
International Journal of Computational Intelligence Systems (2023) 16:184
https://doi.org/10.1007/s44196-023-00369-5

RESEARCH ART ICLE

APT Attack Detection Based on Graph Convolutional Neural Networks

Weiwu Ren1 · Xintong Song1 · Yu Hong2 · Ying Lei1 · Jinyu Yao1 · Yazhou Du1 ·Wenjuan Li1

Received: 27 August 2023 / Accepted: 5 November 2023
© The Author(s) 2023

Abstract
Advanced persistent threat (APT) attacks are malicious and targeted forms of cyberattacks that pose significant challenges
to the information security of governments and enterprises. Traditional detection methods struggle to extract long-term
relationshipswithin these attacks effectively. This paper proposes anAPT attack detectionmodel based on graph convolutional
neural networks (GCNs) to address this issue. The aim is to detect known attacks based on vulnerabilities and attack contexts.
We extract organization-vulnerability relationships from publicly available APT threat intelligence, along with the names and
relationships of software security entities from CVE, CWE, and CAPEC, to generate triple data and construct a knowledge
graph of APT attack behaviors. This knowledge graph is transformed into a homogeneous graph, and GCNs are employed to
process graph features, enabling effective APT attack detection. We evaluate the proposed method on the dataset constructed
in this paper. The results show that the detection accuracy of the GCN method reaches 95.9%, improving by approximately
2.1% compared to the GraphSage method. This approach proves to be effective in real-world APT attack detection scenarios.

Keywords APT attack detection · Graph convolutional neural networks · Knowledge graph · Vulnerability exploits

1 Introduction

With the rapid development of information technology, the
volume of information in modern society continues to grow,
and network threats are becoming increasingly severe. Net-
work attacks are evolving in a new direction, with Advanced

B Yu Hong
hongyu_1105@163.com

Weiwu Ren
renww@cust.edu.cn

Xintong Song
songxtong@outlook.com

Ying Lei
13324229882@163.com

Jinyu Yao
yjy9899@outlook.com

Yazhou Du
297395442@qq.com

Wenjuan Li
3289528441@qq.com

1 School of Computer Science and Technology, Changchun
University of Science and Technology, Changchun 130000,
Jilin, China

2 Jilin Branch, National Computer Network Emergency
Response Center, Changchun 130000, Jilin, China

Persistent Threat (APT) attacks gradually becoming one of
the primary methods of cyberattacks. APT refers to covert,
persistent, and effective attack activities conducted by an
organization against specific targets [1–3]. These attacks typ-
ically have commercial or political motivations and involve
continuousmonitoring of specific organizations or countries,
ultimately leading to information theft or targeted disrup-
tions, posing a significant threat to nations and enterprises’
information systems and data security [4–7]. Therefore, the
detection of APT attacks has become a research hotspot in
the field of network security. APT attacks exhibit strong
concealment, long duration, high specificity, and signifi-
cant harm. Traditional detection methods, such as malicious
traffic detection, malicious code detection and log anomaly
detection [8–10], often focus on specific phases of APT
attacks and cannot detect unknown attacks. They also strug-
gle to extract contextual correlations within APT attacks,
resulting in a high false positive rate.

However, APT threat intelligence often simplifies the
description of the attack process, while the vulnerabilities,
weaknesses, and attack methods exploited by APT organi-
zations make systems more susceptible to attacks [11, 12].
Therefore, inferring the vulnerabilities, related vulnerabili-
ties, and mitigation measures used by APT from software
security databases is necessary. However, associating with

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-023-00369-5&domain=pdf

 184 Page 2 of 14 International Journal of Computational Intelligence Systems (2023) 16:184

software security entities can enhance APT attack detec-
tion due to the lack of direct and tight correlations between
individual APT threat intelligence reports, the hidden nature
of software security entities, and their relationships within
document content and hyperlinks. In response to this issue,
recent research inAPTattack detection suggests that utilizing
knowledge graphs to capture rich attack context information
and establish associations effectively is the optimal approach
to achieve APT attack detection [13, 14].

To this end, this paper investigates a deep learning-based
APT attack detection method that establishes deep associa-
tions among software security entities through a knowledge
graph. Leveraging the structure of the knowledge graph, we
employ Graph Convolutional Neural Networks (GCNs) to
construct an APT attack detection model. GCNs excel in
learning entity relationship representations within knowl-
edge graphs, enabling the consideration of relationships
between APT attacks and software security databases. This
involves embedding multi-modal entity attributes and rela-
tionship attribute features of attack context into a unified
low-dimensional feature space to enhance detection accu-
racy.

There are three contributions of our paper:

1. For the first time, it generates triple data by extracting
organization-vulnerability relationships fromAPT threat
intelligence and software security entity names and rela-
tionships from Common Vulnerabilities and Exposures
(CVE), Common Weakness Enumeration (CWE), and
Common Attack Pattern Enumeration and Classification
(CAPEC). This data is used to create a knowledge graph
of APT attack behaviors.

2. This paper introduces a novel GCN-based APT attack
detection method that utilizes a Graph Convolutional
Neural Network model to detect APT attacks and char-
acterizes APT detection performance metrics.

3. It conducts creative experiments using the Graph Con-
volutional Neural Network model to detect attacks such
as APT-32, employing multiple performance metrics to
validate the model’s effectiveness and demonstrate the
superiority of Graph Convolutional Neural Networks.

The remaining sections of this paper are organized as
follows: Sect. 2 discusses related research on APT attack
detection. Section3 presents the proposedmethod as an over-
all framework, briefly covering the entire process. Section4
introduces the GCN-based APT attack detection method,
including constructing the APT attack behavior knowledge
graph and Graph Convolutional Neural Networks theory,
accompanied by formulas and flowcharts. In Sect. 5, the
method’s performance and efficiency are tested and verified,
with results presented in graphs and tables. Finally, Sect. 6
concludes the paper and provides insights into future work.

