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Abstract
Zero-shot stance detection is both crucial and challenging because it demands detecting the stances of previously unseen 
targets in the inference stage. Learning transferable target invariant features effectively from training data is crucial for zero-
shot stance detection. This paper proposes an adversarial adaptation approach for zero-shot stance detection, which applies 
an adversarial discriminative domain adaptation network to transfer knowledge efficiently. Specifically, the proposed model 
applies knowledge distillation to prevent overfitting the destination data and forgetting the learned source knowledge. Moreo-
ver, stance contrastive learning is applied to enhance the quality of feature representation for superior generalization, and 
sentiment information is extracted to assist with stance detection. The experimental results indicate that our model performs 
competitively on two benchmark datasets.
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Abbreviations
GAN  Generative adversarial network
DANN  Domain adversarial neural network
ADDA  Adversarial discriminative domain adaptation
ADSC  Adversarial distillation with sentiment contras-

tive learning
FM  Feminist movement
LA  Legalization of abortion
DT  Donald Trump
HC  Hillary Clinton
A  Atheism
CC  Climate change

1 Introduction

Stance detection is a significant research in sentiment analy-
sis and text mining, which focuses on the stance (e.g., Favor, 
Against, or Neutral) expressed in text toward a given target 
[1–3]. It can be effectively applied to social opinion analysis 

[4], rumor detection [5], and other research fields by mining 
text opinions.

Traditional stance detection [3] has a limited range of 
applications since it requires training and testing under the 
same target and depends on a lot of labeled data to achieve 
excellent performance. However, topics on social media 
platforms are updated frequently and in great quantities, as 
well as manually labeling new targets is expensive and labo-
rious, making it impossible to create a labeled dataset with 
all prospective targets [6]. Therefore, the study of zero-shot 
stance detection for unseen targets is essential and promis-
ing [7].

For the zero-shot stance detection task, existing works 
generally incorporate external knowledge as support for 
inference [8, 9] or introduce an attention mechanism to 
capture the relationships between targets [7]. However, 
none of these approaches consider explicit modeling of the 
transferable knowledge between source and destination tar-
gets. Some works employ adversarial learning to make the 
model learn the target invariant representation [10]. Still, 
their adversarial learning strategy is extremely unstable and 
prone to degrading prediction performance when the target 
distribution is unbalanced. As shown in Table 1, zero-shot 
stance detection identifies the stance of an unknown target 
by training on numerous targets with labels; for example, the 
test set may contain the target “Feminist Movement”, while 
the training set contains targets such as “Donald Trump” 
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and “Hillary Clinton”. In order to effectively generalize to 
unknown targets, it is essential to learn transferable stance 
feature knowledge from the training data. Hence it is espe-
cially crucial to find appropriate and effective knowledge 
transfer methods. In addition, we find a certain correlation 
between sentiment information and stance detection [9]. For 
instance, when a document contains some positive words, 
it generally implies a Favor stance. Stance detection will 
perform better if some sentiment knowledge can be acquired 
concurrently.

To address the above challenges, we propose an adver-
sarial distillation adaptation model with sentiment contras-
tive learning. Specifically, since the training and test sets 
of zero-shot stance detection belong to different targets 
(domains), the domain adaptation method can be adopted 
to transfer knowledge. We employ an adversarial discrimi-
native domain adaptation network [11]. By obfuscating 
a domain discriminator, the model is motivated to learn 
more target invariant features to ensure the transferability 
of information across different targets. Moreover, we con-
sider that catastrophic forgetting occurs when the adver-
sarial network is applied to the BERT model [21]. Knowl-
edge distillation [22] can serve as a regularization method 
that maintains the information learned from the source 
data while being adaptable to the destination data. Super-
vised contrastive learning is also applied to generalize to 
unknown target stance detection by distinguishing stance 
category features in the potential distribution space. Given 
that stance detection is influenced by sentiment informa-
tion, we employ the cross-attention module to inject the 
sentiment knowledge encoded by SentiBERT into BERT 
and adjust the fusion process according to the training loss 
of stance detection.

