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Abstract

This research introduces a novel multi-objective adaptation of the Geometric Mean Optimizer (GMO), termed the Multi-
Objective Geometric Mean Optimizer (MOGMO). MOGMO melds the traditional GMO with an elite non-dominated sorting
approach, allowing it to pinpoint Pareto optimal solutions through offspring creation and selection. A Crowding Distance
(CD) coupled with an Information Feedback Mechanism (IFM) selection strategy is employed to maintain and amplify the
convergence and diversity of potential solutions. MOGMO efficacy and capabilities are assessed using thirty notable case
studies. This encompasses nineteen multi-objective benchmark problems without constraints, six with constraints and five
multi-objective engineering design challenges. Based on the optimization results, the proposed MOGMO is better 54.83%
in terms of GD, 64.51% in terms of IGD, 67.74% in terms of SP, 70.96% in terms of SD, 64.51% in terms of HV and 77.41%
in terms of RT. Therefore, MOGMO has a better convergence and diversity for solving un-constraint, constraint and real-
world application. Statistical outcomes from MOGMO are compared with those from Multi-Objective Equilibrium Optimizer
(MOEO), Decomposition-Based Multi-Objective Symbiotic Organism Search (MOSOS/D), Non-dominated Sorting Genetic
Algorithm (NSGA-II), Multi-Objective Multi-Verse Optimization (MOMVO) and Multi-Objective Plasma Generation Opti-
mizer (MOPGO) algorithms, utilizing identical performance measures. This comparison reveals that MOGMO consistently
exhibits robustness and excels in addressing an array of multi-objective challenges. The MOGMO source code is available
at https://github.com/kanak02/MOGMO.

Keywords Multi-objective optimization - Engineering design optimization - Geometric mean optimizer - MOGMO - Non-
dominated solution - Pareto optimal solution

1 Introduction

Multi-objective optimization (MOO) serves as a multifac-
eted decision-making tool, focusing on the simultaneous
optimization of problems with various objective functions
[1-3]. As a cornerstone in fields ranging from economics to
informatics to engineering. MOO aids in deriving optimal
decisions by evaluating trade-offs between different objec-
tives [4—6]. The significance of MOO in addressing real-
world problems is substantial [7-9].

Addressing multi-objective issues generally yields a col-
lection of compromise solutions, known as the Pareto opti-
mal set [10]. Three core classifications utilizing stochastic
optimization algorithms for handling these problems are a

Extended author information available on the last page of the article

priori, a posteriori and interactive. In the a priori category,
several objectives consolidate into a singular one [11],
emphasizing the weight of each objective as perceived by
decision-makers. Once combined, conventional single-
objective algorithms can identify the optimal solution with-
out alterations. Although computationally efficient, this
method has limitations: it may require multiple algorithms
runs to achieve the Pareto optimal set and can struggle with
uniformly distributed solution sets and sensitivity to non-
convex Pareto optimal fronts.

In contrast, the a posteriori approach maintains and
simultaneously optimizes multi-objective problem (MOP)
formulations [12]. This technique can derive a Pareto opti-
mal solution set in a single run, facilitating post-optimization
decision-making. Ensuring a broad diversity of solutions
across all objectives is crucial, providing decision-makers
with a comprehensive spectrum of choices. Scholarly works
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abound with algorithms developed from this approach can
be found in literature [13—15].

The interactive approach evaluates and integrates deci-
sion-makers' preferences during the MOO process [16].
While maintaining the multi-objective setup, these methods
intermittently halt optimization to seek input from decision-
makers, avoiding non-viable search domains. However, the
reliance on human input makes the interactive method more
intricate and time-consuming than its counterparts.

David Schaffer introduced the concept of using evolution-
ary algorithms (EAs) for MOO in 1984 [17]. EAs, which
mimic natural evolution, are randomized search and opti-
mization methods compatible with MOPs due to their dis-
tinctive traits. For instance, they can yield a non-dominated
set in one attempt and adeptly navigate vast and intricate
search realms with minimal problem-specific demands. This
compatibility led to the development of multi-objective evo-
lutionary algorithms (MOEAs), which have seen a surge in
research and applications across various domains over the
last twenty years. MOEAs can be categorized into three pri-
mary types: Pareto-dominance-based, Decomposition-based
and Indicator-based, with Pareto-based MOEAs emerging as
a preferred strategy for effectively approximating the authen-
tic Pareto front due to their intuitive mechanisms.