2 RelatedWork

In the field of APT attack detection, existing research pre-
dominantly attempts to detectAPTattacks basedonmanually
defined rules using knowledge of network defense. For
instance, PrioTracker [15] analyzes APT attacks using the
priority of abnormal causal relationships, where the priority
of system events is measured according to predefined rules.
SLEUTH [16] identifies system entities and events most
likely involved in APT attacks through a tag-based approach.
It first encodes the credibility and sensitivity of code and data
and then designs network attack detection rules using these
tags. HOLMES [17] is a hierarchical framework for APT
attack detection, with a critical component being an inter-
mediate layer that maps low-level audit data to suspicious
behavior using rules based on domain knowledge (such as
the ATT&CK knowledge base [18]). CONAN [19] is a state-
based framework where each system entity (e.g., processes
or files) is represented using a structure similar to finite state
automata (FSA), with states inferred based on predefined
rules. The state sequences are then used forAPT attack detec-
tion and reconstruction. Rule-based detection strategies have
advantages such as high accuracy, strong interpretability, and
ease of deployment. However, rule-based detection has lim-
itations. First, it relies on known features, making capturing
new types of APT attacks difficult. Second, it can only detect
known attacks, making it challenging to identify unknown
attacks or zero-day vulnerabilities where attackers exploit
new vulnerabilities or attack techniques to evade existing
rule-based detection. Third, it lacks context information and
cannot associate multiple seemingly unrelated APT reports
and software security entities to form a comprehensive threat
graph.

On the other hand, learning-based techniques (including
machine learning and deep learning) can automatically build
APT detection models from training datasets. For example,
Barre et al. [20] used trace graphs to extract features such as
the total amount of written data and the number of system
files used to construct a classifier for APT attack detection.
Berrada et al. [21] extracted Boolean features from trace
graphs and treatedAPT attack detection as an anomaly detec-
tion task using unsupervised learning techniques. Xiang et
al. [22] extracted different features from PC and mobile plat-
forms and employed various machine-learning algorithms
to perform APT attack detection based on combined fea-
tures. Zimba et al. [23] used a semi-supervised learning
framework to identify hosts exhibiting suspicious malicious
activities. The abovementioned research often requires man-
ual selection and extraction of suitable features, which can
be cumbersome and require domain expertise.

In comparison, deep learning-based methods are more
automated. Recurrent Neural Networks (RNNs) have been
widely applied in APT attack detection [24–26]. However,

123

International Journal of Computational Intelligence Systems (2023) 16:184 Page 3 of 14 184

RNNs can only capture sequential relationships between
system events, neglecting other important attack context
information. Due to the rich relationships between knowl-
edge graph nodes and their strong knowledge integration
capabilities, many cybersecurity researchers have used them
for attack detection, attack scenario reconstruction, and
attack tracing. Green Alliance Technology [27], a threat
metamodel is used to construct an APT knowledge graph. A
semantic search approach is employed to profile the APT32
attack organization, comparing the attribute features of real-
time detected threat events with APT organization features
to label the organization’s associations with threat events for
real-time detection statistics. Pejman et al. [28] proposed a
knowledge graph based on Security Information and Event
Management (SIEM) to describe relationships between enti-
ties such as proxy servers, DNS logs, and network threat
intelligence. They also introduced a graph-based reasoning
algorithm called MalRank to calculate the maliciousness of
nodes.

Based on their model principles, we categorize these
methods into rule-based detection, machine learning-based
detection, and deep learning-based detection. We compare
them from three aspects: whether they utilize software secu-
rity databases (CVE, CWE, CAPEC), whether they can
detect unknown APT attacks, and whether they can perform
real-time APT attack detection, as shown in Table 1.

3 Overall Framework

Graph convolutional networks (GCN) is a deep learning
model used for graph-structured data, capable of handling
complex relationships and network data. APT attacks often
utilize multiple vulnerabilities and attack techniques to
achieve their objectives, making it possible to model APT
attacks as graph-structured data. We use a knowledge graph
to conceptualize typical APT organization attacks and the

vulnerabilities, techniques, and tools they commonly employ.
The GCN model is then used to perform APT attack detec-
tion. The overall framework is illustrated in Fig. 1.

This method consists of three main stages: The first
stage involves collecting relevant data from network secu-
rity databases and APT reports and constructing a security
knowledge graph. In this graph, typical APT organization
attacks are conceptualized along with the vulnerabilities,
weaknesses related to vulnerabilities, attack patterns, and
attack methods they utilize. These are defined as entities,
and their relationships are established. The second stage is
knowledge graph feature extraction. In this stage, we first
convert the knowledge graph that reflects APT organization
vulnerabilities into a homogeneous graph for ease of data
input into the GCN model. We then extract features for the
CVE (Common Vulnerabilities and Exposures) nodes. The
third stage is GCN model design. In this stage, the Graph
Convolutional Neural Network algorithm is used to perform
information propagation and aggregation on the nodes and
edges of the homogeneous graph, ultimately outputting the
detection results of whether a node belongs to an APT attack.

4 APT Attack Detection Based on GCNModel

In this section, we provide a detailed implementation pro-
cess of the proposed method. The first part will introduce the
construction of the attack knowledge graph, where entities
and relationships are extracted from the descriptions in the
crawled network security databases, and then stored using
the Neo4j database. The second part will cover APT attack
detection using the GCN model. Initially, the heterogeneous
attack knowledge graph is transformed into a homogeneous
graph, and then feature extraction is performed on this graph.
The extracted features will serve as inputs to the GCNmodel,
ultimately achieving APT attack detection.

Table 1 Analysis of different model approaches

Type References Uses software security databases Detects unknown attacks Real-time detection

Rule-based PrioTracker [15] × × ×
SLEUTH [16] × × �
HOLMES [17] × × �
CONAN [19] × × �

Machine learning Barre et al. [20] � × �
Berrada et al. [21] × � ×
Xiang et al. [22] � × �
Zimba et al. [23] � � �

Deep learning Pejman et al. [28] � × ×

123

 184 Page 4 of 14 International Journal of Computational Intelligence Systems (2023) 16:184

Fig. 1 Overall framework diagram

4.1 Knowledge Graph Construction

This subsection describes constructing a vulnerability knowl-
edge graph by analyzing APT attack reports and security
databases. Relevant information, such as APT organization
behaviour and CVE vulnerabilities, is extracted from these
sources and organized into structured triplets to establish
entities and relationships, forming a vulnerability knowledge
graph. This graph encompasses vulnerabilities, weaknesses,
attack methods, and tactics, utilizing various relationship
types to depict their interconnections. This knowledge graph
facilitates a comprehensive understanding of the relation-
ships between vulnerabilities and attacks in the software

security domain, offering valuable resources and guidance
for researching and defending network security.