The contributions of our work can be summarized as 
follows:

1. We apply an adversarial discriminative domain adapta-
tion network with knowledge distillation to solve the 
target knowledge transfer problem for zero-shot stance 
detection while improving the stability of the adversarial 
training.

2. The proposed model employs supervised contrastive 
learning to learn enhanced target invariant representa-
tions by learning correlations and differences between 
data with different stance labels. Sentiment information 
is extracted to assist in stance detection.

3. Experimental results on two datasets show that our 
method obtains competitive results compared to several 
strong baselines.

2  Related Work

2.1  Zero‑Shot Stance Detection

Stance detection aims to identify the attitude of a text on a 
prescriptive target [1]. Most previous studies concentrated 
on intra-target stance detection, where the training and test-
ing phases shared identical target sets [2, 3]. However, there 
is insufficient labeled data when new topics emerge. As a 
result, some studies explored cross-target stance detection 
[14–16], which involved training the model on one target and 
testing it on another related target. Xu et al. [16] presented 
a self-attentive model that extracted shared features learned 
from source targets to the destination target. Wei et al. [15] 
further exploited the hidden topics between targets as trans-
ferred knowledge. In contrast to cross-target settings, zero-
shot stance detection does not require a prior assumption of 
target correlation. It is a more general study that can effec-
tively deal with the reality that targets appear irregularly.

For zero-shot stance detection, Allaway et al. [7] created a 
dataset containing many targets and proposed a topic group-
ing attention model that implicitly captured the relationships 
between targets by generating generalized topic representa-
tions. Liu et al. [8] proposed a common sense knowledge 
augmentation graph model based on GCN and BERT, which 
utilized text information and relationship graph structure 
information to increase the generalization and reasoning 
capabilities of the model. Liang et al. [12] proposed a hier-
archical contrastive learning model based on an agent task 
that distinguished the types of stance expressions to aid zero-
shot stance detection.

Table 1  Examples of zero-shot stance detection

Training data Test data

Source Target1: Donald Trump Source Target2: Hillary Clinton Destination target: Feminist Movement
Text: Donald J. Trump, I am
voting for you to be our next
“El Presidente”!

Text: How could anyone vote for that woman? Text: Now let’s raise the pay for females 
and make it equal to what men get 
payed

Stance: Favor Stance: Against _
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2.2  Domain Adaptation

Domain adaptation can effectively deal with the problem of 
inadequate labeling data. It can compensate for the absence 
of label information in the destination domain by using suf-
ficient label information in the source domain. The purpose 
of domain adaptation is to reduce domain differences and 
effectively transfer knowledge. Inspired by generative adver-
sarial network (GAN) [17], adversarial loss methods have 
been commonly applied to domain adaptation. In the domain 
adversarial neural network (DANN) [18], a gradient inver-
sion layer was presented to confuse the domain discriminator 
and enable the feature extractor to acquire domain invariant 
knowledge. Adversarial discriminative domain adaptation 
(ADDA) [11] used an adversarial framework that included 
discriminative models, unshared weights, and GAN loss.

Allaway et al. [10] regarded each target as a domain and 
modeled zero-shot stance detection as a domain adaptation 
problem, which successfully learned the target invariant 
representation. Inspired by the above works, we explore 
employing a more robust and efficient ADDA framework to 
handle zero-shot stance detection.

3  Methods

In this section, we introduce our proposed adversarial dis-
tillation adaptation network with sentiment contrastive 
learning for zero-shot stance detection (ADSC) in detail. 
As shown in Fig. 1, the model consists of two main parts.

1. Pretraining: we pretrain the source encoder with senti-
ment information and the classifier on the source labeled 
data while designing stance contrastive learning.

2. Adversarial distillation domain adaptation: we initialize 
the target encoder with the source encoder's parameters 
and train it via adversarial learning and knowledge dis-
tillation. The dotted box indicates that the parameters 
are fixed.

