)I� =

(
I − IKr

)2

Iall
.

metric is used to measure the discrepancy between the net-
work's predicted image and the ground truth image.

The de-noised human motion image Î is obtained by add-
ing I′ and I , as shown in formula

According to the above process, we can obtain the de-
noised RGB image Î𝛼 of human motion, as well as the human 
motion depth image Î𝛽 . The improved Transformer is utilized 
to de-noise human motion images, providing a foundation 
for extracting human motion pose features based on deep 
contrastive learning.

2.3  Human Motion Pose Feature Extraction Based 
on Deep Contrastive Learning

2.3.1  Contrastive Enhanced Feature Extraction

Deep contrastive learning is a self-supervised learning 
method used to analyze human motion pose images and 
extract 3D features of different poses, without the need for 
labels. Using deep contrastive learning, human motion pose 
features can be extracted from de-noised RGB images Î𝛼 . 
The deep contrastive learning method includes two neural 
networks, namely the online network and the target network 
[23, 24]. The number of encoders f� , projectors l� , and pre-
dictors b� in the online network is 1. The weight of the online 
network is � ; the number of encoders fw and projectors lw in 
the target network is 1, and the weight of the target network 
is w.

2.3.2  Contrastive Enhanced Viewpoint Transformation

(1) A de-noised human motion RGB image x�,i is ran-
domly selected within Î𝛼 , and the image augmentation 
transform [25] is expanded on x�,i to obtain the human 
motion RGB images from two viewpoints with the 
equation

where v�,i and v′
�,i

 are the RGB images of human motion 
before and after the augmentation transformation. � and 
�′ are the coefficients of the augmentation transforma-
tion of two views.

(2) Input v�,i inside f� , and obtain

where the output of f� is y� ; � is the regularization 
factor.

(2)Î = I� + I.

(3)
v�,i = �

(
x�,i

)
,

v�
�,i

= ��
(
x�,i

)
,

(4)y� = �f�
(
v�,i

)
,
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(3) Input l� , and obtain

where z� indicates the output of l� . The output of b� is 
b�
(
z�
)
.

  That is, the output of the deep contrastive learning 
online network is b�

(
z�
)
.

(4) Input v′
�,i

 inside fw , and obtain

where the output of fw is y′
w
.

(5) Output lw , and obtain

(6) The normalized treatment of b�
(
z�
)
 and z′

w
 with the 

following equation:

As a result, the normalized results of b�
(
z�
)
 and z′

w
 are 

b�
(
z�
)
 and z′w . The mean square error (MSE) between b�

(
z�
)
 

and z′w is calculated as follows:

2.3.3  Total Error Optimization and Pose Feature Extraction

Input v′
�,i

 in the online network, input v�,i in the target net-
work, the MSE at this time is e′

�,w
 . The minimum total error 

function is used as the objective to output the human motion 
pose feature extraction results with the following equation:

According to J�,w optimization � , the optimization process 
of � is as follows:

where optimizer is the optimizer; � is the learning rate. ∇� is 
the optimizer variable.

That is, the optimization process of w is

(5)z� = �l�
(
y�
)
,

(6)y�
w
= �f �

w

(
v�
�,i

)
,

(7)z�
w
= �l�

w

(
y�
w

)
,

(8)b�
(
z�
)
=

b�
(
z�
)

‖
‖‖
b�
(
z�
)‖
‖‖2

,

(9)z�w =
z�
w

‖‖‖
z�
w

‖‖‖2

.

(10)e�,w =
‖‖
‖
b�
(
z�
)
− z�w

‖‖
‖

2

2
.

(11)J�,w = min

(
e�,w + e�

�,w

)
.

(12)� ← optimizer
(
∇�J�,w, �

)
,

where h is the decay rate. w is the human motion pose feature 
extraction for deep contrastive learning.

2.4  Implementation of 3D Human Motion Pose 
Recognition

Based on the removal of human motion image noise using 
the improved Transformer method, the kernel generation 
module within the GCN [21] in deep contrastive learning is 
used to extract the depth features D� of the human motion 
pose within the b�

(
z�
)
 and Î𝛽 of the 2D pose feature extrac-

tion of contrastive learning using the regression module to 
fuse the depth and obtain the 3D human motion pose rec-
ognition results.

2.4.1  High‑Dimensional Feature Extraction

The dimensionality of Î𝛽 is compressed and input into the 
multilayer perceptron of the kernel generation module to 
obtain the height feature u and the width feature s of the 
human motion depth image, which represent the probabil-
ity of the edge distribution of the human joint points in the 
ranks of the human motion depth image, respectively.