4.1.1 Collecting Security-Related Data

APT attack reports contain abundant attack context infor-
mation. Firstly, we perform behavior analysis on typical
APT organizations to extract the required information, such
as the names of APT organizations and the CVE vulnera-
bilities, attack methods, and techniques they utilize when
launching attacks. Secondly, we organize the collected CVE
vulnerabilities and extract the identifier and description of
each CVE, CWE (Common Weakness Enumeration), and
CAPEC (Common Attack Pattern Enumeration and Classi-
fication) from the software security databases (CVE, CWE,
CAPEC). Additionally, we establish the interdependencies
between them. Lastly, the collected data is stored for subse-
quent knowledge graph construction.

4.1.2 Entity Modeling

We design a vulnerability knowledge graph by analyzing
APT reports, CVE, CWE, CAPEC, and other security infor-
mation and considering their correlations. Firstly, we extract
entities, keywords, and relationships from the unstructured
data and represent them in a structured manner using triplets
(Entity 1, Relationship, Entity 2). During this process, we
only include entities and relationships with relatively high
confidence in the knowledge base. The overall structure of
the knowledge graph is shown in Fig. 2, consisting of two
parts: ontology and instances.

In the ontology design, we divide the graph into four
parts: vulnerabilities, weaknesses, attackmethods, and attack
techniques, each with corresponding attributes. For example,
vulnerabilities include CVE-ID, vulnerability description,
and title; weaknesses include CWE-ID, weakness descrip-
tion, and title; attack methods include CAPEC-ID, attack
method description, and title; attack techniques refer to the

Fig. 2 Overall framework
diagram

123

International Journal of Computational Intelligence Systems (2023) 16:184 Page 5 of 14 184

specific techniques used in APT attacks, such as spear-
phishing attacks and watering hole attacks. Through this
structure, we can clearly represent the associations between
vulnerabilities and attacks, forming a complete vulnerability
knowledge graph.

For instance, APT-C-09 utilizes the CVE-2012-0158 vul-
nerability for its attack, exploiting CWE-94 as a weakness
and adopting the attack method described in CAPEC-242.
Ultimately, it implements the attack using techniques such
as spear-phishing.

We represent entities and relationships as the primary
objects in the security knowledge graph. These entities
include core concepts such as CWE (Common Weakness
Enumeration) and CAPEC (Common Attack Pattern Enu-
meration and Classification), as well as instances like CVE
(CommonVulnerabilities and Exposures) and the techniques
used during attacks. We extract software security entities
fromCWE, CAPEC, and CVE databases and assign a unique
index to each entity, for example, CWE-20, CAPEC-182,
and CVE-2018-11882, as shown in Table 2. Each entity
is considered a node in the knowledge graph. CWE and
CAPEC entities have titles and text descriptions to describe
their meanings and characteristics. Each CVE entity has a
corresponding text description, providing detailed informa-
tion about the vulnerability. These pieces of information are
integrated into the knowledge graph, allowing us better to
understand the associations between security concepts and
instances.

4.1.3 Relationship Extraction

APT reports describe the vulnerabilities used byAPT organi-
zations during attacks, and there are cross-references among
security instances in the CVE, CWE, and CAPEC databases.
We use these relationships between APT organizations,
the vulnerabilities they exploit, and the cross-references as
relationships between entities in the knowledge graph, rep-
resented in the form of triplets, i.e., <entity, relationship,
entity>. The triplets constructed in this study include the
following three types of relationships:

<Vulnerability, use, Attack Technique>: Represents the
relationship between vulnerabilities and attack techniques,
which is a many-to-many relationship.

<Vulnerability, hasCWE, Weakness>: Represents the
relationship between vulnerabilities and weaknesses, which
is a many-to-many relationship.

<Weakness, hasCAPEC,Attack Pattern>: Represents the
relationship between weaknesses and attack patterns, which
is a many-to-many relationship.

By constructing such a vulnerability knowledge graph, we
can have amore comprehensive understanding of vulnerabil-
ities, weaknesses, and attack patterns in software security.
We can also track and analyze the connections between

APT organizations and CVE vulnerabilities. This knowl-
edge graph provides valuable resources and references for
research and defense work in the security domain, enabling
us to address the ever-growing challenges in network security
effectively.

4.2 GCNModel Design

In this paper, we use Graph Convolutional Neural Network
(GCN) to learn from the constructed vulnerability knowledge
graph and perform classification detection of APT attacks
based onCVEvulnerabilities and attack context. The security
knowledge graphwe built contains nodes and edges of differ-
ent types, each with distinct semantics and attributes. GCN
is primarily designed for processing homogeneous graphs,
and it cannot be directly applied to the security knowledge
graph. Therefore, as shown in Fig. 3, we first need to simplify
the security knowledge graph into a homogeneous graph,
then extract node features, and finally utilize graph convolu-
tional neural networks for attack detection. The following is
a detailed explanation of the algorithm.

4.2.1 Simplification of Heterogeneous Security Knowledge
Graph into Homogeneous Graph

In the security knowledge graphG = (V,E) established in this
paper, where V is the set of nodes and E is the set of edges,
there are 4 types of entities: CVE, CWE, CAPEC, and attack
techniques. We aim to detect APT attacks through vulnera-
bility exploitation relationships. CVE nodes are related to the
other 3 types of entities. An edge is created if there is a rela-
tionship between two CVE nodes. CWE and CAPEC nodes
are used as features for the CVE nodes, and the classification
of whether the node belongs to an APT attack is considered
as the label. As shown in Fig. 4, the heterogeneous security
knowledge graph is simplified into a homogeneous graph.