3.1  Task Description

Suppose we are given a set  of labeled data 
Ds = {(xi

s
, ti
s
, yi

s
)}

Ns

i=1
 from source targets and a set of unla-

beled data Dd = {(xid , t
i
d)}

Nd
i=1

 from a destination target (unknown 
target), where x is a document, t and y are its corresponding 
target and stance label, respectively, and N is the number 
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of examples. The purpose of zero-shot stance detection is 
to train the model according to the labeled data of multiple 
source targets to predict the stance labels of the unknown 
target examples.

3.2  Encoder with Sentiment Information

Considering that the stance of a text is influenced by senti-
ment information, we learn the sentiment knowledge of the 
text to increase prediction accuracy. Following Zhou et al. 
[19], we exploit a perceptual sentiment language model 
(SentiBERT) to extract sentiment knowledge.

The SentiBERT framework includes sentiment masking 
and several pretraining goals. We first mask some tokens, 
including ordinary words, sentiment words, and emoticons. 
Sentiment words and emoticons are masked with a higher 
probability than ordinary words to emphasize the sentiment 
information of the sentence. Therefore, sentiment informa-
tion can be learned through recovery. The pretraining goal 
requires the encoder to reconstruct masked sentiment tokens 
and predict the sentiment ratings of the whole sentence.

Specifically, the masked corrupted text x̂ is input to the 
BERT encoder to obtain the representation hi of each word 
and the final state h[CLS] as the sentence representation. The 
softmax function is used on hi to predict the probability, 
sentiment polarity, and emoticon probability of each word 
separately. The overall sentiment score of the text x̂ is pre-
dicted using a softmax layer on h[CLS] . Each task is jointly 
trained and optimized. SentiBERT performs well in the 
cross-domain sentiment analysis task after being trained on 
the Amazon Review dataset and the Yelp 2020 challenge 
dataset.

Therefore, we adopt a pretrained SentiBERT model and 
input the given document x and target t  into the model in 
the form of “ [CLS]x[SEP]t[SEP] ” to obtain a hidden vector 
representation hs with sentiment information.

SentiBERT can be utilized as an outstanding sentiment 
feature extractor since it has successfully learned sentiment 
knowledge in large-scale datasets. We fix the parameters of 
SentiBERT during the training process to keep sentiment 
information stable.

Moreover, to take advantage of the contextual informa-
tion, we also adopt a pretrained BERT [13] model to jointly 
embed document x and target t  to obtain a hidden vector 
representation hb of each example.

Then hb and hs are concatenated, and the information of 
both is fused by the cross-attention module. Cross-attention 
can effectively capture the interdependencies between text 

(1)hs = SentiBERT([CLS]x[SEP]t[SEP])

(2)hb = BERT([CLS]x[SEP]t[SEP])

and sentiment, facilitating the integration of knowledge and 
resulting in the generation of more accurate and meaningful 
features. The hidden state of the [CLS] token is used as the 
final output ha:

3.3  Stance Contrastive Learning

Contrastive learning allows the feature representation of the 
anchor to be similar to the positive examples and dissimi-
lar to the negative examples [11, 20]. A superior semantic 
representation space can be learned from the examples by 
using the pair-based contrastive loss function. Supervised 
contrastive learning can bring examples belonging to the 
same class closely together and push examples of different 
classes away from each other, effectively improving the qual-
ity of feature representation.

To improve the generalization ability of the stance rep-
resentation, based on the stance label information of the 
examples, we perform contrastive learning on their hidden 
vectors. Specifically, given the hidden vectors H = {hi}

Nb

i=1
 of 

a batch of examples (where Nb is the size of the batch), for a 
specific anchor hi ∈ H , if hj ∈ H and hi have the same stance 
label, i.e., yj= yi  (where yj and yi are the stance labels of hj 
and hi respectively), then hj is considered to be a positive 
example of hi , while other examples hk ∈ H are considered 
to be negative examples of hi . The final contrastive loss is 
calculated over all positive pairs, including ( hi , hj ) and ( hj , 
hi ) in a batch:

where 1[i=j] ∈ {0, 1} is an indicator function that evaluates 
to 1 iff i = j . sim(m,n) represents the cosine similarity of 
vectors m and n.� denotes a temperature parameter.