The Vector Evaluated Genetic Algorithms (VEGA) is
often considered the first Pareto-based MOEA [18]. Evolv-
ing from the foundational Genetic Algorithm (GA), VEGA
was adapted to tackle MOPs. It divides the population into
subsets corresponding to the number of objective functions,
with each subset focusing on a singular objective. However,
VEGA often produces non-uniformly distributed non-dom-
inated solutions across the Pareto front, particularly in areas
of compromise. In contrast, the Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) is recognized as a favored
MOEA in the literature [19]. Developed to address issues
in its predecessor, NSGA, such as the absence of a shar-
ing parameter, neglect of elitism and the substantial com-
putational demands of non-dominated sorting, NSGA-II
introduced a fast non-dominated sorting method, a diversity
conservation technique and a crowded-comparison operator.

Other notable MOEAs include the Multi-objective Par-
ticle Swarm Optimization (MOPSO), introduced by Coe-
llo Coello & Lechuga [20], which uses Pareto dominance
to steer particle flight direction and a mutation operator
to enhance randomness and solution diversity. However,
MOPSO's rapid convergence can sometimes lead to prema-
ture termination with an inaccurate Pareto front. The Multi-
Objective Differential Evolution (MODE) [21] branched
from the foundational DE algorithm and typically employs
non-dominated sorting and rank selection on a combined
group of parent and offspring populations.

Many algorithms rely heavily on the Pareto dominance
philosophy, providing a practical toolkit for addressing
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MOPs. With numerous optimal solutions in the MOO realm,
many algorithms use an archive (or repository) to store supe-
rior solutions, refining this archive throughout the optimi-
zation process. Recent years have seen the development
of various novel and efficient Pareto-based MOEAs, each
with unique mechanics, such as the multi-objective ant lion
optimizer [22], MO equilibrium optimizer (MOEO) [23],
MO slime mould algorithm [24], MO arithmetic optimi-
zation algorithm [25], non-dominated sorting ions motion
algorithm [26], social cognitive optimization algorithm
[27], multi-objective multi-verse optimization (MOMVO)
[28], non-dominated sorting grey wolf optimizer [29], MO
Gradient-Based Optimizer [30], MO plasma generation
optimizer (MOPGO) [31], non-dominated sorting Harris
hawks optimization [32], MO thermal exchange optimiza-
tion [33], decomposition based multi-objective heat transfer
search [34], Decomposition-Based Multi-Objective Symbi-
otic Organism Search (MOSOS/D) [35], MOGNDO Algo-
rithm [36], Non-dominated sorting moth flame optimizer
[37], Non-dominated sorting whale optimization algorithm
[38] and Non-Dominated Sorting Dragonfly Algorithm [39].
However, the No-Free-Lunch theorem (NFL) [40] highlights
that no single optimization technique can universally solve
all MOPs, underscoring the need for continuous refinement
of existing algorithms or the development of new ones.

Recently, Farshad Rezaei et al. introduced a metaheuris-
tic technique: the Geometric Mean Optimizer (GMO) [41].
With strengths in both exploration and exploitation phases,
the GMO harnesses potential solutions to create a search
group, demonstrating efficacy across various engineering
challenges [41] and emerging as a potent tool in the opti-
mization toolkit.

No-Free-Lunch theorem (NFL) [40] posits that algo-
rithms cannot be strictly classified as good or bad; rather,
their suitability varies depending on the specific optimization
problem at hand. It is challenging for a solitary algorithm
to effectively address all facets of Multi-objective Optimi-
zation Problems (MOPs), including exploration, exploita-
tion, convergence, coverage and computational efficiency,
simultaneously. This reality indicates a continual opportu-
nity for creating new meta-heuristic methods designed to
tackle multi-objective optimization challenges effectively.
In MOPs characterized by complex constraints tend to have
intricate feasible zones, leading to a constrained Pareto
Front (PF) rather than a true PF. This situation often traps
algorithms in local optima, posing challenges for achiev-
ing satisfactory convergence and distribution. To address
these issues, numerous MOPs have been developed. While
these algorithms boast distinct features and benefits, they
also exhibit limitations, particularly in scenarios involving
narrow feasible spaces, multiple feasible zones and intricate
distributions of these zones. Balancing convergence, diver-
sity and feasibility remains a challenge for these algorithms.
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In response, this study introduces a Multi-Objective Geo-
metric Mean Optimizer (MOGMO), designed for MOPs.
MOGMO adapts the original GMO to serve the broader
MOO ecosystem. The contributions of this paper include the
development of a new multi-objective technique based on
GMO, integrated with the memeplex structure of NSGA-II
to address MOPs effectively. This integrated MOGMO with
Information Feedback Mechanism (IFM) aims to efficiently
and robustly uncover solutions in the multi-objective realm.
The paper also verifies MOGMO's proficiency through vari-
ous case studies, including unconstrained and constrained
multi-objective benchmarks and complex engineering design
challenges. The results are compared with those of esteemed
MOO methods using various performance metrics and sta-
tistical tools. Analyses suggest that MOGMO is robust and
versatile in addressing varied MOPs, consistently achiev-
ing Pareto optimal fronts marked by both convergence and
diversity.