4.2.2 Node Feature Extraction

The dataset constructed in this paper is used for studying
the APT attack detection task, where each node represents a
vulnerability exploited by an APT organization, and the fea-
tures indicate the presence or absence of certainwords.When
extracting features, we consider CVE, CWE, and CAPEC.
Below, we explain the steps for extracting the feature vectors
from the dataset, using CVE as an example. The process is
illustrated in Fig. 5:

Text preprocessing: Download a list of CVE descriptions
from the Common Vulnerabilities and Exposures (CVE)
database to obtain raw data. Firstly, perform text preprocess-
ing on the CVE descriptions, removing punctuation, stop
words and converting the text to lowercase to eliminate case

123

 184 Page 6 of 14 International Journal of Computational Intelligence Systems (2023) 16:184

Table 2 Instances of CWE/CAPEC/CVE/Attack technique entities in the knowledge graph

Weakness ID: CWE-20

Weakness Title: Improper Input Validation

Weakness Description: The product does not validate or incorrectly validates input that can affect the control flow or data flow of a progra

Attack Pattern ID: CAPEC-182

Attack Pattern Title: Flash Injection

Attack Pattern Description: An attacker tricks a victim to execute malicious flash content that executes commands or makes flash calls specified by

Vulnerability ID: CVE-2018-11882

Vulnerability Description: Microsoft Office 2007 Service Pack 3, Microsoft Office 2010 Service Pack 2, Microsoft Office 2013...

Attack Technique Name: Spear Phishing

Fig. 3 Workflow of APT attack
detection using GCN

Fig. 4 Simplification of the
knowledge graph into a
homogeneous graph

sensitivity. Then, tokenize the preprocessed CVE descrip-
tions, dividing the text into individual words.

Building vocabulary: Traverse all the CVE description
data to count the frequency of each word’s occurrence. Con-
struct a vocabulary using high-frequency words and assign a
unique index to each word. This vocabulary will be used to
represent the feature vectors of the text data.

Feature vector representation: Adopting the bag-of-words
model, transform each CVE into a feature vector represen-
tation using the constructed vocabulary. Each feature vector
dimension corresponds to whether a word from the vocabu-
lary exists in the CVE. If the word exists, the value is set to
1; otherwise, it is set to 0.

CWE and CAPEC node feature extraction: Similar to
CVE, when simplifying the knowledge graph into a homoge-
neous graph, CWE and CAPEC are considered features for

each CVE. The CVE’s corresponding CWE and CAPEC are
combined to form a feature matrix input.

4.2.3 APT Detection Using Graph Convolutional Neural
Network (GCN)

Graph Convolutional Neural Network is a deep learning
model designed for graph data, enabling effective feature
learning and representation of nodes and edges. We repre-
sent the simplifiedAPThomogeneous graph as a node feature
matrix X and an adjacency matrix A, which serve as inputs
to the GCN model. The feature matrix is an N*D matrix,
where N denotes the number of nodes, and D represents the
feature dimension of each node. The adjacency matrix is an
N*N matrix representing the connectivity between nodes.
The propagation rule between layers in GCN is defined as

123

International Journal of Computational Intelligence Systems (2023) 16:184 Page 7 of 14 184

Fig. 5 Flowchart of node feature extraction

follows:

H (l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H (l)W (l)

)
. (1)

Among them, Ã = A + IN is the adjacency matrix with
self-loops for the knowledge graph, where IN is the iden-
tity matrix. W (l) represents the trainable weight, σ(·) is the
activation function used in this layer, and H (l) is the acti-
vation matrix for the l-th layer, with H (l) = X initially.
Then, feature propagation (graph convolution operation) is
performed by updating node representations using the node
feature matrix and the adjacency matrix. In the convolu-
tional layers, we apply the ReLU activation function for
feature propagation, enabling the model to learn more com-
plex graph structure features and improve its performance in
the prediction task. Finally, applying the softmax function
transforms node features into a probability distribution over
classes, and the class with the highest probability is cho-
sen as the predicted result. As shown in Fig. 6, this is the
graph convolutional neural network model. The model takes
the simplified homogeneous graph as input, performs feature
extraction through convolutional layers, and outputs the final

predicted class for each node. In the graph, each red node
sends its feature information transformed to blue neighbor-
ing nodes. Each node then aggregates the feature information
of its neighboring nodes to fuse local structural information.
After aggregating and applying a nonlinear transformation
(ReLU), the output becomes the final vector representation
and predicted class for the node. Nodes with the same color
represent the same category.

Each CVE is treated as a node, and each node has some
features, including the CWE weakness corresponding to the
CVE vulnerability, the CAPEC attack type, and the APT
organization’s attack method. Additionally, each node has
a label indicating whether it belongs to an APT attack. The
GCNmodel aggregates the information of neighboring nodes
through training tomake the detection resultsmore consistent
with the true labels. After training is completed, the detection
results for APT organizations are output in the test set.

5 Experiment

In this section, we will describe the experiments conducted
to evaluate the proposed method. To assess the effective-
ness of our approach, we conducted experiments on the
constructed dataset. This section will be presented in the
following aspects: The first part will introduce the dataset
used in the experiments and the evaluation metrics for the
model. The second part will describe the implementation of
the method, parameter settings, and experimental setup. The
third part will present the results of comparative experiments.
The fourth part will cover the application experiments of the
proposed method.

5.1 Dataset and evaluationmetrics

To validate the effectiveness of the proposed detection
method, this paper extracted information regarding vul-
nerability exploitation relationships and attack techniques
targeting 12 APT organizations from various threat intel-
ligence sources worldwide, such as CVE, NVD, CNNVD,
Qihoo 360, FireEye, and others. Subsequently, CVE vul-
nerability entities were extracted, and using Xpath, corre-
spondingCWEweakness andCAPECattack pattern entities’
names and descriptions were crawled from software security
databases (CVE, CWE, CAPEC).This process involved col-
lecting software security entity names and detailed descrip-
tionswhile scraping interdependencies. Finally, the extracted
information was integrated to construct the APT attack
behavior knowledge graph stored in a Neo4j database. Each
entity set comprises CVE, CWE, andCAPEC features, form-
ing a comprehensive dataset. So far, we have collected 2435
labeled attack data and 215 entity relationships from 1350
APT intelligence reports. For the 2435 labeled samples, we

123

 184 Page 8 of 14 International Journal of Computational Intelligence Systems (2023) 16:184

Fig. 6 Graph convolutional
neural network model

Fig. 7 Model performance comparison of GCN under different parameters. a Performance comparison based on hidden_dim. b Performance
comparison based on epoch_num. c Performance comparison based on learning_rate

123

International Journal of Computational Intelligence Systems (2023) 16:184 Page 9 of 14 184

performed tenfold cross-validation to mitigate the impact of
label imbalance on the experimental results. We used 80%
of the samples as the training set, 10% as the validation set,
and the remaining 10% of the samples used as the test set.