3.4  Training

Since the source and destination data come from distinct 
targets (domains), directly applying the model trained on 
the source data to the destination data has poor performance 
because of domain bias. To achieve effective domain trans-
fer, we must make predictions based on features that cannot 
tell the training (source) and testing (destination) domains 
apart. Therefore, we employ an adversarial learning-based 

(3)ha = CrossAttention
([
hb, hs

])
[CLS]

(4)Lc =
1

NB

∑
hi∈H

l
�
hi
�

(5)l
�
hi
�
= −log

∑Nb
j=1

1[j≠i]1[yi=yj ]
exp(sim(hi,hj)∕�)

∑Nb
k=1

1[k≠i]exp(sim(hi,hk)∕�)

(5)sim(m,n) = mTn∕||m||||n||
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domain adaptive approach to learn domain invariant 
information.

In the domain adaptation task, we have obtained the 
labeled source data Ds = {(xi

s
, ti
s
, yi

s
)}

Ns

i=1
 and the unlabeled 

destination data Dd = {(xi
d
, ti
d
)}

Nd

i=1
 , and they have identical 

label distribution spaces. We regard Es as the source encoder 
function and Ed as the destination encoder function, and they 
map the input data d (including text x and target t  ) to the 
encoder output h . C denotes the classifier function that con-
verts the encoder output to the stance category. D denotes 
the discriminator function that converts the encoder output 
to the domain category (source or destination). We wish to 
learn a destination encoder Ed and a destination classifier Cd 
that can accurately predict the stance class of the destination 
examples in the absence of labels. As a result, we reduce 
the distance between the source and destination data repre-
sentations through adversarial training. In this case, it can 
be considered that the source and destination domains have 
identical distributions in the mapped space. Then, the source 
classifier Cs can be applied directly for stance detection on 
the destination data without learning a separate destination 
classifier. So we set C = Cs = Cd.

3.4.1  Pretraining

We train the source encoder with sentiment information 
Es and the classifier C on the text, target and label pairs 
(xs, ts, ys) ∈ {0, 1, 2} from the source dataset Ds in a super-
vised manner. Furthermore, we enable the encoder to learn a 
superior class representation by minimizing the stance con-
trastive loss Lc (see Eq. 4) and improve the performance of 
the classifier by minimizing the standard cross-entropy loss 
Lcls . The final loss is the sum of the two losses:

where k is the specific category and K is the number of cat-
egories. 1[k=ys] ∈ {0, 1} is an indicator function that evalu-
ates to 1 iff k = ys . The parameters of the source encoder and 
source classifier are fixed at the end of pretraining.

3.4.2  Adversarial Adaptation with Distillation

We initialize the destination encoder Ed with the parameters 
of the pretrained source encoder. We fix the source encoder 
during adversarial training and use it as a reference to make 
the target representation match the source distribution as 
closely as possible. The following loss LadvE can be opti-
mized to produce a fantastic target encoder.

(7)
Es,C

minLcls = −E(xs,ts,ys)∼Ds

∑K

k=1
1[k=ys]���

�
C
�
Es

�
xs,ts

���

(8)Lall = Lcls + Lc

The domain discriminator D is designed to differentiate 
whether the data feature representations originate from the 
source or destination domain. D is optimized according to the 
standard supervised loss LadvD , where the labels point to the 
origin domain.

Although the destination encoder contains unbound weights 
from the source encoder, this offers it more flexibility to learn 
features of the destination domain while also preventing it 
from learning degenerate solutions. However, as new domains 
are added during the training process, the previously learned 
domain features are gradually forgotten, thus overfitting the 
target data. The inaccessibility of class labels and the differ-
ence from the original task lead to random classification per-
formance [21].