2.4.2  Location Distribution Probability Calculation

Calculate the probability of the location distribution of each 
joint on Î𝛽 with the following equation:

where in the human motion depth image Î𝛽 , and the edge 
distribution probabilities correspond to u and s are pu and 
ps . U are mapping functions.

2.4.3  Depth Feature Extraction and Regression

The depth feature Q� of the human motion pose is extracted 
by spatial filtering kernel, convolution Î𝛽 , with the follow-
ing equation:

where the number of u and s is N  and M.� is the spatial 
filtering kernel.

In the regression module of the GCN, input b�
(
z�
)
 and 

Q� to obtain the 3D human motion pose recognition results 
with the following equation:

(13)w ← � − h�,

(14)P(u, s) = �
(
pu × ps

)
,

(15)Q� =

N∑

u=1

M∑

s=1

P(u, s)�(u, s),
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where � is the activation function; � is the weight; A is the 
adjacency matrix of the human motion image; I� is a unit 
array of order �.

3  Experimental Analysis and Results

3.1  Experimental Environment and Datasets

The server configuration used in the experiment for motion 
pose classification consisted of an Intel(R) Xeon(R) Silver 
4114 CPU, 64GB of memory, and a NVIDIA Quadro RTX 
A4000 16G. We used a 3D human motion pose recognition 
method based on the Transformer model, which was imple-
mented using a Kinect camera. We also used an improved 
Transformer to eliminate internal noise from the RGB and 
depth images of human motion.

In this experiment, we used the HiEve dataset, the MPII 
Human Pose dataset and our dataset as our objects of study. 
We applied our method to perform real-time multi-per-
son pose tracking on videos from both datasets to verify 
the effectiveness of our 3D human motion pose recogni-
tion method. (1) The HiEve dataset consists of 32 video 
sequences collected from YouTube that include abnormal 
scenes. Most of these videos are over 900 frames long, with 
a total length of 33 min and 18 s. The dataset is divided into 
19 training sets and 13 testing sets. (2) The MPII Human 
Pose dataset is a dataset used to evaluate human pose rec-
ognition. It covers 410 human activities, and each image 
is labeled with an activity tag. (3) To collect data for our 
experiments, we installed Kinect cameras in front of and 
behind a fitness center and used our method to capture RGB 
and depth images of human motion in the fitness center. The 

(16)

C = �

([∑(
A + I�

)]− 1

2
(
A + I�

)[∑(
A + I�

)]− 1

2
(
b�
(
z�
)
,Q�

)
�

)

,
resolution of the RGB images is 960 × 540, while the depth 
images are 512 × 424. The sampling rate of both datasets 
is consistent at 40 Hz. The RGB images and depth images 
of human motion are acquired using the proposed method, 
where the results of the RGB images and depth images of 
human motion within the dataset are shown in Fig. 2.

According to Fig. 2, this method can effectively capture 
RGB images and depth images of human motion in the pro-
cess of human motion, and the clarity of image acquisition 
is better.

The proposed method is trained on a total of 10,000 video 
sequences from the HiEve dataset and the MPII Human Pose 
dataset. These datasets contain diverse video target objects, 
providing a certain level of generality. The deep contrastive 
learning method is employed and the network is trained for 
1200 iterations. The initial learning rate is set to 0.001 and 
is decayed and stabilized at each epoch. The weight decay 
factor is set to 0.0001, the batch size is set to 64, the num-
ber of layers is 4, and the number of hidden units is set to 
256. In two datasets, 80% of the images were selected as the 
training set and 20% of the images were selected as the test 
set. By training on different datasets, the model can learn a 
wider range of pose variations and motion features in various 
environments, thereby enhancing its generalization capabil-
ity. Such training process enables the model to better adapt 
to unseen testing data and effectively handle pose recogni-
tion tasks in new scenarios and different backgrounds. This 
enables the model to perform better in real-world 3D human 
motion pose recognition tasks.

3.2  Evaluating Indicator

(1) Feature extraction point distribution: the human is 
extracted at each joint point to generate images. By 
comparing the point distribution, the feature extraction 
accuracy of different methods can be viewed directly 
from the visual aspect.

(2) Motion pose recognition: Generate human motion 
pose recognition images in the 3D coordinate map, and 
objectively display the accuracy of each joint point and 
its connection line.

(3) Recognition speed analysis: the running time of motion 
pose recognition algorithm under the influence of dif-
ferent noises. It can analyze the system in real time 
according to its operation in different scenarios of rec-
ognition. The calculation formula is

where v is the recognition speed, f  is the sweep time. 
t is the unit time. r is the sweep time in case of noise.

