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Abstract
Thyroid disease has been on the rise during the past few years. Owing to its importance in metabolism, early detection of
thyroid disease is a task of critical importance. Despite several existingworks on thyroid disease detection, the problem of class
imbalance is not investigated very well. In addition, existing studies predominantly focus on the binary-class problem. This
study aims to solve these issues by the proposed approach where ten types of thyroid diseases are considered. The proposed
approach uses a differential evolution (DE)-based optimization algorithm to fine-tune the parameters of machine learning
models. Moreover, conditional generative adversarial networks are used for data augmentation. Several sets of experiments
are carried out to analyze the performance of the proposed approach with and without model optimization. Results suggest
that a 0.998 accuracy score can be obtained using AdaBoost with DE optimization which is better than existing state-of-the-art
models.
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1 Introduction

The thyroid is a small, but very important gland in the
neck that allows the human body to maintain digestion and
heart rate [1]. The thyroid organ releases the hormones that
control metabolisms such as body temperature and heart
rate. It produces two important hormones, T4 and T3. For
several metabolic activities, these hormones are responsi-
ble such as heart rate and body weight. The thyroid gland
produces thyroid hormones that travel in the blood to help
control several organs. When the function of the thyroid
gland is affected, it leads to inappropriate production of
the thyroid hormone. The symptoms of thyroid disease may
involve high cholesterol, an unusual pulse rate, and high
blood pressure. There are five common types of thyroid
disease including hypothyroidism, structural abnormalities,
hyperthyroidism, tumors, and subclinical hyperthyroidism
or subclinical hypothyroidism. To diagnose hypothyroidism,
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the blood sample is tested in a laboratory where medical
specialists are needed to analyze the test reports for the hor-
mones and other parameters to diagnose thyroid disease. In
hypothyroidism, the thyroid gland does not produce suffi-
cient thyroid hormone. Hypothyroidism may involve several
symptoms such as the feeling of tiredness, poor capabil-
ity to tolerate colds, constipation, depression, slow heart
rate, and weight gain. Doctors adjust the medicine dose
according to the patient’s conditions to normalize TSH lev-
els and thyroxine. Excessive thyroid hormones are produced
in hyperthyroidism disease. Symptoms of hyperthyroidism
include troubled sleeping, irritability, nervousness, fine brit-
tle hair, increased perspiration, hand tremors, heart racing,
anxiety, skin thinning, and muscular weakness. Hyperthy-
roidism is very common after the age of 60 years. There
are three major treatment methods for hyperthyroidism dis-
ease such as medications, radioiodine therapy, and thyroid
surgery.

The thyroid gland creates hormones to carry out several
important functions in the body, and lack of thyroid balance
(creating too much or too little) leads to thyroid disease.
There are various diseases related to the thyroid which lead
to imbalance and malfunctioning of various other organs [2].
If not properly treated, it can lead to complications such as
goiter, heart disease, pregnancy problems, and more danger-
ous myxoedema coma [3]. According to [4], thyroid disease
affects 200 million people worldwide and an estimated 40%
of people are at risk of iodine deficiency which helps to pro-
duce thyroid hormone. Several kinds of thyroid diseases may
occur and each has its own impact on humanhealth, for exam-
ple, hypothyroidism and hyperthyroidism and the two main
types of thyroid disease that cause thyroid imbalance. To
avoid such complications, early prediction of the correct thy-
roid disease type is important so that treatment can be done
according to thyroid type.

In the past, various tests have been carried out that record
different symptoms for thyroid diseases. These symptoms
can be used to diagnose a specific thyroid disease [5]. For
example, these tests and symptoms can be used to pre-
dict and diagnose thyroiditis/Graves’, disease/Hashimoto’s
disease/goiter/thyroid, nodule/thyroid cancer, etc. Thyroid
disease can be categorized based on various symptoms and
features. Existing studies provide many features relevant to
thyroid diseases. Table 1 provides the names and descriptions
of a few features that can be used to predict thyroid disease;
for example, lithium, goiter, hypopituitary, Psych, TSH, T3,
TT4, T4U, FTI, and TBG can be used in thyroid detection.

Previously, several studies investigated thyroid diseases
and their symptoms [6–8]. Some approaches focus on data
analytics, while others carry out the recording of tests and
symptoms. Based on the technique used for disease detec-
tion like statistical analysis, machine learning model, or
deep learning model, the accuracy and robustness of such

Table 1 Thyroid test features

Feature Description

TSH Thyroid-stimulating
hormone

This is produced by pituitary
glands to manage the thyroid
hormones (TSH level in the
blood from laboratory work)

T3 Triiodothyronine tests 100–200 ng/dL

Free T3 (FT3) 2.3–4.1 pg/mL

Test T4 (TT4)

Thyroxine tests (11>T4>5) (T4) Low T4 refers to hypothyroidism;
high refers to hyperthyroidism

Free T4 or free thyroxine (FTI) 0.9–1.7 ng/dL

approaches vary. Predominantly, existing approaches make
use of publicly available datasets and suffer from model
overfitting. Most of the available datasets suffer from an
imbalanced class problem where the number of samples for
the positive (disease) class is substantially small. When such
a dataset is used with a machine or deep learning model, the
model overfits the majority class and produces false predic-
tions for the minority class. Another limitation of existing
studies is that only a few thyroid diseases are used for clas-
sification; for the most part, existing studies focus on the
binary-class problem which makes those approaches unsuit-
able for real-world disease detection. This study focuses on
resolving this issue by increasing the number of samples of
the minority class using synthetic data samples.

This study aims at mitigating the influence of class
imbalance and increasing disease detection performance. In
summary, this study makes the following contributions:

• An efficient machine learning approach is designed to
predict thyroid disease with high accuracy. The perfor-
mance of the models is optimized using a differential
evolution (DE)-based optimization algorithm.

• DE interacts with hyperparameters of various machine
learning models to identify the best hyperparameters.
The DE algorithm is used to find the optimal parame-
ters for machine learning models to obtain significant
improvement in the accuracy of models for thyroid dis-
ease detection.

• This study specifically deals with the class imbal-
ance problem. The impact of class imbalance is miti-
gated using conditional generative adversarial networks
(CTGAN) to perform data augmentation.

• A higher number of classes are considered compared
to existing studies. Thyroid disease detection is per-
formed using ten classes with several machine learning
models including random forest (RF), gradient boosting
(GB), AdaBoost, logistic regression (LR), and support
vector machine (SVM). In addition, long short-term
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memory (LSTM), convolutional neural network (CNN),
and recurrent neural network (RNN) are also employed.

• Extensive experiments are performed regarding the per-
formance of models with and without DE optimization.
The performance is further validated using k-fold cross-
validation.

The rest of this paper is organized as follows: Sect. 2 dis-
cusses the related works. The study methodology is given in
Sect. 3 and Sect. 4 presents study results and discussion. In
the end, Sect. 5 concludes this study.

2 RelatedWork

For thyroid disease prediction, deep learning and machine
learning methods have been applied in various existing
research works. Prediction of thyroid disease at its early
stages and categorization into cancer, hyperthyroidism, or
hypothyroidism is very helpful for treating and recovering the
maximum number of patients. To identify the recent research
studies in the presented work, various thyroid disease classi-
fication and detection methods have been described here.