We employed accuracy, precision, recall, and F1 score as
the four key evaluation metrics to assess the model’s per-
formance, which are computed using the number of true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). The specific formulas are as follows:

Accuracy represents the probability of correct predictions
madeby theGCNmodel amongall the sample data, reflecting
the overall prediction accuracy of the model.

accuracy = TP + TN

TP + FP + TN + FN
. (2)

Precision represents the proportion of true attacks among
all the samples detected as APT attacks.

precision = TP

TP + FP
. (3)

Recall represents the proportion of detected attacks among
all the true attacks.

recall = TP

TP + FN
. (4)

The F1 score is calculated using precision and recall and
represents their harmonic mean. It can assess the overall per-
formance of the model.

F1− score = 2× precision × recall

precision + recall
. (5)

5.2 Parameter Experimentation

We conducted three sets of parameter experiments that affect
the model’s performance. Figure7 illustrates the experimen-
tal results under three different parameters. As shown in
Fig. 7a, the x-axis represents hidden_dim, which denotes the
number of hidden units, a factor influencing the model’s rep-
resentative capacity. It determines whether the model can
learn richer features. With other parameters fixed, as the
number of hidden_dim increases from 8 to 16, the model’s
accuracy, precision, recall, and F1 score all decrease. The
model’s performance gradually improves as we raise it from
16 to 64. When hidden_dim=64, corresponding accuracy,
precision, recall, and F1 score all reach their maximum value
of 95.8%, indicating the best model performance, further
increasing the number of hidden units from 64 to 96 leads to a
decrease in model performance. While a slight improvement
is observed when increasing the number of hidden units to
128, it remains below the model’s best performance.

Table 3 Hyperparameter settings in APT detection method based on
graph convolutional neural network

Parameter Value Parameter Value

Epoch_num 400 Hidden_dim 64

Learning_rate 0.06 Optimizer Adam

Drop_out 0.5 Weight_decay 5e−4

As depicted in Fig. 7b, the x-axis represents epoch_num,
the number of forward and backward passes of the entire
training dataset through the neural network. It affects the
model’s training process and results. With other parameters
fixed, aswe adjust the epoch value to find the optimal training
effect, the model’s performance improves as the number of
training iterations increases from 50 to 200. However, as we
grow the training iterations from 200 to 250, the model’s
performance starts to decline. When training iterations go
from 250 to 400, the model’s performance improves again,
and when epoch=400, the accuracy is 95.1%, precision is
94.9%, recall is 95.2%, and F1 score is 94.9%, all reaching
their maximum values. The model’s training performance is
at its best. Beyond 400 iterations, the model’s performance
remains below the optimal value.

Figure 7c shows that the x-axis represents learning_rate,
which is the main factor determining the gradient descent
step size and whether the model can find the global optimum.
With other parameters fixed, as we adjust the learning_rate,
the model’s performance oscillates slightly when it increases
from 0.001 to 0.04. The model’s performance gradually
improves as the learning rate increases to 0.06. When
learning_rate=0.06, the corresponding accuracy is 95.9%,
precision is 95.8%, recall is 95.8%, and F1 score is 95.8%, all
reaching their maximum values. The model’s performance is
optimal at this point. The model’s performance weakens as
we continue to increase the learning rate to 0.09.When rising
to 0.1, the model’s performance improves but remains below
the optimal value.

In summary, as shown in Table 3, we considered six hyper-
parameters that affect model performance. When adjusting
a specific parameter, other parameters were kept constant.
Eventually, we determined that the model achieved its opti-
mal performance with 400 training epochs, 64 hidden units,
a learning rate of 0.06, drop_out rate of 0.5, weight decay of
5e−4, and using the Adam optimizer.

5.3 Comparative Experiments

In this section, we conducted comparative experiments to
validate the effectiveness of the graph convolutional neural
network (GCN) on the constructed knowledge graph forAPT
detection. We compared the GCN and graphSAGE models
based on the spectral domain. The dataset was divided into

123

 184 Page 10 of 14 International Journal of Computational Intelligence Systems (2023) 16:184

Fig. 8 A comparison of attack detection experiments with different sample sizes. a Comparison of accuracy results. b Comparison of precision
results. c Comparison of recall results. d Comparison of F1 score results

five groupswith different proportions (20%, 40%, 60%, 80%,
and 100%), and the performance of both models was eval-
uated in terms of accuracy, precision, recall, and F1 score.
The experimental results are shown in Fig. 8.

From Fig. 8a, it can be observed that under five different
sample sizes, when the data volume is 20%, the accuracy
of the GraphSAGE model is 82.8%, while the accuracy of
the GCN model is 81.6%. In this scenario, the GraphSAGE
model’s detection accuracy is slightly higher than that of the
GCN model. For the other data volumes, the accuracy of
the GraphSAGEmodel is 88.2%, 90.1%, 94.1%, and 94.7%,
whereas the accuracy of the GCN model is 89.2%, 91.3%,
94.4%, and 95.9%, respectively. It can be seen that the GCN
model achieves higher accuracy in scenarios with amore sig-
nificant number of data entries compared to the GraphSAGE
model.From Fig. 8b, when the sample size is small, the preci-
sion of the GraphSAGEmodel is 79.9%, which is lower than

the GCN model’s precision of 81.9%. As the sample size
increases, the precision of the GCN model becomes 90.4%,
90.7%, 94.6%, and 95.1%, while the GraphSAGE model
achieves 88.6%, 89.4%, 94.3%, and 94.6%, respectively.
The GCN model consistently outperforms the GraphSAGE
model in precision.In Fig. 8c, for the first set of data experi-
ments, the recall of the GraphSAGEmodel is 79.4%, slightly
higher than theGCNmodel’s recall of 79%. In the subsequent
four sets of data experiments, the recall of the GCN model
increases to 88%, 92.6%, 94%, and 95.1%, respectively, all
of which are higher than the GraphSAGE model’s recall of
87.3%, 90%, 93.7%, and 93.8%.Fig. 8d represents the F1
score of both models under different sample sizes. Similarly,
when the sample size is small, the F1 score of the Graph-
SAGEmodel is 80.4%, slightly higher than theGCNmodel’s
F1 score of 79.4%.However, as the sample size increases, the
GCN model’s F1 score becomes 88.7%, 91.1%, 94.2%, and

123

International Journal of Computational Intelligence Systems (2023) 16:184 Page 11 of 14 184

95.1%, significantly higher than the GraphSAGEmodel’s F1
score of 87.7%, 89.6%, 93.9%, and 94.4%.