(4) Recognition accuracy: human motion pose recognition 
accuracy. The calculation formula is

(17)v = f
[
s∕(t − r)

]
,

(a) RGB image     (b) depth image

Fig. 2  RGB images of human motion and depth image acquisition 
results



International Journal of Computational Intelligence Systems          (2023) 16:173  

1 3

Page 7 of 11   173 

where y denotes the recognition accuracy; k is the 
recognition accuracy when the intensity of iterative 
attack varies; x represents the iterative attack intensity; 
b denotes the recognition accuracy when the iterative 
attack strength x = 0.

3.3  Results and Discussion

The pose recognition of deep learning uses convolutional 
networks to extract key parts of the human skeleton. This 
can be divided into two ways: one is based on skeleton pose 
recognition, which classifies based on the position relation-
ship of the key parts of the human skeleton, and the other 
is through video image recognition, which recognizes the 
human motion process based on skeletal features (2D and 
3D). In which, human pose recognition technology based 
on skeletal features analyzes the motion process composed 
of skeletal features (2D and 3D) in the human motion pro-
cess to achieve rapid and accurate human motion. There-
fore, according to the proposed method, the human motion 
pose features are extracted from the RGB images of human 
motion captured in Fig. 2. The OpenPose pose estimation 
algorithm is utilized to directly extract the coordinates of 
human body key-points from the images, the skeletal points 
are depicted, and the feature results are displayed as the 
graph shown in Fig. 3. The size of Fig. 3 is 257 × 228, with 
a bit depth of 32.

As can be seen in Fig.  3, the proposed method can 
effectively reflect the human motion pose features, and the 
extracted features cover most parts of the human, which can 
provide more comprehensive data support for the subsequent 
3D human motion pose recognition.

(18)y = kx + b, The comparison methods of ABDSF [10], PACAC [11], 
HMARM [12], MSCFL [13], A2DRH [14], and the pro-
posed method were used to recognize the 3D human motion 
pose of Fig. 3 using these six methods, and the recognition 
results are shown in Fig. 4.

According to Fig. 4a, the distribution of the 3D human 
joints recognized by proposed method is consistent with the 
distribution in Fig. 2. By comparing Fig. 4b–e, and Fig. 4a, it 
can be seen that methods of ABDSF [10], PACAC [11], and 
HMARM [12] show partial limb disappearance phenomena 
during human recognition. Figure 4b does not recognize the 
pose of the arms, and Fig. 4c does not recognize the poses 
of both feet and the right calf. Figure 4d does not recognize 
the poses of both feet and the right calf either. According to 
Fig. 4e, the recognition results of MSCFL [13] method have 
problems with the lack of curvature in the upper body, the 
fracture of the lower body, and poor coherence. According to 
Fig. 4f, the A2DRH [14] method recognized images missing 
the head frame, the pose of the left thigh, and the pose of 
the foot, which is significantly different from the recognition 
results of the proposed method. In summary, based on the 
above analysis, when recognizing the human motion pose in 
Fig. 2, the accuracy of the proposed method is higher than 
the other five methods, and the deviation in the 3D direction 
of our method is smaller than that of the other five meth-
ods. Therefore, the proposed method can accurately depict 
most of the poses of the target task, that is, it can accurately 
complete the 3D human motion pose recognition task with 
high accuracy.

Using frame rate to measure the speed of 3D human 
motion pose recognition by the proposed method, the aver-
age frame rate of 3D human motion pose recognition by 
proposed method and five other methods for all images in 
both datasets at different noise levels is analyzed, and the 
analysis results are shown in Table 1. The frame rate thresh-
old is 15 frame/s.

According to Table 1, as the noise level increases, the 
recognition speed of the six methods becomes slower, and 
the proposed method has the fastest recognition speed. 
When the noise level is 40, the recognition speed of the 
proposed method for the two datasets is 9.1 frame/s and 9.2 
frame/s, respectively, which is faster than the recognition 
speed of methods ABDSF [10], PACAC [11], HMARM 
[12], MSCFL [13], and A2DRH [14]. In summary, under 
the influence of different noise levels, the proposed method 
has a higher recognition speed than the compared methods. 
Therefore, the proposed method has a high recognition speed 
for human motion pose and can be applied to human motion 
pose recognition.

The recognition accuracy of the above six methods for 
recognizing 3D human motion pose when different itera-
tions of attack intensity are analyzed, and the analysis 
results are shown in Fig. 5. It can be seen that as the iterative Fig. 3  Human motion pose feature extraction results
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Fig. 4  Comparison results of 3D human motion pose recognition
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attack strength increases, the accuracy of all six methods 
decreases, with the smallest decrease observed for the pro-
posed method. When the iterative attack strength reaches 20, 
the recognition accuracy of the proposed method stabilizes 
at around 95%. In contrast, the recognition accuracies of the 
methods in ABDSF [10], PACAC [11], and A2DRH [14] 
steadily decrease before stabilizing at around 92.5%. Over-
all, the proposed method consistently achieves higher recog-
nition accuracy than the other five methods under different 
iterative attack strengths. Therefore, the proposed method 
demonstrates superior accuracy in 3D human motion pose 

recognition under different iterative attack strengths, high-
lighting its effectiveness in achieving high accuracy pose 
recognition.