In [9], the authors present a machine learning approach
for B-Raf proto-oncogene, serine/threonine kinase (BRAF)
mutation presence in cancer thyroid nodules. The study also
presented ultrasonic images of 96 thyroid nodules. Machine
learningmodels such asRF,LR, andSVMare used for detect-
ing the presence of BRAF mutation. Using these models,
a classification accuracy of higher than 60% is reported. In
another similar study, fine-needle aspiration (FNA) and ultra-
sonic features were used to reduce the false-negative rate for
thyroid cancer. The RF model reported better results than
other methods such as gradient descent and decision tree
(DT). The authors applied LR and the least absolute shrink-
age and selection operator (LASSO)models in [10] to choose
the malignant thyroid nodule associated with the ultrasonic
features. To classify the malignant thyroid nodules, the RF
model is used along with a scoring system. The logistic lasso
regression (LLR)withRF attained higher than 80%accuracy.
In [6], the authors analyzed the data by applying different
machine learning algorithms. The results are compared with
ten different classifiers. An 84% accuracy was achieved by
using an extra tree classifier.

The study [11] used SVM for detecting thyroid disease.
The reported accuracy is 83.37%. Additionally, the model
correctly distinguishes between four thyroid states. In [8],
the authors performed experimentation to predict and classify
thyroid disease using the DT model. In addition, researchers
introduced a machine learning-based tool, a machine learn-
ing tool for thyroid disease diagnosis (MLTDD) to predict
intelligently thyroid diseases. MLTDD shows an accuracy
of 98.7%. Machine learning algorithms, including LR, RF,

SVM, GBM, and DNN, are used to predict the highest
probable molecules that initiate the homeostasis thyroid hor-
mone in [12]. The authors investigated feature engineering
using deep learning and machine learning methods in [13].
Backward feature elimination, forward feature selection,
machine learning-based feature selection, and bidirectional
feature elimination with an extra tree classifier were adopted.
The proposed approach can predict non-thyroidal syndrome,
Hashimoto’s thyroiditis, autoimmune thyroiditis, and bind-
ing protein. Results indicate an improved accuracy of 99%
using extra tree classifier-based selected features and with
the RF classifier.

A multi-kernel SVM is presented in [14] to predict can-
cer and thyroid diseases. The gray-wolf optimization is
applied for feature selection and improves performance.
The study reports a 97.49% accuracy using the multi-kernel
SVM. In [15], the authors applied image processing meth-
ods and feature selection techniques to select the important
features from the database and obtain improved perfor-
mance for thyroid diseases. Using machine learning and
selective features techniques, [15] performed multi-class
hypothyroidism. Hypothyroidism is categorized into four
groups. Experimental results demonstrate that RF achieved
99.81% accuracy compared with KNN, DT, and SVM algo-
rithms. The study [16] investigated three feature selection
approaches using DT, SVM, RF, naive Bayes (NB), and LR
for the prediction of hypothyroidism. Principal component
analysis, univariate feature selection, and recursive feature
selection were used for feature selection. Recursive fea-
ture selection combined with machine learning algorithms
reported improved performance than other techniques. DT,
SVM, RF, naive Bayes (NB), and LR algorithms are com-
bined with RFE and achieve 99.35% accuracy.

The study [17] introduced a multiple multi-layer percep-
tron (MMLP) model for thyroid disease classification. The
MMLP is reported to achieve 99% accuracy for large-scale
datasets. Another study [18] presented the XGBoost tech-
nique to predict and classify thyroid disease. The XGBoost
algorithm’s efficiency is compared with DT, LR, and KNN
approaches. The XGBoost algorithm improves the accuracy
by 0.02% than the KNN algorithm. In [19], a compara-
tive analysis for machine learning-based techniques RF, DT,
artificial neural network (ANN), and KNN is presented.
Experiments are carried out on a large-scale dataset. More-
over, both original and sampled data are considered for
experiments. RF attained improved performance with 94.8%
accuracy.

Besides using machine learning models, some studies
specifically focus onusingdeep learningmodels for detecting
thyroid disease. For example, a deep neural network (DNN)
is used to predict and classify thyroid disease in [20]. DNN
is reported to obtain an accuracy of 99.95%. The authors
compared several machine learning algorithms such as extra
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trees, CatBoost, LightGBM, ANN, KNN, SVM, RF, DT,
XGBoost, and GaussianNB, to improve the thyroid predic-
tion accuracy in [21]. The accuracy, recall, precision, and F1
score are examined to evaluate the performance. The research
reported 96% accuracy using an ANN classifier. The study
[22] utilized a CNN-based ResNet architecture to detect thy-
roid from an image dataset. The research focused on five
types of thyroid conditions and achieved a 94% accuracy
rate usingResNetmodelswith the stochastic gradient descent
(SGD) optimizer. The study [23], introduces a novel trans-
fer learning approach, the distant domain high-level feature
fusion (DHFF) model. DHFF aims to narrow the distribution
gap between the source and target domains while preserv-
ing their unique characteristics. This approach prevents the
overblending of features while facilitating a more effective
transfer of knowledge acquisition. The proposed approach
achieved 88.92% accuracy when applied to thyroid ultra-
sound auxiliary source domains.

The above-discussed studies investigate various machine
learning and deep learning approaches for thyroid disease
detection and report different results regarding the accuracy,
precision, F1 score, etc. However, these studies have sev-
eral limitations; in particular, we identified four major gaps
concerning thyroid disease prediction. First, several studies
perform experiments with smaller datasets and their results
cannot be generalized. Secondly, the majority of the studies
use thyroid detection, and the type of disease is not inves-
tigated. Thirdly, predominantly, the existing studies utilized
imbalanced datasets. Although high accuracy is reported in
these studies, the models lack generalizability. The mod-
els may experience bias and overfitting, leading to wrong
predictions for the minority classes. The model overfitting
can cause a higher number of false positives for the minor
class. Lastly, for the most part, the optimization is carried
out concerning the feature engineering and there is a lack
of emphasis on model tuning. The model’s fine-tuning holds
a prominent significance, especially with respect to dataset
characteristics. Traditional tuning methods have proven to
be inefficient. Therefore, this study focuses on hyperparam-
eter optimization using the DE algorithm. The comparative
analysis for state-of-the-art methods is given in Table 2.

3 Materials andMethods

This section describes the dataset used for experiments, the
use of CTGAN for data balancing, the working of the DE
algorithm in the context of hyperparameter optimization, and
a brief overview of machine learning models used in this
study.

This study designs a machine learning approach for thy-
roid disease detection. Figure1 shows the architecture of the
proposedmethodology. First, we acquire the dataset from the

Kaggle [25]. The dataset contains 25 target classes, of which
the top 10 target classes are selected for experiments. These
classes are selected based on the high number of samples.
The rest of the classes have very few samples, so they are not
included in this study. The selected targeted dataset is imbal-
anced, so to make the dataset balanced we used the CTGAN
augmentation technique. This technique generates samples
for the minority class. Data splitting is done to divide the
dataset into training and testing sets with a 0.8 to 0.2 ratio,
where 80% is used for training and 20% is used for testing.
Machine learning models work on numeric data, so we use a
Label-encoder to convert data into numeric form before pass-
ing it to machine learning models.We train machine learning
models with a training set and perform hyperparameter opti-
mization using DE optimizer which helps to select the best
hyperparameter setting for models. In the end, we evaluate
models in terms of accuracy, precision, recall, F1 score, and
confusion matrix.