Although GCN’s performance is slightly lower than
GraphSAGE when the sample size is small, as the sample
size gradually increases, the GCN model consistently out-
performs the GraphSAGE model across all four evaluation
metrics. In summary, the GCN model demonstrates better
detection performance.

TheGCNmodel used in this study outperforms theGraph-
SAGE model, especially with larger samples. The main
reason is that the GCN model updates the node represen-
tations by performing convolutions on the entire graph,
allowing it to consider the global structural information of
the whole graph more comprehensively. On the other hand,
the GraphSAGE model only samples and aggregates a sub-
set of nodes, which can lead to information loss during the
sampling process, making it unable to fully utilize the global
structural information of the graph. As a result, as the dataset
size increases, the GCN model performs better in classifica-
tion and detection tasks.

The main computational work of this experiment was
conducted on a GPU, and the average GPU utilization of
the GCN model and the GraphSAGE model was evaluated
under the same hardware conditions. The results are shown
in Fig. 9. From the figures, it can be observed that on the
dataset constructed in this paper, the GPU utilization of the
GCN model on different datasets is 8%, 9%, 10%, 10%, and
10%, respectively, with an average utilization of 9.4%. On
the other hand, the GraphSAGE model’s GPU utilization is
11%, 11%, 12%, 11%, and 12%, respectively, with an aver-
age utilization of 11.4%. Therefore, it can be concluded that
the GCN model has a lower average utilization compared to
the GraphSAGE model. The main reason is that the GCN
model has a simpler structure than the GraphSAGE model.
The GCNmodel mainly consists of graph convolutional lay-
ers, while the GraphSAGE model typically includes more
complex aggregation functions and sampling strategies. The
GCN model has fewer parameters and requires less mem-
ory during training and inference, resulting in lower GPU
utilization.

We compared the two models regarding running time; the
results are shown in Fig. 10. It can be observed that the detec-
tion time of the GCN model remains relatively stable across
different sample data sizes, with times of 2.71s, 2.69s, 2.71s,
2.71s, and 2.72s, within a range of 2.70± 0.02s. On the other
hand, the GraphSAGE model has shorter detection times
when the sample data size is small, with times of 1.87s, 2.08s,
and 2.25s, all below 2.70s. As the sample size increases, the
detection time for the GraphSAGE model grows to 2.93s
and 2.97s, exceeding 2.70s, which is longer than the GCN
model’s detection time. This is because the computation in
the GCN model is highly parallelized, allowing it to pro-
cess multiple node features simultaneously, leading to more

Fig. 9 Comparison of average GPU utilization for different sample
sizes

Fig. 10 Comparison of running time for different sample sizes

consistent detection time as the sample size increases. On
the other hand, the GraphSAGE model experiences increas-
ing computational complexity per layer with larger sample
sizes, resulting in a longer detection time compared to the
GCN model.

5.4 Application Experiment

The proposed method in this study associates APT organiza-
tions’ attack techniques, exploits CVE vulnerabilities, CWE,
and CAPEC, and extracts features using CWE, CAPEC, and
attack techniques as attributes for CVE vulnerabilities. The
extracted data serves as input for the GCN model, which
predicts the labels for each node and edge to determine
their relevance to APT attacks. For instance, by inputting
CVE-2017-8759, CVE-2014-4114, CVE-2014-6352, CVE-
2017-0199, and CVE-2012-0158 into the GCN model for

123

 184 Page 12 of 14 International Journal of Computational Intelligence Systems (2023) 16:184

Table 4 Detection results on the test set

Predicted positive Predicted negative

Actual positive 98 5

Actual negative 5 136

training, the model will predict whether these CVEs are
related to APT attacks.

This study predicts the number of true positive and false
positive instances for each attack node in the test set to eval-
uate the model’s detection capability. The results are shown
in Table 4. From the overall dataset, 10% of the data was set
aside as the test set, comprising 244 data points. Based on the
model’s detection results, the data in the test set can be cate-
gorized into four scenarios: true positive instances, where
the model correctly identified data points related to APT
attacks as positive; false positive instances, where the model
incorrectly identified data points unrelated to APT attacks as
positive; true negative instances, where the model correctly
identified data points unrelated to APT attacks as negative;
and false negative instances, where the model incorrectly
identified data points related to APT attacks as negative.
Specifically, there were 98 true positive instances, five false
positive instances, 136 true negative instances, and five false
negative instances. The detection accuracy reached 95.9%,
with precision, recall, and F1-score all at 95.1%.

Based on the detection results,we found a total of 10 nodes
that weremisclassified. CVE-2018-14847, CVE-2015-6585,
CVE-2018-8611, CVE-2016-0189, and CVE-2018-11776
were incorrectly detected as APT attacks. On the other
hand,CVE-2020-0688,CVE-2017-11869,CVE-2012-4792,
CVE-2017-0143, and CVE-2013-3906 were wrongly classi-
fied as non-APT attacks.

The misclassification of these ten nodes is attributed to
their possession of similar features. Nodes falsely detected
as APT attacks exhibited some similarities in certain features
with genuine APT attacks, while nodes falsely detected as
non-APT attacks shared feature similarities with fake APT
attacks, resulting in false positives. For instance, in Fig. 11a,
the vulnerabilityCVE-2018-14847 is shownwith its features,
which exploit CWE-22 as a weakness and correspond to the
CAPEC-78 attack pattern. These features are also sharedwith
the genuineAPTattackCVE-2018-20250, shown inFig. 11b.
However, this similarity is only superficial; in reality, there
is no concrete evidence of APT organizations exploiting
the CVE-2018-14847 vulnerability for attacks. Therefore,
it was erroneously classified as an APT attack during detec-
tion. Conversely, some actual APT attacks were incorrectly
labeled non-APT attacks because their features resembled
the positive instances in the training data but lacked clear
evidence of association with APT attacks.