Based on the aforementioned experimental results, the 
proposed method effectively captures RGB and depth images 
of human motion, with high image clarity. This indicates 
that the extracted features cover most parts of the human 
body and provide comprehensive data support for 3D human 
motion pose recognition. The proposed method demon-
strates strong generalization capability in handling different 
human poses and motion types. Based on the results of pose 
recognition, the proposed method accurately describes most 
poses and achieves high precision in 3D human motion pose 
recognition tasks. This indicates that the method maintains 
good recognition performance even in challenging scenarios 
involving deformation, noise, and occlusion, demonstrating 
a certain level of robustness. Additionally, the accuracy anal-
ysis results of 3D human motion pose recognition under dif-
ferent iterations show high accuracy, indicating the method's 
robustness against targeted attacks.

4  Conclusions

Deep learning and convolutional neural networks have made 
significant progress in the field of computer vision. This 
paper proposes a method for 3D human motion pose recog-
nition based on deep contrastive learning and an improved 
Transformer. By utilizing the kernel generation module 
within a GCN, this method extracts depth features of human 
motion poses, achieving accurate recognition of 3D human 

Table 1  Comparison results 
of 3D human motion pose 
recognition speed analysis 
(frame/s)

Noise level 5 10 15 20 25 30 35 40

Proposed method
 HiEve dataset 4.8 6.1 6.7 6.8 7.2 7.9 8.6 9.2
 The MPII Human Pose dataset 4.6 5.9 6.7 7.2 7.8 8.2 8.5 9.1

ABDSF [10] method
 HiEve dataset 4.8 6.2 6.8 6.9 7.3 8.0 8.8 9.5
 The MPII Human Pose dataset 5.1 6.1 6.9 7.3 7.9 8.4 8.6 9.4

PACAC [11] method
 HiEve dataset 4.9 6.0 7.0 7.0 7.5 8.1 8.7 9.4
 The MPII Human Pose dataset 5.1 6.2 6.9 7.2 8.0 8.6 8.6 9.2

HMARM [12] method
 HiEve dataset 5.2 6.4 6.7 6.9 7.6 8.4 8.9 9.3
 The MPII Human Pose dataset 4.9 6.2 6.9 7.4 7.9 8.5 8.8 9.4

MSCFL [13] method
 HiEve dataset 5.1 6.3 6.8 7.0 7.5 8.2 8.8 9.5
 The MPII Human Pose dataset 4.9 6.0 7.0 7.4 8.0 8.3 8.7 9.4

A2DRH [14] method
 HiEve dataset 4.8 6.2 6.8 7.0 7.4 8.3 8.7 9.3
 The MPII Human Pose dataset 5.0 6.4 6.7 7.3 8.2 8.4 8.6 9.4

Fig. 5  Comparison results of recognition accuracy of 3D human 
motion pose
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motion poses. Experimental results demonstrate that the pro-
posed approach effectively captures RGB and depth images 
of human motion and performs well in extracting 2D human 
motion pose features. Moreover, this method exhibits fast 
speed and high accuracy in 3D human motion pose recogni-
tion, as evidenced by the experimental results under different 
iteration attack intensities. However, challenges still exist in 
multi-person pose estimation, such as occlusion, interference 
between individuals, and variability in poses, which affect 
the accuracy of human motion pose recognition. Therefore, 
in future research, it is necessary to explore more accurate 
and robust methods for constructing human detectors to 
address the challenges posed by occlusion and multi-person 
pose estimation.

Appendix

Abbreviation of this paper is shown in Table 2.
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Table 2  Abbreviations of description symbols/terminology of this paper

Symbols/nomenclature Description Abbreviation

I′ Residual human motion image –
Î𝛼 De-noised RGB image –

Î𝛽 De-noised depth image –
f� Encoders of online network –
l� Projectors of online network –
b� Predictors –
fw Encoders of target network –
lw Projectors of target network –
� Weight of the online network –
v�,i RGB images of human motion before augmentation transformation –
v′
�,i

RGB images of human motion after augmentation transformation –
� Regularization factor –
e′
�,w

MSE at this time –
� Learning rate –
∇� Optimizer variable –
� Spatial filtering kernel –
� Activation function –
� Weight –
A Adjacency matrix of the human motion image –
v Recognition speed –
f Sweep time –
t Unit time –
Graph convolutional networks – GCN
Two-dimensional – 2D
Three-dimensional – 3D
The mean square error MSE
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