3.1 Thyroid Disease Dataset

The datasets used in this study are taken from the Kaggle
repository. The thyroid disease dataset comprises 9172 sam-
ples and every sample has 31 features. The dataset consists
of various records for different thyroid diseases and the tar-
get classes. The target classes include health condition state
and diagnosis classes. The importance of features should be
evaluated to select the optimal number for features of thy-
roid disease classification. In addition, these features belong
to different types including float, boolean, string, and int.
The proposed approach works with ten classes, namely ‘-’,
‘K’, ‘G’, ‘I’, ‘F’, ‘R’, ‘A’, ‘L’, ‘M’, and ‘N’. The detailed
description of each class is given in Table 3.

The class counts indicate that the dataset is imbalanced.
For example, many samples in the dataset are not used in any
particular class. However, data pre-processing is performed
to attain the standard dataset to evaluate the performance.
The classification count is used to classify as "no condi-
tion". Additionally, categorization is not performed on data
samples for any other classes such as hypothyroid, hyperthy-
roid, general health, binding proteins, anti-thyroid treatment,
replacement therapy, and many more. The patients who do
not have thyroid disease are considered in "no condition".
Therefore, concurrent non-thyroidal disease is generally seen
in severely ill patients with chronic disease, and serum thy-
roid levels are changed due to chronic disease [35].

The thyroid disease dataset contains 9172 records of
which 6771 samples belong to normal people, while others
suffer from different types of thyroid diseases. For example,
there are 647 hyperthyroid patients, 733 primary hypothy-
roid, 836 concurrent non-thyroidal disease patients, 859
compensated hypothyroid patients, etc. Detailed records for
all ten classes used in this study are shown in Table 4.

123



International Journal of Computational Intelligence Systems             (2024) 17:3 Page 5 of 19     3 

Ta
bl
e
2

Su
m
m
ar
y
of

th
e
sy
st
em

at
ic
an
al
ys
is
st
ud

ie
s
in

re
la
te
d
w
or
k

St
ud

y
Y
ea
r

D
at
as
et

Sa
m
pl
e
si
ze

M
et
ho

ds
C
la
ss
es

E
va
lu
at
io
n
m
et
ri
cs

R
es
ul
ts

[1
2]

20
20

To
xC

as
ts

N
/A

R
F,
L
R
,X

G
B
,S

V
M
,A

N
N

2
F1

sc
or
e

(T
R
)
R
F-
81
%

an
d
(T
PO

)
X
G
B
-8
3%

[1
4]

20
20

U
C
I

75
47

,3
0
fe
at
ur
es

m
ul
ti-
ke
rn
el
SV

M
3

A
cc
ur
ac
y,
sp
ec
ifi
ci
ty
,s
en
si
tiv

ity
Se

ns
iti
vi
ty

(9
9.
05

%
),
ac
cu
ra
cy

(9
7.
49
%
),
sp
ec
ifi
ci
ty

(9
4.
5%

)

[1
5]

20
21

U
C
I

37
71
,3
0
at
tr
ib
ut
es

D
T,

R
F,
K
N
N
,S

V
M

4
A
cc
ur
ac
y

K
N
N

−9
8.
3%

,D
T
−9

9.
5%

,
SV

M
−9

6.
1%

,R
F
99
.8
1%

[1
6]

20
21

D
ia
gn

os
tic

ce
nt
er

51
9
sa
m
pl
es

SV
M
,D

T,
R
F,
L
R
,a
nd

N
B
.R
FE

,
U
FS

,P
C
A

4
A
cc
ur
ac
y

R
FE

,L
R
,D

T,
SV

M
,R

F
A
cc
ur
ac
y−

99
.3
5%

D
ha
ka
,B

an
gl
ad
es
h

[1
7]

20
21

U
C
I

72
00
,2
1
fe
at
ur
es

M
ul
tip

le
M
L
P

3
A
cc
ur
ac
y

M
ul
tip

le
M
L
P
99
%

[1
3]

20
22

U
C
I

91
72
,3
1
fe
at
ur
es

R
F,
A
D
A
,G

B
M
,S

V
M
,

C
N
N
–L

ST
M

4
R
ec
al
l,
pr
ec
is
io
n,

F1
sc
or
e

R
F-
99
%

ac
cu
ra
cy
,C

N
N
-9
4%

pr
ec
is
io
n

R
F,
A
D
A
,G

B
M
,S

V
M
,

C
N
N
–L

ST
M

4
C
ro
ss
-v
al
id
at
io
n,

ac
cu
ra
cy

C
N
N
-9
2%

re
ca
ll,

C
N
N
-9
3%

F1
sc
or
e

[1
9]

20
22

U
C
I

31
62

D
T,

R
F,
K
N
N
,A

N
N

2
A
cc
ur
ac
y

A
cc
ur
ac
y
R
F−

94
.8
%

[1
8]

20
22

U
C
I

21
5
W
ith

5
fe
at
ur
es

K
N
N
,X

G
B
,L
R
,D

T
3

A
cc
ur
ac
y

K
N
N
81
.2
5%

,X
G
B
oo
st
87
.5
%
,

L
R
96
.8
75
%
,D

T
98
.5
9%

[2
0]

20
22

U
C
I

31
52
,2
3
fe
at
ur
es

D
N
N

2
A
cc
ur
ac
y

A
cc
ur
ac
y
99
.9
5%

[2
4]

20
22

U
C
I

72
47
,2
1
at
tr
ib
ut
es

G
W
O
,I
G
W
O
,H

FB
O

3
A
cc
ur
ac
y,
sp
ec
ifi
ci
ty
,s
en
si
tiv

ity
Se
ns
iti
vi
ty
(9
9.
2%

),
ac
cu
ra
cy

(9
9.
28
%
),
sp
ec
ifi
ci
ty

(9
8%

)

[2
1]

20
22

U
C
I

31
62

E
xt
ra
-T
re
es
,C

at
B
oo
st
,L

ig
ht
G
B
M
,

A
N
N
,K

N
N
,S

V
C
,R

F,
D
T,

X
G
B
oo
st
,G

au
ss
ia
nN

B

4
A
cc
ur
ac
y

A
cc
ur
ac
y
95
.7
%

[2
2]

20
23

Im
ag
e
da
ta
se
t

63
56

C
N
N
-b
as
ed

R
es
N
et
an
d
SG

D
5

A
cc
ur
ac
y

94
%

123



    3 Page 6 of 19 International Journal of Computational Intelligence Systems             (2024) 17:3 

Fig. 1 Architecture of the
proposed methodology

A total of 800 samples were randomly selected from the
normal class. The primary hypothyroid increased binding
protein, hypothyroid, hyperthyroid, consistent with replace-
ment therapy, over-replaced, discordant assay results, and
under-replaced and concurrent non-thyroid disease counts
were not changed.

3.2 Data Balancing Using CTGAN

In this study, data balancing is carried out using CTGAN to
generate samples. In the dataset used in this study, the normal
class has the highest number of samples, while some other
classes have a very small number of samples. To balance
the dataset, 400–500 samples are generated using CTGAN.
Table 5 shows the number of samples before and after data
augmentation using CTGAN.

The purpose of dataset balancing is to avoid model over-
fitting which happens when a model is trained on a highly
unbalanced dataset. For the unbalanced dataset, the feature
distribution is skewed concerning themajority class as shown
in Fig. 2b. Dataset balancing helps to normalize the feature
distribution and reduces the probability of model overfit-
ting. Feature distribution of the balanced dataset is shown
in Fig. 2b.