The structure of this paper is organized as follows: Sect. 2
offers foundational definitions relevant to GMO algorithm.
Section 3 describes the proposed MOGMO algorithm. Sec-
tion 4 is dedicated to the statistical evaluation of MOGMO
against benchmark challenges and its application in multi-
objective engineering design. Finally, Sect. 5 describes the
conclusion and future research directions.

2 Geometric Mean Optimizer (GMO)

The Geometric Mean Optimizer (GMO) [41] represents
an advanced meta-heuristic method that takes inspiration
from the collective social behavior of multiple searching
agents. Any optimization technique must define the most
effective manner in which these agents collaborate. Initially,
we delve into the GMO algorithm's inherent mathematical
traits tailored for optimization tasks. Following this, an
in-depth exploration of its problem-solving formulation is
provided. Consider the representations X; = (x;1, X, ... , Xip)
and V; = (v;1, v, ..., v;p ) as the position and velocity of the
ith agent, respectively. GMO can concurrently appraise
both the efficiency associated fuzzy membership function
(MF) values. This amplification process is synonymous
with the product-based Larsen implication function, a prev-
alent technique in fuzzy logic. Conversely, the geometric
mean of n membership degrees (MD) is represented by
{/Hy X py X -+ X p,,. Therefore, multiplying various MDs
i.e., (4y X py X -+ X p,), can be perceived as their geomet-
ric mean without factoring in the nth root, in which ; is
the i th MD and i = 1,2, ...,n. This version, termed the
pseudo-geometric average calculated across the MF values
of numerous variables, concurrently illustrates their average
and likeness. Informed by the mathematical basis shared

earlier, the GMO's architecture is further elucidated. Within
GMO, a search agent's holistic fitness is determined by con-
trasting it with the fitness levels of its counterparts. Here,
"counterparts" of a specific agent encompass the entire agent
population excluding that specific agent. Each cycle identi-
fies the most optimal position an agent has achieved until
that point. Subsequently, for every contrasting top-perform-
ing agent relative to a specific one, the multiplication of the
goal values, transmuted into fuzzy MFs, is ascertained. It is
vital to note that in GMO's execution, the fuzzy membership
functions should have a direct positive correlation with the
fuzzified variables. For a minimization function, an agent
is deemed more competent if the pseudo-geometric mean
of the MFs, associated with its counterparts, is larger. This
insinuates two simultaneous accomplishments for the agent
in focus: first, the mean MF values of the counterparts are
greater, signifying a lower MF value for the focused agent.
Secondly, there is a heightened consistency among the coun-
terparts’ MF values, indicating a concentrated cluster and
reduced diversity. As a result, the main agent exists in a
relatively diverse area within the search space. This illu-
minates the agent's potential to possess a more beneficial
status, merging both efficacy and variety, in comparison to
another agent with a lower pseudo-geometric mean concern-
ing its counterparts. The formulation used to determine MFs
is elaborated in subsequent sections.

=——:a<0. (1)

In the given equation Eq. (1), parameters a and c repre-
sent characteristics of the sigmoidal MF. The variables a and
c in Eq. (1) are undetermined during every fuzzification
effort, prompting the need for their calibration using a trial-
and-error approach. However, this method is recognized to
be imprecise and lengthy for parameter adjustments in fuzzy
systems. A more proficient alternative would be to rely on
other methods, like tying the parameters of the fuzzy mem-
bership functions in Eq. (1) to statistical measures. Building
on this approach, Rezaei et al. (Rezaei et al. 2017) demon-
strated that within a rising sigmoidal MF, ¢ = panda = 6_—\‘/1;;
where 4 and o denote the average and the spread of x values,
respectively. Also, e represents Napier's constant. Replacing
x with the value from the objective function for a top-per-
forming search agent up to that point allows the determina-
tion of this agent's fuzzy MF value, as indicated in Eq. (2).