6 Conclusion and FutureWork

This paper proposes an APT attack detection method based
on Graph Convolutional Neural Networks (GCN) to address
the ever-evolving network security threats. We collected
threat intelligence reports from various APT organizations,
extracted information about the vulnerabilities (CVEs) they
exploited during attacks, and used web crawling techniques
to obtain entity names and relationships between CVE
vulnerabilities, associated weaknesses (CWEs), and attack
patterns (CAPECs) from software security databases. We
generated triplets of data and constructed an APT attack
behavior knowledge graph. The knowledge graph effec-
tively captures rich attack context information and their
relationships, thereby improving the accuracy of APT attack
detection. The knowledge graph was then transformed into a
homogeneous graph, features were extracted from CVE vul-
nerability nodes, and aGraph Convolutional Neural Network
(GCN) model was used to process the graph’s features to
detect APT attacks. Four metrics-accuracy, precision, recall,
and F1 score-were used on the constructed dataset to evaluate
the method’s performance. Furthermore, a comparison was
made with the GraphSAGE model. The experimental results
demonstrate that the proposed method performs well and
can effectively detect APT attacks in real-world scenarios.
This study provides an innovative approach to network secu-
rity by combining the powerful capabilities of knowledge
graphs and graph convolutional neural networks, offering
robust support for safeguarding information systems and data
security.

While this method shows promise in network security,
some limitations should be considered.While simplifying the
heterogeneous APT attack behavior knowledge graph into a
homogeneous graph, some information may be lost, poten-
tially limiting the ability to fully utilize relationships between
nodes of different types in some instances. Additionally,
the method does not adaptively update the model. Network
threat intelligence is an ever-evolving field, with new vulner-
abilities, attack methods, and APT organization behaviors
emerging continuously. Moreover, threat intelligence data
often comes from multiple sources, such as security blogs,
vulnerability reports, hacker forums, etc. These data sources
require processing and integration before being used for
model training and updates. Failure to obtain and update this
information in real time may hinder the timely understand-
ing of new threats and the corresponding adjustment of the
detection methods.

This paper collected threat intelligence reports from dif-
ferent APT organizations and extracted information related
to vulnerability exploits, attack techniques, and the rela-
tionships between vulnerabilities and CWE, CAPEC. We
constructed a security knowledge graph and proposed an
APT attack detection method based on Graph Convolutional

123

International Journal of Computational Intelligence Systems (2023) 16:184 Page 13 of 14 184

Fig. 11 Comparison between misclassified node and true APT attack. a Misclassified as APT attack CVE-2018-14847. b True APT attack CVE-
2018-20250

Networks (GCN). This method transformed the constructed
knowledge graph into a homogeneous graph, extracted fea-
tures from CVE vulnerability nodes, and then used the GCN
model for APT organization classification and detection.
To validate the effectiveness of our proposed method, we
compared it with the GraphSAGE model. The experimental
results demonstrated that our method can effectively detect
APT attacks in real-world scenarios.

In future work, we will continue research in the following
two aspects:

1. We will extract more threat indicators from APT threat
reports, enhance the attack context, reduce the detection
of false positives, and consider exploring the effective-
ness of heterogeneous graph neural networks on the
dataset constructed in this paper for attack detection from
a heterogeneous graph perspective.

2. We will propose an adaptive model to address the prob-
lem of the model’s inability to adapt to new threat
intelligence and attack behaviors.

Acknowledgements We would like to thanks Jilin Science and Tech-
nology Development for funding our work, and the participants and
researchers who participated in this study for their contributions.

Author Contributions XS developed the idea for the study and wrote
the paper. XS, YL and JY performed research. YD and WL collected
and analyzed the data. WR and YH reviewed the article.

Funding This research is funded by Jilin Science and Technol-
ogy Development Plan Project of China (20230201074GX), and the
Jilin Provincial Development and Reform Commission Project (No.
2023C030-3).

Data Availability All the data involved in this article are obtained from
public data sets or deleted on the basis of them.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Chen, P., Desmet, L., Huygens, C.: A study on advanced persistent
threats. In: Communications and Multimedia Security: 15th IFIP
TC 6/TC 11 International Conference, CMS 2014, Aveiro, Portu-
gal, September 25-26, 2014. Proceedings 15, pp. 63–72. Springer
(2014)

2. Mohammadzadeh, H., Gharehchopogh, F.S.: Amulti-agent system
based for solving high-dimensional optimization problems: a case
study on email spam detection. Int. J. Commun. Syst. 34(3), e4670
(2021)

3. Gharehchopogh, F.S.: An improved harris hawks optimization
algorithm with multi-strategy for community detection in social
network. J. Bionic Eng. 20(3), 1175–1197 (2023)

4. Virvilis, N., Gritzalis, D.: The big four-what we did wrong in
advancedpersistent threat detection? In: 2013 InternationalConfer-
ence on Availability, Reliability and Security, pp. 248–254. IEEE
(2013)

5. Gharehchopogh, F.S., Ibrikci, T. An improved African vultures
optimization algorithm using different fitness functions for multi-
level thresholding image segmentation. Multimed Tools Appl
(2023). https://doi.org/10.1007/s11042-023-16300-1

6. Shishavan, S.T., Gharehchopogh, F.S.: An improved cuckoo search
optimization algorithm with genetic algorithm for community
detection in complex networks. Multimed. Tools Appl. 81(18),
25205–25231 (2022)

7. Gmz, Y.A.N.G., Zh, T.I.A.N., Wl, D.U.A.N.: The prevent of
advanced persistent threat. J. Chem. Pharm. Res. 6(1), 572–576
(2015)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11042-023-16300-1

 184 Page 14 of 14 International Journal of Computational Intelligence Systems (2023) 16:184

8. Bridges, R.A., Glass-Vanderlan, T.R., Iannacone, M.D., Vincent,
M.S., Chen, Q.: A survey of intrusion detection systems leveraging
host data. ACM Comput. Surv. (CSUR) 52(6), 1–35 (2019)

9. Gharehchopogh, F.S.: Quantum-inspiredmetaheuristic algorithms:
comprehensive survey and classification. Artif. Intell. Rev. 56(6),
5479–5543 (2023)