3.3 Differential Evolution (DE)

This study uses aDE-based optimization algorithm tofind the
set of optimal hyperparameters for machine learning mod-
els such as RF, LR, SVM, AdaBoost, GB, etc . [36]. The
hyperparameter optimization improves the performance of
the models. The DE optimizer is divided into five phases:
(1) Initialization, (2) fitness evaluation, (3) mutation, (4)
crossover, and (5) stopping condition.

1. Initialization: In this phase, nth random solutions are
generated for a given problem. For this study, a random
combination of hyperparameters (max_depth and a num-
ber of iterations (n_ite)) is generated. Each randomly
generated solution is treated as a chromosome. This phase
keeps a record of initializing all the basic parameters listed
below:

• Number of the population (n): 50.
• Number of iteration (I): 100.
• Weighting factor(wf): 0.9 ( 0 <wf<50).
• Crossover probability (CP): 0.5 (0<CP<1),

where 50 ≤ Max_Depth ≤ 300, 50 ≤ n_i te ≤ 300.
2. Fitness Evaluation: This phase evaluates the fitness

of each chromosome/solution. For our problem, fitness
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Table 3 Description of classes in the dataset

Class Description Detail

K Concurrent non-thyroid illness Non-thyroidal disease is normally used to define the changes in hormones related to the thyroid
that may arise in serum or chronic disease that is not produced with an intrinsic irregularity in the
thyroid function [26]

G Compensated hypothyroid Compensated hypothyroidism is also known as subclinical hypothyroidism. It is a condition that is
associated with a high serum concentration for TSH, but a normal serum-free thyroxine (FT4)
[27]

I Increased binding protein A binding protein is some protein that acts as an agent to combine two or many molecules [28]

F Primary hypothyroid Primary hypothyroidism is described as low levels of blood thyroid hormone because it damages
the thyroid gland. This type of destruction is typically due to auto-immunity, including surgery,
radiation, and radio-iodine [29]

R Discordant assay results Assay interfering may be a reason for abnormal thyroidal function tests. Recognition at an early
stage prevents inappropriate patient management [30]

N Over-replaced In [31], the use of a high free T4 along with TSH to describe the over-replaced group, which is
combined by use of a normal free T4 with low TSH to define the group not likely to be
over-replaced, will reduce the possibility of error in allocating patients to the affected and control
groups

A Hyperthyroid Excessive thyroid hormones are produced in hyperthyroidism disease. Symptoms of
hyperthyroidism include trouble sleeping, irritability, nervousness, fine, brittle hair, increased
perspiration, hand tremors, heart racing, anxiety, thinning of the skin, and muscular weakness [32]

L Consistent with replacement therapy Thyroid hormone therapy is usually prescribed when the patient’s thyroid is not producing
sufficient thyroid hormones naturally. This condition is called hypothyroidism. Another reason to
use thyroid hormone therapy can rarely be: its use to control the growth of thyroid goiter [33]

M Under-replaced Hypothyroidism is generally treated by taking hormone replacement tablets daily, known as
levothyroxine. It replaces thyroxine hormone, which is not enough in the patient’s body [34]. It
can rarely comprise: its use to control the growth of thyroid goiter [33]

- No condition No thyroid disease in patient / Normal report

Fig. 2 Feature space visualization in three dimensions. For this, we used the principal component analysis (PCA) technique which converts high-
dimensional data into three dimensions and then we visualize this 3D data using a scatter plot. a Feature space after CTGAN. b Feature space using
original dataset
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Table 4 Number of records for each class

Class # of samples

Normal 800

Over-replaced 436

Concurrent non-thyroidal illness 359

Compensated hypothyroid 346

Increased binding protein 233

Primary hypothyroid 196

Discordant assay results 147

Hyperthyroid 115

Consistent with replacement therapy 111

Under-replaced 110

Table 5 Details of the dataset before and after data augmentation

Class Count New sample count

Normal 800 800

Over-replaced 436 836

Concurrent non-thyroidal illness 359 859

Compensated hypothyroid 346 846

Increased binding protein 233 733

Primary hypothyroid 196 596

Discordant assay results 147 647

Hyperthyroid 115 615

Consistent with replacement therapy 111 611

Under-replaced 110 610

refers to the accuracy score of the model using the given
set of hyperparameters.

3. Mutation: In this phase, a newoffspring is generated from
the existing solution in search of a new better solution.
This involves the random selection of two chromosomes.
Thenusing theweighting factor, one target chromosome is
selected with maximum fitness. Figure3 shows the muta-
tion process. A new chromosome can be defined as

Newchromosome = targetvector + w f ∗ (random_

selected1 − random_selected1).

(1)

4. Crossover: In this process, some of the values of the new
solution are interchanged with the existing solution. The
crossover probability defines the probability of swapping
the values. For this study, it is 0.5 which means 50% of
the chromosomes are updated. Figure4 shows the process
carried out in the crossover.

5. Stopping Condition: This step defines when to stop the
process of searching for new solutions. The stopping con-
dition is the number of iterations to find the solution. In

Fig. 3 Process of mutation

Fig. 4 Process of crossover

the proposed approach, if the condition for the number
of iterations is met, the process stops, and it returns the
best-explored solution along with the best accuracy score
achieved using that global solution. Figure5 illustrates the
flowchart of the DE and the interaction between DE and
ML as proposed in this study.

3.4 Machine LearningModels

The presented approach employs various machine learning
models to detect thyroid disease. RF, SVM, LR, AdaBoost,
GBM, CNN, RNN, and LSTM are used in the presented
study. These classifiers are tuned for performance enhance-
ment using DE optimizer and a list of optimized parameter
values is given in Table 6.

3.4.1 Random Forest

RF is employed for regression and classification problems.
RF is an ensemble classifier that uses a tree-based classifi-
cation technique. Additionally, RF is applied to reduce the
overfitting problems using a bootstrap approach for sam-
pling. It defines the best prediction by the voting process.
Additionally, it detects the significant elements within a
dataset and reports a simple indicator for feature signifi-
cance. Feature selection is applied in classification research
to reconstruct the data and also improve the accuracy. Many
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Fig. 5 DE optimizer flow diagram

models are trained on boot-strapped samples that are used for
classification in the bagging approach. RF can produce more
consistent ensemble forecasts than a DT. The test statistic
of a single function is computed using the feature selection
method in Eq. 2

norm t j = t j
∑t

jkεall f eatures

. (2)

In Eq. 2, norm t_ j is used to normalize the importance
of feature j .

InEq. 3, the total number of trees is dividedby the assigned
value to every node feature importance.

RFt j =
∑

j iεalltrees normt j

R
. (3)

RFt j is used for feature importance, and j is computed from
all trees in the RF classifier. RFt j denotes the normalized
feature importance for j in tree k, and R is used for the total
number of trees.

3.4.2 Logistic Regression

LR is a statistical method that is used to analyze the data and
comprises one or more variables to predict outcomes. LR
is employed to evaluate the probability of class members to
confirm the target variable. The logistic function is applied
to estimate the probabilities of behavior among independent
and dependent variables [37]. The ’solver’ variable is set as
’linear’ because of linearly separable data. Furthermore, the
’multi-class’ variable is used with the ’multi-nomial’ value
because ofmulti-class classification. The ’C’ parameter is set
to 4, which represents the inverse of regularization strength
and decreases gradually the overfitting probability [38].