To improve the stability of adversarial training and pre-
vent pattern collapse, we employ a regularization approach 
to mitigate catastrophic forgetting. Knowledge distillation can 
provide the model with flexible adversarial adaptation and the 
capability to keep class information at high values of tempera-
ture t [21]. The loss of knowledge distillation is as follows:

where f s = C(Es(xs, ts)), f d = C(Ed(xs, ts)) . We sequentially 
feed the data into the encoder and classifier to obtain the 
probability distribution of the stance and normalize it with 
the softmax function. Thus, the loss function for training the 
destination encoder is:

where � and � are tuning hyperparameters. All methods min-
imize the source and destination representation distances 
by alternating between the destination encoder and the dis-
criminator. We conduct adversarial adaptation by learning 
the destination encoder so the discriminator cannot accu-
rately predict the domain labels of the source and destination 
examples based on their feature representations.

3.5  Testing

We utilize the destination encoder obtained after adversarial 
domain adaptation and the classifier with fixed parameters to 
predict the stance of the destination examples.

(9)Ed

minLadvE = −E(xd ,td)∼Dd
log

(
D
(
Ed

(
xd,td

)))

(10)
D
minLadvD

=−E(xs ,ts)∼Ds log(D(Es(xs,ts)))
−E(xd ,td)∼Dd

log(1−D(Ed(xd,td)))

(11)
Lkd=−t

2×E(xs ,ts)∼Ds
∑K

k=1
softmax(f sk ∕t)

×���(softmax(f dk ∕t))

(12)L = �LadvE + �Lkd

(13)ŷd = ������
(
C
(
Ed

(
xd, td

)))
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4  Experiment

4.1  Datasets

SEM16 [3] is a Twitter dataset that contains six targets for 
stance detection, including the Feminist Movement (FM), 
Legalization of Abortion (LA), Donald Trump (DT), Hillary 
Clinton (HC), Atheism (A), and Climate Change is a Real 
Concern (CC). Each text in the dataset contains a stance 
(favor, against, neutral) for a specific target.

WT-WT [23] is a stance detection dataset in the finan-
cial domain. The dataset contains four targets, including 
CVS_AET(CA), CI_ESRX (CE), ANTM_CI (AC), and 
AET_HUM (AH). Every example involves a stance label 
of refute (against), support (favor), comment (neutral), and 
irrelevant opinion. We eliminate text labeled as irrelevant to 
ensure consistency with other datasets.

Following[12], we utilize the data from one target as the 
test set and the remaining targets as the training set. Table 2 
represents the statistics of the two datasets.

4.2  Experimental Implementation

4.2.1  Training Settings

We employ the pretrained SentiBERT model provided by 
Zhou et al. as well as the pretrained uncased BERT as the 
encoder, and their maximum sequence length is 85. The 
batch size is 32. In the pretraining phase, the source encoder 
and classifier are trained for 3 epochs using the Adam 
optimizer [24] with a learning rate of 5e−5, �1 = 0.9 and 
�2 = 0.999. In the adversarial domain adaptation phase, we 
also use the unlabeled data from the destination domain to 
train the destination encoder and discriminator for 3 epochs 
with a learning rate of 1e−5. The temperature value t  for 
knowledge distillation is set to 20. We also apply a gradient 
clip to a target encoder with a gradient norm of 1.0 and a 

discriminator with a clip value of 0.01 to increase the stabil-
ity of the adversarial training [21]. The temperature param-
eter for the contrastive loss is 0.07.

4.2.2  Evaluation Metric

For the SEM16 dataset, following [10], we report the Favg : 
the average of F1 for favor and against. For the WT-WT 
dataset, following [23], we report the Macro F1 scores of 
each target.

4.3  Baselines

To demonstrate the validity of the proposed model, we com-
pare the ADSC with several strong baselines.

• BiCond [2] A model that utilizes two BiLSTM layers to 
encode topic and text separately.

• CrossNet [16] A BiCond-based model for adding topic-
specific self-attentive layers.

• TOAD [10] A BiCond-based model with adversarial 
learning.

• BERT [13] A powerful pretrained language model for 
NLP tasks.

• BERT-GCN [8] A BERT-based model using GCN for 
node information aggregation.

• TGA Net [7] A topic-group attention model.
• TPDG [14] A GCN-based model for designing target-

adaptive pragmatic dependency graphs.