10. Singla, A., Bertino, E., Verma, D.: Preparing network intrusion
detection deep learningmodelswithminimal data using adversarial
domain adaptation. In: Proceedings of the 15th ACMAsia Confer-
ence on Computer and Communications Security. Association for
Computing Machinery, Taipei, Taiwan, pp. 127–140 (2020)

11. Han, X., Pasquier, T., Seltzer, M.: Provenance-based intrusion
detection: opportunities and challenges. In: 10th USENIX Work-
shop on the Theory and Practice of Provenance (TaPP 2018).
USENIX Association, London (2018)

12. Jenkinson, G., Carata, L., Bytheway, T., Sohan, R., Watson,
R.N.M., Anderson, J., Kidney, B., Strnad, A., Thomas, A., Neville-
Neil, G.: Applying provenance in APT monitoring and analysis:
practical challenges for scalable, efficient and trustworthy dis-
tributed provenance. In: Proceedings of the 9thUSENIXWorkshop
on the Theory and Practice of Provenance (TaPP 2017). USENIX
Association, Seattle, WA, p. 16 (2017)

13. Gharehchopogh, F.S., Ucan, A., Ibrikci, T., Arasteh, B., Isik, G.:
Slime mould algorithm: a comprehensive survey of its variants
and applications. Arch. Comput. Methods Eng. 30(4), 2683–2723
(2023)

14. Han, X., Pasquier, T., Bates, A., Mickens, J., Seltzer, M.: Unicorn:
runtime provenance-based detector for advanced persistent threats.
arXiv preprint arXiv:2001.01525 (2020)

15. Liu, Y., Zhang, M., Li, D., Jee, K., Li, Z., Wu, Z., Rhee, J., Mit-
tal, P.: Towards a timely causality analysis for enterprise security.
In: 2018 Network and Distributed System Security Symposium
(NDSS 2018). San Diego (2018)

16. Hossain,M.N.,Milajerdi, S.M.,Wang, J., Eshete, B.,Gjomemo,R.,
SekarR., Stoller, S., Venkatakrishnan,V.N.: {SLEUTH}: Real-time
attack scenario reconstruction from {COTS} audit data. In: 26th
USENIX Security Symposium (USENIX Security 17). USENIX
Association, Vancouver, BC, pp. 487–504 (2017)

17. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakr-
ishnan, V.N.: Holmes: real-time apt detection through correlation
of suspicious information flows. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 1137–1152. IEEE (2019)

18. Blake E., Andy A., Doug P., Kathryn C., Adam G., Cody B.: Mitre
att&ck®: Design and Philosophy. https://attack.mitre.org/docs/
ATTACK_Design_and_Philosophy_March_2020.pdf. Accessed
13 Aug 2023

19. Xiong, C., Zhu, T., Dong, W., Ruan, L., Yang, R., Cheng, Y., Chen,
Y., Cheng, S., Chen, X.: Conan: a practical real-time apt detection
systemwith high accuracy and efficiency. IEEE Trans. Dependable
Secur. Comput. 19(1), 551–565 (2020)

20. Barre, M., Gehani, A., Yegneswaran, V.: Mining data provenance
to detect advanced persistent threats. In: 11th International Work-
shop on Theory and Practice of Provenance (TaPP 2019). USENIX
Association, Philadelphia, PA (2019)

21. Berrada, G., Cheney, J., Benabderrahmane, S., Maxwell, W.,
Mookherjee, H., Theriault, A., Wright, R.: A baseline for unsuper-
vised advanced persistent threat detection in system-level prove-
nance. Future Gener. Comput. Syst. 108, 401–413 (2020)

22. Xiang, Z., Guo, D., Li, Q.: Detecting mobile advanced persistent
threats based on large-scale dns logs. Comput. Secur. 96, 101933
(2020)

23. Zimba, A., Chen, H., Wang, Z., Chishimba, M.: Modeling and
detection of the multi-stages of advanced persistent threats attacks
based on semi-supervised learning and complex networks charac-
teristics. Future Gener. Comput. Syst. 106, 501–517 (2020)

24. Du,M., Li, F., Zheng,G., Srikumar,V.:Deeplog: anomaly detection
and diagnosis from system logs through deep learning. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery,
Dallas, Texas, USA, pp. 1285–1298 (2017)

25. Shen, Y., Mariconti, E., Vervier, P.A., Stringhini, G.: Tiresias: pre-
dicting security events through deep learning. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, Toronto, Canada, pp. 592–605 (2018)

26. Eke, H.N., Petrovski, A., Ahriz, H.: The use of machine learning
algorithms for detecting advanced persistent threats. In: Pro-
ceedings of the 12th International Conference on Security of
Information and Networks. Association for Computing Machin-
ery, Sochi, Russia, pp. 1–8 (2019)

27. Green alliance technology.: APT organization tracking and gov-
ernance based on knowledge graph [eb/ol]. https://mp.weixin.qq.
com/s/CluHeu1oy7DneBuR0cXZSQ (2020). Accessed 25 June
2023

28. Najafi, P., Mühle, A., Pünter, W., Cheng, F., Meinel, C.: Malrank:
a measure of maliciousness in SIEM-based knowledge graphs.
In: Proceedings of the 35th Annual Computer Security Applica-
tionsConference.Association forComputingMachinery, San Juan,
Puerto Rico, USA, pp. 417–429 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2001.01525
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://mp.weixin.qq.com/s/CluHeu1oy7DneBuR0cXZSQ
https://mp.weixin.qq.com/s/CluHeu1oy7DneBuR0cXZSQ

	APT Attack Detection Based on Graph Convolutional Neural Networks
	Abstract
	1 Introduction
	2 Related Work
	3 Overall Framework
	4 APT Attack Detection Based on GCN Model
	4.1 Knowledge Graph Construction
	4.1.1 Collecting Security-Related Data
	4.1.2 Entity Modeling
	4.1.3 Relationship Extraction

	4.2 GCN Model Design
	4.2.1 Simplification of Heterogeneous Security Knowledge Graph into Homogeneous Graph
	4.2.2 Node Feature Extraction
	4.2.3 APT Detection Using Graph Convolutional Neural Network (GCN)

	5 Experiment
	5.1 Dataset and evaluation metrics
	5.2 Parameter Experimentation
	5.3 Comparative Experiments
	5.4 Application Experiment

	6 Conclusion and Future Work
	Acknowledgements
	References