3.4.3 Support Vector Machine

A support vector machine is a linear classifier that is used
for classification and regression. SVM is used to divide the
sample data into various classes using a hyperplane or set of
hyperplanes in n-dimensional space [39, 40]. SVM achieves
classification by selecting the ‘best-fit’ hyperplane that can
differentiate the classes. This study uses a ‘linear’ kernel
of SVM which is often used when the dataset has several
features. The training with the linear kernel is very fast due
to the need for W regularization variable optimization. The
value of C is set to 5.0.

Table 6 Hyperparameter setting and optimization range for machine learning models

Model Hyperparameters Hyperparameters range

RF n_estimators=282,max_depth=15 n_estimators = {2 to 300}, max_depth = {2 to 300}

GB n_estimators = 148, max_depth = 107, learning_rate
= 0.5

n_estimators = {2 to 300}, max_depth = {2 to 300}, learning_rate =
{0.1 to 0.9}

AdaBoost n_estimators = 286, learning_rate = 0.6 n_estimators = 2 to 300, learning_rate = {0.1 to 0.9}

LR Solver = ’saga’, multi_class = ’multinomial’, C = 4 Solver = {’newton-cg’, ’lbfgs’, ’sag’, ’saga’ }, multi_class =
’multinomial’, C = { 1 to 10}

SVM kernel= ’linear’, C=5.0 kernel = {’linear’, ’poly’, ’rbf’, ’sigmoid’, ’precomputed’}, C = { 1.0
to 10.0}
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3.4.4 Gradient Boosting Machine

GBM is the best technique due to its prediction accuracy
and speed, particularly for complex and large-scale datasets.
GBM is used to minimize the bias error. GBM is similar to
AdaBoost; the major difference is that GBM has a fixed base
estimator, i.e., DT, whereas in AdaBoost the base estima-
tor can be changed according to requirements. In GBM, the
base model is built to predict the observations in the training
dataset as defined here: [41]

H(x) = argαmini
m∑

k=1

l(xk, α), (4)

where l is used for the loss function, α predicts the value and
argmini represents the predicted α, where the loss function
is minimum. The target column is a continuous loss function
that will be

l = 1

m

m∑

k=0

(xk − αk)
2, (5)

where xk is used for observed values andα is for the predicted
value inEq. 5.We simply calculate the average of all numbers
in a leaf.

αn = argαmini
m∑

k=1

l(xk, fn−1(yk) + αHn(yk)), (6)

where Hn(yk) is the decision tree made on residuals and n is
the number of the decision tree.

3.4.5 Long Short-TermMemory

LSTM is an RNN that contains an efficient memory cell
to help LSTM forget or remember things. In LSTM there
are four interacting layers including forget gate, update gate,
input gate, and output gate. Using the forget gate, the deci-
sion is made whether the information is thrown away from
the cell state as shown in Eq. 7.

rs = δ(Yr .[gs − 1, zs] + αr ), (7)

where gs is used for the weight matrix, ar is the bias vector,
and rs is a number between 0 and 1, where 0 denotes the
forget value and 1 is the keeping value.

The input gate is used with a tanh layer and a sigmoid
layer to decide which values will be modified as shown in
Eqs. 8 and 9.

is = δ(Yi .[gs − 1, zs] + αs), (8)

f̃s = tanh(Y f .[gs − 1, zs] + α f ). (9)

In Eqs. 8 and 9, Yi and Y f are used for weight matrices. Here,
as and a f are for bias vectors. i_s, f _s is for outputs.

In Eq. 10, the update gate updates the old cell state by
value from the input gate.

fs = rs ∗ fs − 1 + is ∗ f̃s, (10)

where rs is used to decide which information is to be forgot-
ten. is ∗ f̃s selects the total number of values to be modified
in the cell.

Lastly, the output gate in Eqs. 11 and 12 is used to decide
which value is the output from the layer [42].

id = δ(Yd .[gs − 1, zs] + αd), (11)

es = ds ∗ tanh( fs). (12)

In Eqs. 11 and 12, the value of id is used to decide the
output state. The new cell state fs is multiplied by ds . The
tanh function is selected to achieve es in Eq. 12 which is the
output of id .

3.4.6 Convolutional Neural Network

The CNN is mainly presented to deal with the variability for
two-dimensional shapes. CNN contains two layers: pooling
layer and a convolutional layer. The convolution layer per-
forms the convolution for the previous layer output along
with a sliding filter bank to generate the output feature map.
Sigma is the sigmoid function that is used as a function for
network activation. Both Wae

qm and Dae
q are the filters that

create the training parameters for convolution layers in Eq.
13 [43].

Fae
b = sigma

(
n∑

m=1

j (ae−1)
m ∗ Wae

qm + Dae
q

)

. (13)

The pooling layer is used to minimize feature map resolu-
tion and the sensitivity of the output.Maxpooling is generally
used for pooling in convolutional neural networks.

3.4.7 Recurrent Neural Network

An RNN is designed to handle sequential or time series data,
accept the current input, and receive previous inputs. RNN
simulates a discrete-time dynamic system that has ad for the
input layer, bd for the hidden layer, and cd for the output
layer. The d is used to represent the time. The dynamical
model is described in Eqs. 14 and 15 [44].

bd = Fb(αd , bd−1), (14)

cd = F0(bd), (15)
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Table 7 RF performance
comparison with and without
DE optimizer

Without optimization With optimization
Class Precision Recall F1 score Models Precision Recall F1 score

- 1.00 1.00 1.00 – 0.99 1.00 1.00

A 0.96 0.99 0.97 A 1.00 1.00 1.00

F 1.00 1.00 1.00 F 0.99 0.99 0.99

G 0.98 1.00 0.99 G 0.99 1.00 1.00

I 0.98 0.98 0.98 I 0.99 0.99 0.99

K 0.99 1.00 1.00 K 1.00 0.99 1.00

L 0.99 0.97 0.98 L 1.00 1.00 1.00

M 1.00 0.99 1.00 M 0.98 1.00 0.99

N 1.00 1.00 1.00 N 1.00 1.00 1.00

R 0.98 0.94 0.96 R 1.00 0.97 0.98

Average 0.99 0.99 0.99 Average 1.00 0.99 1.00

where Fb and F0 are functions for the state transition and
output, respectively, in the equation. Every function is param-
eterized using a set of parameters, φb and φ0.

Suppose there is a set of M training sequences A =
((α

(m)
1 , c(m)

1 ), ..., ((α
(m)
Dm, c(m)

Dm)
M

m=1. RNN’s parameters are
estimated to minimize cost function as described in Eq. 16
[44].

V (φ) = 1

M

M∑

m=1

Dm∑

d=1

j(c(m)
d , Fo(b

(m)
d )), (16)

where b(m)
d = Fb(α) =(m)

d , c(m)
d−1) and b(m)

d = 0, j(x, y) is
a predefined divergence value between x and y, as cross-
entropy or Euclidean distance.

4 Results and Discussions

This section contains the results of machine learning models
to analyze the performance of models with and without the
DE optimizer. In addition, k-fol cross-validation and perfor-
mance comparison with existing state-of-the-art models is
also carried out.

4.1 Experimental Setup

The machine learning models are investigated in terms of
accuracy, precision, recall, and F1 score. Moreover, each
model is evaluated using confusion matrix values. This study
performs experiments using an Intel Core i7 11th generation
system with 16 GB RAM, 1TB SSD, and Windows 10.0
operating system. We used Jupyter Notebook and Python
language to implement the proposed approach. The proposed
approach uses the sci-kit learn library andTensorFlow frame-
work.