In addition, we designed several variants of the ADSC 
model to conduct ablation studies to verify the validity of 
different components.

1. “w/o Lc ” denotes without stance contrastive learning 
loss.

2. “w/o SentiBERT” denotes that SentiBERT is not utilized 
to extract sentiment information.

3. “w/o Lkd ” denotes without knowledge distillation loss.

4.4  Main Results

The results of the comparison experiments are shown in 
Table 3. It can be observed that our proposed ADSC model 
achieves competitive and stable performance on most of the 
target sets, which validates the effectiveness of our approach 
to this task. Specifically, BiCond and CrossNet perform the 
worst overall, and BERT and BERT-GCN perform simi-
larly poorly since they do not consider the targets' invis-
ibility to learn transferable information. Despite adopting an 
adversarial strategy as well, the TOAD model is generally 
inferior to our method. It is demonstrated that we utilize 
a sophisticated adversarial domain adaptation network and 

Table 2  The statistics of the SEM16 and WT-WT datasets

Dataset Target Favor Against Neutral Unlabeled

SEM16 DT 148 299 260 2194
HC 163 565 256 1898
FM 268 511 170 1951
LA 167 544 222 1899
A 124 464 145 1900
CC 335 26 203 1900

WT-WT CA 2469 518 5520 –
CE 773 253 947 –
AC 970 1969 3098 –
AH 1038 1106 2804 –



International Journal of Computational Intelligence Systems          (2023) 16:176  

1 3

Page 7 of 10   176 

add knowledge distillation to enhance the stability of adver-
sarial training while ensuring the effective transfer of the 
target knowledge. In contrast to the attention-based model, 
our method effectively generalizes the stance representation 
learned from known targets to unseen targets by exploring 
contrastive learning.

4.5  Ablation Study

We further conduct ablation studies to analyze the impact 
of different components of ADSC. As shown in Table 4, the 
experimental results show that removing stance contrastive 
learning (“w/o Lc ”) significantly decreases the model’s per-
formance. This suggests that supervised contrastive learning 
during the pretraining phase assists the encoder in learn-
ing better class representations, improving generalizability. 
The removal of sentiment information (“w/o SentiBERT”) 
reduces model performance, implying that the model may 
learn the potential relationship between sentiment and stance 
and make judgments on the stance with the help of senti-
ment information. For example, the model learns a strong 
association between positive sentiment words and support 
stances and weak associations between negative sentiment 
words and support stances. The effect of removing knowl-
edge distillation (“w/o Lkd ”) becomes worse, which indicates 
that some source information is forgotten during adversarial 
training. So regularization of knowledge distillation is useful 
in improving performance.

4.6  Analysis of Contrastive Learning

To further analyze the effectiveness of stance contras-
tive learning in the model, we use T-SNE [25] to visual-
ize the intermediate layer embedding. The visualization 
results without and with contrastive learning are shown 
in Fig. 2. It can be observed that the representation dis-
tributions without using contrastive learning have great 
overlap, especially for the favor and against stances. This 
suggests that contrastive learning may effectively separate 
the representations of different stances and learn a better 
potential space, further demonstrating its effectiveness and 
significance.

4.7  Analysis of Adversarial Domain Adaptation

To further understand the influence of adversarial domain 
adaptation on the zero-shot stance detection task, we 
employ t-SNE to visualize the feature distribution encoded 
by the destination encoder. Domain invariance is deter-
mined by the degree of overlap between features. As 
shown in Fig. 3, we employ the destination encoder to 
encode both the source and destination data. Domain adap-
tation makes the domain overlap more prominent. This 
demonstrates that adversarial domain adaptation may align 
the source and target domain feature distributions as nearly 
as feasible, resulting in significant target invariant features.