4.2 Results of Machine LearningModels

Table 7 shows the results of RF with and without opti-
mization. RF shows very good performance in terms of all
evaluation parameters using the DE optimizer with 1.00,
0.99, and 1.00 scores, for precision, recall, and F1 score,
respectively, while without an optimizer, RF achieved 0.99,
0.99, and 0.99 scores for precision, recall, and F1 scores,
respectively. The class-wise results indicate that some classes
have lower precision and F1 scores when the model is
not optimized. However, when using DE optimization, we
observed improvements in the results for individual classes.
For instance, prior to optimization, class A had precision and
F1 scores of 0.96 and 0.97, respectively. After optimization,
we achieved significant scores of 1.00 for both metrics. Sim-
ilarly, we observed the significance of DE for classes I and
R results.

Table 8 shows the confusion matrix for the RF model.
With theDE optimizer, RF gives 1464 correct predictions out
of 1471 and only 7 predictions are wrong. Similarly, with-
out DE optimizer, RF gives 1454 correct predictions and 17
wrong predictions. These results show that the RF achieved
significantly better results with the DE optimizer.

Table 9 contains the results of GBM using DE optimiza-
tion, aswell as results without the optimization. Results show
that GBM has significant performance, similar to the RF
model. GBM achieves a 1.00 score each for precision, recall,
and F1 score. RF recall score was 0.99, while GBM achieved
a 1.00 F1 score. GBM achieved a 0.99 score in terms of all
evaluations without the DE optimizer. Similarly, the perfor-
mance of GBM for the individual class is also better when it
is optimized using DE optimization.

Overall, GBM is better as compared to RF, as GBM pre-
dicts only six wrong predictions which is one prediction less
as compared to RF, as shown in Table 10. GBM gives 1455
correct predictions and 16 wrong predictions without the DE
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Table 8 RF confusion matrix with and without DE optimizer

Without optimizer

205 0 0 0 0 0 0 0 0 0

0 135 0 0 0 0 0 0 0 1

0 0 157 0 0 0 0 0 0 0

0 0 0 178 0 0 0 0 0 0

0 0 0 2 165 0 1 0 0 1

0 0 0 0 0 149 0 0 0 0

0 1 0 0 3 0 112 0 0 0

0 0 0 0 0 1 0 117 0 0

0 0 0 0 0 0 0 0 121 0

0 5 0 1 1 0 0 0 0 115

Optimizer

198 0 0 0 0 0 0 0 0 0

0 115 0 0 0 0 0 0 0 0

0 0 134 0 0 0 0 1 0 0

0 0 0 188 0 0 0 0 0 0

0 0 0 1 176 0 0 0 0 0

1 0 0 0 0 168 0 0 0 0

0 0 0 0 0 0 132 0 0 0

0 0 0 0 0 0 0 111 0 0

0 0 0 0 0 0 0 0 121 0

0 0 1 0 2 0 0 1 0 121

optimizer. Although GBM shows better performance due to
its boosting operations, DE optimization further improves its
performance.

Table 11 shows the performance of the AdaBoost model.
AdaBoost is similar to GBM, but it identifies the shortcom-
ings of the existingweak learners by high-weight data points,
while GBM uses gradients. Results show that Adaboost out-
performs in all evaluation parameters, as it achieved a 1.00
score each for precision, recall, and F1 score when used with

Table 10 GBM confusion metrics with and without the DE optimizer

Without optimizer

205 0 0 0 0 0 0 0 0 0

3 133 0 0 0 0 0 0 0 0

2 0 155 0 0 0 0 0 0 0

0 0 0 178 0 0 0 0 0 0

2 0 0 2 165 0 0 0 0 0

0 0 0 0 0 149 0 0 0 0

1 0 0 0 2 0 113 0 0 0

3 0 0 0 0 0 0 115 0 0

0 0 0 0 0 0 0 0 121 0

0 0 0 0 1 0 0 0 0 121

Optimizer

198 0 0 0 0 0 0 0 0 0

0 115 0 0 0 0 0 0 0 0

0 0 135 0 0 0 0 0 0 0

0 0 0 188 0 0 0 0 0 0

0 0 0 0 177 0 0 0 0 0

1 0 0 0 0 168 0 0 0 0

0 0 0 1 0 0 131 0 0 0

0 0 0 0 0 0 0 110 1 0

0 0 0 0 0 0 0 0 121 0

0 1 1 0 1 0 0 0 0 122

the DE optimizer. However, using Adaboost without the DE
optimization does not produce good results, as it achieved
scores of 0.95, 0.90, and 0.87 in terms of precision, recall,
and F1 scores, respectively.

Confusion metrics for AdaBoost are shown in Table 12.
According to the results, AdaBoost gives only 3 wrong pre-
dictions and 1468 correct predictions using DE optimizer
which is the highest ratio as compared to other models used
in this study. On the other hand, AdaBoost gives 1337 cor-

Table 9 GBM performance
comparison with and without
the DE optimizer

Without optimization With optimization
Models Precision Recall F1 score Models Precision Recall F1 score

– 0.95 1.00 0.97 – 0.99 1.00 1.00

A 1.00 0.98 0.99 A 0.99 1.00 1.00

F 1.00 0.99 0.99 F 0.99 1.00 1.00

G 0.99 1.00 0.99 G 0.99 1.00 1.00

I 0.98 0.98 0.98 I 0.99 1.00 1.00

K 1.00 1.00 1.00 K 1.00 0.99 1.00

L 1.00 0.97 0.99 L 1.00 0.99 1.00

M 1.00 0.97 0.99 M 1.00 0.99 1.00

N 1.00 1.00 1.00 N 0.99 1.00 1.00

R 1.00 0.99 1.00 R 1.00 0.98 0.99

Average 0.99 0.99 0.99 Average 1.00 1.00 1.00
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Table 11 Adaboost
performance comparison with
and without the DE optimizer

Without optimization With optimization
Models Precision Recall F1 score Models Precision Recall F1 score

– 1.00 1.00 1.00 - 0.99 1.00 1.00

A 1.00 0.99 1.00 A 0.99 1.00 1.00

F 1.00 0.99 1.00 F 1.00 1.00 1.00

G 1.00 0.99 1.00 G 1.00 0.99 1.00

I 0.99 1.00 1.00 I 1.00 1.00 1.00

K 1.00 1.00 1.00 K 0.99 0.99 0.99

L 0.51 0.99 0.67 L 1.00 0.99 1.00

M 0.99 1.00 1.00 M 1.00 1.00 1.00

N 1.00 0.05 0.10 N 1.00 1.00 1.00

R 0.98 1.00 0.99 R 1.00 1.00 1.00

Average 0.95 0.90 0.87 Average 1.00 1.00 1.00

Table 12 ADA confusion metrics with and without the DE optimizer

Without optimizer

223 0 0 0 0 0 0 0 0 0

0 131 0 0 0 0 0 0 0 1

0 0 137 0 0 0 0 0 0 1

0 0 0 181 1 0 0 0 0 0

0 0 0 0 148 0 0 0 0 0

0 0 0 0 0 151 0 0 0 0

0 0 0 0 0 0 136 1 0 0

0 0 0 0 0 0 0 114 0 0

0 0 0 0 0 0 130 0 7 0

0 0 0 0 0 0 0 0 0 109

Optimizer

198 0 0 0 0 0 0 0 0 0

0 115 0 0 0 0 0 0 0 0

0 0 135 0 0 0 0 0 0 0

0 0 0 187 0 1 0 0 0 0

0 0 0 0 177 0 0 0 0 0

1 0 0 0 0 168 0 0 0 0

0 1 0 0 0 0 131 0 0 0

0 0 0 0 0 0 0 111 0 0

0 0 0 0 0 0 0 0 121 0

0 0 0 0 0 0 0 0 0 125

rect predictions and 134 wrong predictions without a DE
optimizer.

In this study, we also used linear models such as LR and
SVMwhich can be good on linearly separable data. LR does
not show good results in this study because LR performs
better when the feature set is larger compared to the number
of features. However, in this study, the feature set is small
compared to the number of samples. Table 13 shows the
results of LR in terms of precision, recall, and F1 score.

LR shows poor results without and with DE optimization.
LR gives 0.62, 0.61, and 0.60 scores in terms of precision,
recall, and F1 scores, respectively, without the DE optimizer.
LR achieved 0.62, 0.62, and 0.61 scores for precision, recall,
and F1 scores, respectively, using the DE optimizer which is
marginally better than results without optimization.

For the number of correct andwrong predictions, LR gives
946 correct predictions out of 1471 predictions, and 525 pre-
dictions are wrong which is the highest number of wrong
prediction ratios as compared to all other models, as shown
in Table 14.

SVM is good as compared to LR, but not good when
compared with the results from RF, GBM, and AdaBoost,
as shown in Table 15. SVM can be good on multi-class data
because of kernel property and it canbegood for small feature
sets as well as on large feature sets.We used it with optimized
hyperparameters and achieved good results. It achieved 0.96,
0.96, and 0.96 scores for precision, recall, and F1 scores,
respectively without the DE optimizer. SVM shows poor
results without DE optimization as it gives 0.89, 0.89, and
0.89 scores for precision, recall, and F1 scores, respectively.

The confusion matrix given in Table 16 indicates that
it gives 49 wrong predictions and 1422 correct predictions
using the DE optimizer. Although this performance is better
than LR, however, GBM, RF, and AdbaBoost show better
results than SVM.

Performance comparison of machine learning models in
terms of accuracy score is given in Table 17. AdaBoost shows
the highest accuracy score, as it gives 0.998 accuracy. It is
followed by GBM, which has an accuracy score of 0.996.
Both these models use boosting algorithms that train weak
learners sequentially. Each preceding model is trained on the
output of the conceding model which helps to achieve better
results. RF is also good with a 0.995 accuracy score, but LR
shows theworst performance as it gives only a 0.643 accuracy
score. These results show that tree-based ensemble models
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Table 13 LR performance
comparison with and without
the DE optimizer

Without optimization With optimization

Models Precision Recall F1 score Models Precision Recall F1 score

– 0.92 0.92 0.92 – 0.89 0.95 0.92

A 0.51 0.65 0.57 A 0.49 0.68 0.57

F 0.90 0.94 0.92 F 0.90 0.90 0.90

G 0.52 0.66 0.58 G 0.51 0.59 0.55

I 0.77 0.77 0.77 I 0.81 0.77 0.79

K 0.63 0.71 0.67 K 0.62 0.66 0.64

L 0.72 0.31 0.43 L 0.66 0.42 0.52

M 0.17 0.11 0.14 M 0.28 0.23 0.25

N 0.55 0.69 0.61 N 0.55 0.67 0.61

R 0.51 0.36 0.42 R 0.50 0.27 0.35

Average 0.62 0.61 0.60 Average 0.62 0.62 0.61

Table 14 LR confusion metrics with and without the DE optimizer

Without Optimizer

206 0 0 0 2 0 0 1 13 1

0 86 0 2 3 0 6 8 26 1

2 0 130 5 0 1 0 0 0 0

5 1 0 121 7 14 0 34 0 0

0 3 3 9 114 5 0 6 3 5

10 0 2 10 5 107 7 1 7 6 3

0 32 0 0 6 15 42 2 15 25

0 0 9 79 6 5 0 13 0 2

0 30 0 0 1 0 5 6 95 0

0 17 1 6 5 22 4 1 14 39

Optimizer

189 0 2 0 1 3 0 0 3 0

0 78 0 4 3 0 6 1 23 0

1 0 122 7 1 0 0 3 0 1

4 2 2 111 4 17 0 47 0 1

1 3 3 8 137 10 3 3 6 3

17 0 3 12 5 112 0 4 11 5

0 28 0 0 3 11 56 4 10 20

0 1 3 65 6 7 0 26 0 3

0 27 0 0 0 0 7 5 81 1

0 21 1 12 10 21 13 1 12 34

are significantly better for thyroid disease prediction, while
linear models show poor results.

4.3 Results of Deep LearningModels

In addition to machine learning models, this study deployed
several deep learning models for comparison. DE optimiza-
tion is not performed for deep learning models; these models

are deployed on the data after applying CTGAN. We used
four deep learningmodels including LSTM,CNN,RNN, and
CNN–LSTM. We used all models with an embedding layer
with a 5000 vocabulary size and 200 output size. After the
embedding layer, the layer of each model is used. The end-
ing layer of all models consists of ten neurons and a softmax
function. We used all models with categorical_crossentropy
loss function, the Adam optimizer, and 100 epochs. Archi-
tectural details of all deep learning models are provided in
Table 18.

Table 19 shows the results of deep learningmodels for thy-
roid disease detection. Results suggest that the performance
of deep learning models is not good. The LSTM achieved a
0.90 accuracy score andCNNachieved 0.86 accuracy. LSTM
is a recurrent architecture that has feedback connections, as
it is capable of processing the entire sequence of data, apart
from single data points, while CNN requires a large feature
set to make correct predictions. We also used a combination
of CNN and LSTM in which CNN extracts the features for
LSTM. CNN does not show good performance. Since the
feature set from CNN is not good, LSTM could not perform
well.We usedRNNwhich also has recurrent architecture and
can perform well on a small feature set.

4.4 K-Fold Cross-Validation Results

We also performed K-fold cross-validation to analyze the
models’ performance using DE optimization. We evaluate
models in terms of mean accuracy and standard deviation
(SD). We used tenfold cross-validation in this study and
results are shown in Table 20. All models performwell; how-
ever, AdaBoost shows significantly better performance with
0.99 means accuracy and ±0.11 SD. Similarly, RF is also
good with a 0.98 accuracy and ±0.03 SD. LR and SVM
show a similar performance: 0.61 accuracy and ±0.09 SD
each.
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Table 15 Results using SVM
model