Table 3  Experimental results on 
two datasets

Bold indicates the best score for each test target

Model BiCond CrossNet TOAD BERT BERT-GCN TPDG TGA Net ADSC

SEM16 DT 30.5 35.6 49.5 40.1 42.3 47.3 40.7 58.3
HC 32.7 38.3 51.2 49.6 50.0 50.9 49.3 50.1
FM 40.6 41.7 54.1 41.9 44.3 53.6 46.6 50.0
LA 34.4 38.5 46.2 44.8 44.2 46.5 45.2 46.7
A 31.0 39.7 46.1 55.2 53.6 48.7 52.7 50.0
CC 15.0 22.8 30.9 37.3 35.5 32.3 36.6 33.5

WT-WT CA 56.5 59.1 55.3 56.0 67.8 66.8 65.7 68.1
CE 52.5 54.5 57.7 60.5 64.1 65.6 63.5 67.5
AC 64.9 65.1 58.6 67.1 70.7 74.2 69.9 72.3
AH 63.0 62.3 61.7 67.3 69.2 73.1 68.7 71.6

Table 4  Experimental results of 
the ablation study

Model SEM16 WT-WT

DT HC FM LA A CC CA CE AC AH

ADSC 58.3 50.1 50.0 46.7 50.0 33.5 68.1 67.5 72.3 71.6
w/o L

c
57.1 49.0 48.8 45.5 48.7 32.3 66.8 66.8 71.1 70.4

w/o SentiBERT 57.9 49.6 49.3 46.0 49.4 33.0 67.6 67.0 71.6 70.8
w/o L

kd
52.3 49.1 48.5 45.7 47.6 32.3 66.7 67.0 71.5 70.4
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4.8  Case Study

We conduct a case study to illustrate the validity and per-
form error analysis. We select three cases from the test data 

of SEM16 and compare our results to the predictions of 
BERT and TOAD. Table 5 reports these results.

In the first case, TOAD with adversarial learning and 
our model accurately forecast the outcome while BERT 
predicts it incorrectly. This is primarily because BERT 
does not learn transferable knowledge for unknown tar-
gets, whereas exploring adversarial domain adaptation 
approaches can effectively learn target invariant informa-
tion and increase generalization ability. In the second case, 
only our method makes the correct prediction. This dem-
onstrates that depending only on contextual information is 
insufficient and adding sentiment information strengthens 
the model's comprehension of texts with the sarcastic sen-
timent. In the third case, all three methods make incorrect 
predictions. We speculate that the model does not under-
stand the hidden relationship between “NBC” and “Donald 
Trump”, and it is difficult to make correct predictions for 
sentences that contain underlying ideas or require more 
profound understanding. Thus, domain knowledge is ben-
eficial to the model. In the future, we will explore the 
introduction of common sense knowledge of the destina-
tion domain, which may significantly improve the model's 
generalizability.

Fig. 2  Visualization of intermediate embeddings. The left figure is 
the visualization with contrastive learning, and the right figure is the 
visualization without contrastive learning. Purple dots indicate favor 

examples, yellow dots indicate against examples, and green dots indi-
cate neutral examples

Fig. 3  Visualization of the distribution of features. The source 
domain features are represented by 1, and the destination domain fea-
tures are represented by 0

Table 5  Three cases of the predictions by BERT, TOAD and OUR MODEL

Text Target Label BERT TOAD ADSC

Remember that story about a charismatic businessman who will lie to get into power from 
an obscure position?

Donald Trump Against Neutral Against Against

I know you are the best candidate. You are the only one who can make America great 
again

Donald Trump Against Favor Favor Against

I guess NBC does not like to hear the truth Donald Trump Favor Neutral Neutral Neutral
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5  Conclusion

This paper proposes an adversarial distillation adaptation 
framework (ADSC) with sentiment contrastive learning 
to perform zero-shot stance detection. We employ an 
adversarial discriminative domain adaptation network to 
transfer stance knowledge from training data to unknown 
targets, use stance contrastive learning to increase the 
model's generalizability, introduce sentiment information 
to aid stance detection, and add knowledge distillation 
to prevent catastrophic forgetting during training. The 
results on two benchmark datasets show that our model 
achieves competitive performance on some unseen targets. 
In future work, we will introduce some domain knowledge 
to improve the performance of the stance detection model.
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