Without optimization With optimization

Models Precision Recall F1 score Models Precision Recall F1 score

– 0.98 1.00 0.99 – 1.00 1.00 1.00

A 0.84 0.92 0.88 A 0.99 0.99 0.99

F 0.93 0.91 0.92 F 0.99 0.99 0.99

G 0.89 0.95 0.92 G 0.99 0.99 0.99

I 0.89 0.84 0.87 I 0.99 0.99 0.99

K 0.88 0.89 0.88 K 0.99 0.99 0.99

L 0.82 0.84 0.83 L 0.99 0.99 0.99

M 0.96 0.94 0.95 M 0.91 0.98 0.94

N 0.92 0.85 0.88 N 0.83 0.95 0.89

R 0.80 0.72 0.75 R 0.96 0.98 0.97

Average 0.89 0.89 0.89 Average 0.96 0.96 0.96

Table 16 Confusion matrix of SVM for thyroid disease detection

Without optimizer

223 0 0 0 0 0 0 0 0 0

0 122 0 1 3 0 1 0 0 5

0 2 126 7 0 0 0 3 0 0

0 2 1 173 3 2 0 0 0 1

0 3 3 7 125 4 1 0 1 4

5 0 1 3 3 134 0 0 0 5

0 5 0 0 3 0 115 0 9 5

0 0 2 0 0 2 3 107 0 0

0 0 1 0 1 0 18 1 116 0

0 11 1 3 2 11 2 1 0 78

Optimizer

198 0 0 0 0 0 0 0 0 0

0 109 0 0 0 0 1 1 0 4

0 0 134 0 0 0 0 0 0 1

0 0 0 186 1 1 0 0 0 0

0 0 1 0 176 0 0 0 0 0

0 0 0 1 0 168 0 0 0 0

0 1 0 0 0 0 105 4 22 0

0 0 0 0 0 0 1 109 1 0

0 0 0 0 0 0 0 6 115 0

0 3 0 0 0 0 0 0 0 122

4.5 ComparisonWith ExistingModels

In this section, we have compared the performance of the
current approach with existing studies. For comparison, we
select recent studies which utilized similar datasets. To per-
form a fair comparison, we implemented the models from
the selected studies and utilized them with the dataset used
in this study. The study [45] worked on heart disease predic-
tion using a transfer learning approach. The study used CNN

Table 17 Machine learning models in terms of accuracy score

Without optimization With optimization
Models Accuracy Models Accuracy

RF 0.988 RF 0.995

GBM 0.989 GBM 0.996

AdaBoost 0.910 AdaBoost 0.998

LR 0.643 LR 0.643

SVM 0.899 SVM 0.966

Table 18 Architecture of deep learning models

Model Architecture

RNN Embedding(50,000,200,)

Dropout(0.5)

SimpleRNN(128)

Dense(10, activation=’softmax’)

CNN Embedding(50,000,200,)

Conv1D(128, 3, activation=’relu’)

MaxPooling1D(pool_size=3)

Dropout(0.5)

Flatten()

Dense(10, activation=’softmax’)

LSTM Embedding(50,000,200,)

Dropout(0.5))

LSTM(100)

Dense(10, activation=’softmax’)

CNN–LSTM Embedding(50,000,200,)

Conv1D(128, 3, activation=’relu’)

MaxPooling1D(pool_size=3)

LSTM(100)

Dense(10, activation=’softmax’

loss=’category_crossentropy’, optimizer=’adam’, epochs =100
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Table 19 Deep learning model
performance for thyroid disease
prediction

LSTM CNN

Models Precision Recall F1 score Models Precision Recall F1 score

– 0.80 0.93 0.86 – 0.65 0.97 0.78

A 0.77 0.99 0.86 A 0.97 0.91 0.94

F 1.00 0.82 0.90 F 0.83 0.99 0.90

G 0.98 0.90 0.94 G 0.99 0.83 0.90

I 0.90 0.93 0.92 I 0.99 0.74 0.85

K 0.96 0.70 0.81 K 0.97 0.78 0.86

L 0.96 0.97 0.97 L 0.77 0.85 0.80

M 0.82 0.96 0.88 M 0.97 0.99 0.98

N 0.95 1.00 0.97 N 0.84 0.99 0.91

R 0.95 0.88 0.91 R 0.82 0.64 0.72

Average 0.91 0.91 0.90 Average 0.88 0.87 0.86

Accuracy 0.90 Accuracy 0.86

CNN–LSTM RNN
Models Precision Recall F1 score Models Precision Recall F1 score

– 0.53 0.97 0.69 – 0.51 0.92 0.65

A 0.83 0.94 0.88 A 0.99 0.98 0.99

F 0.94 0.92 0.93 F 0.95 0.92 0.93

G 0.93 0.94 0.93 G 0.97 0.81 0.88

I 0.84 0.53 0.65 I 0.99 0.79 0.88

K 0.90 0.63 0.74 K 0.94 0.62 0.75

L 0.52 0.82 0.64 L 1.00 1.00 1.00

M 0.94 0.90 0.92 M 1.00 1.00 1.00

N 0.96 0.44 0.61 N 0.97 1.00 0.99

R 0.62 0.41 0.49 R 1.00 0.90 0.95

Average 0.80 0.75 0.75 Average 0.93 0.90 0.90

Accuracy 0.76 Accuracy 0.87

for feature selection and an ensemble model is used for pre-
diction. The study [20] worked on thyroid disease using deep
neural networks.We deployed the deep neural network as per
the architecture given in the study andperformedexperiments
on the current dataset. Similarly, the study [13] investigated
various feature extraction and machine learning techniques
for thyroid disease detection. Performance comparison is car-
ried out with these studies and results are shown in Table 21.

4.6 Results of T-test

We conducted a statistical analysis to compare the per-
formance of this study with that of previous studies. We
employed a statistical T-test and examined the results of
all approaches. The T-test involves the formulation of two
hypotheses.

• Null hypothesis (H0): there is no significant difference in
accuracy between this study and previous studies.

• Alternative hypothesis (Ha): there is a significant differ-
ence in accuracy between this study and previous studies.

T-test results are presented in Table 22. With a signif-
icance level (alpha) set at 0.05, the critical value is 2.35.
When the absolute T-score exceeds the critical value, the
T-test typically leads to the rejection of the H0. In this case,
the T-scores significantly exceed the critical value, indicating
strong evidence of significant differences in all three com-
parisons. Notably, in the comparison between this study and
[13], while the T-Score is lower compared to the other two
comparisons, it is still sufficiently high to suggest a signifi-
cant difference in the performance metrics.

5 Conclusion

The thyroid gland is an important organ of the human body
that controls the metabolic operations of the body, and inap-
propriate production of thyroid hormone can lead to many
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Table 20 Results of tenfold cross-validation

Models Accuracy SD

RF 0.98 ±0.03

GBM 0.92 ±0.13

AdaBoost 0.99 ±0.11

LR 0.61 ± 0.09

SVM 0.61 ± 0.09

Table 21 Comparison with other studies

Ref. Year Accuracy Precision Recall F1 score

[45] 2022 0.860 0.86 0.86 0.86

[20] 2022 0.890 0.89 0.89 0.89

[13] 2022 0.990 0.99 0.99 0.99

This study 2022 0.998 1.00 1.00 1.00

Table 22 Statistical T-test scores

Comparison T-score H0

Proposed vs [45] 279.00 Rejected

Proposed vs [20] 219.00 Rejected

Proposed vs [13] 19.00 Rejected

complications. Early detection of thyroid disorders is crit-
ical to avoid such complications. This study employs a
differential evolution-based optimization algorithm to find
optimal parameters for machine learning models to obtain
higher performance for thyroid disease detection. It is fur-
ther aided by data augmentation using the CTGAN model.
Experimental results suggest that an accuracy of 0.998
can be obtained using the optimized AdaBoost model by
differential evolution. These results are further validated
by k-fold cross-validation and performance appraisal with
state-of-the-art approaches. Results indicate that contrary
to linear models, ensemble models tend to show better
performance. Machine learning models show better results
using augmented datasets than deep learning models. This
study provides two major contributions to enhancing thyroid
detection. Using a differential evolution algorithm for hyper-
parameter optimization provides improved performance by
the machine learning models compared to existing studies
where conventional hyperparameter optimization is carried
out. Secondly, CTGAN helps to balance the number of sam-
ples of each class which mitigates the probability of model
bias and overfitting. Therefore, the models show robust per-
formance and are generalizable compared to existingmodels.
We intend to increase the dataset size to further analyze the
performance of deep learning models in the future.
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