1

L+exp|——x (Zh - )|

MF/ = j=1,2,...,N,

@

where Z! i signifies the objective value for the jth top-

best.
performing agent during the ¢ th cycle. u' and ¢’ illustrate
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the average and spread for the objective values of all leading
agents during that cycle, respectively, while MF;. indicates
the MF value for the j th top-performing agent. N remains
the total population count. Moving forward, we introduce a
unique metric termed the DFI as depicted:

N
DFI; = MF| X - x MF,_| x MF | X --- X MF}, = H MF;.
j=1
JF
3)
To ensure every top-performing agent collaboratively
informs the creation of a single guiding global agent for
each participant, we introduce a weighted average of all
contrasting top-performing agents. These weights are
represented by their associated DFI values. Equation (4)
encapsulates this relationship.
N t best
Zj _1 DFI x X;
JFi “
N t ’
ZFI DFL; + ¢

Y=

l

where Y7 is the position vector for the unique global guiding

agent deduced for the i th agent during the ¢ th cycle, while
Xj'?eSt refers to the position vector for the best performance of
the j th searching agent up to that point. DFIJ? indicates the
dual-fitness metric for the j th search agent during that cycle.
Notably, a minuscule positive number, &, is integrated into
the denominator of Eq. (4) to avert singularities. This inclu-
sion is especially pertinent for more straightforward chal-
lenges, mainly those with optimal solutions centralized
within their domains. However, for intricate challenges,
especially when the optimal solution lies distant from the
domain's center, € becomes redundant. Absent any prior
insights into the problem at hand, excluding & from the
denominator of Eq. (4) and subsequently from Eq. (5) is
advised. To augment the search efficacy of the algorithm and
reduce its computational load, focusing solely on the elite
top-performing agents when deducing each guiding agent is
recommended. To achieve this, all top-performing agents are
ranked based on their DFI, from the highest to the lowest,
with the top Nbest agents labeled as elite. An uncomplicated
approach to determine Nbest is to reduce its value linearly
across cycles. It should match the population count at the
outset and 2 at the culmination. Fixing Nbest to 2 during the
concluding cycle ensures that the elite agents perpetually
modify their positions to preserve diversity. Therefore, when
elitism is integrated into determining guide agents, Eq. (4)
evolves into Eq. (5).

@ Springer
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In an attempt to boost the stochastic properties of Y},

ensuring better conservation of guide agent diversity, these
agents undergo mutation in GMO. This mutation is charac-
terized by a Gaussian mutation approach. The mutation's
mathematical representation is as shown:
Y! o =Y +wxrandn x (Stdl  — Std'), ©6)
within this representation, randn signifies a random vector
derived from a typical normal distribution. The w parameter
attenuates the mutation step magnitude as iterations pro-
gress, which is derived from Eq. (9). The end product, Yl ’ ut®
is the mutated Y l’ that directs the search agents. A notable
observation is that this ensures the conservation of existing
rich diversity among leading agents, which in turn fosters
an overall diverse population in the search area. Conversely,
a diminished standard deviation for a dimension prompts a
larger mutation step, broadening the search area and ampli-
fying agent diversity for that specific dimension. The refresh
equations for each search agent are described by Egs. (7)
to (9):

VA = X V4 X (Yinu[ —le), @)
p=1+@2xrand — 1) Xw, (®)
t+1 _ oyt +1o, _L

X =X+Viw=1 foax ©)

within these equations, w is an influential parameter, ¢
denotes the present cycle and ¢,,,, stands for the ultimate

S
A

Pareto Front (PF) {f ®@)|% € (&1, %z, ... %)}
Pareto Dominance (PD) = (X1, %z, ..., %) < ED)
Pareto Optimal (PO) = f(R) < fFF)I% € X1, %y, ., %)

\\Pareto Solution (PS) X € (%1, %z, ..., %)
—=27) or Non-dominated
Solutions (NDS) set

~

*\ Feasible Solution Space

1\
A}

"

Objective space

MOGMO
Algorithm

305

>/

Fig. 1 Multi-objective all definitions in search space of MO-Problem
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cycle count. V/ signifies the velocity vector for the i th search
agent during the ¢ th cycle. Vi”rl represents the i th agent's
velocity vector in the subsequent cycle, while X} shows the
position vector for the i th agent at that cycle. Additionally,
@ serves as a scaling vector, illustrating the trajectory of
agent i towards its guide. The rand is a stochastic number
from the range [0,1]. Evidently, the magnitude of the ¢ vec-
tor diminishes and changes through ranges like [0, 2], [0.1,
1.9],[0.2,1.8],...,[0.8,1.2],[0.9,1.1] and so on, until it
reaches [1, 1] = {1}, as iterations advance. The declining
pattern adopted for the @ intervals boost GMO's exploration
ability during the early cycles and accentuates exploitation
towards the end, ensuring a harmonious exploration—exploi-
tation shift.

3 Proposed Multi-objective Geometric
Mean Optimizer (GMO) (MOGMO)

3.1 Basic Definitions of Multi-objective
Optimization

In multi-objective optimization tasks (MOPs), there is a
simultaneous effort to minimize or maximize at least two
clashing objective functions. While a single-objective opti-
mization effort zeroes in on one optimal solution with the
prime objective function value, MOO presents a spectrum
of optimal outcomes known as Pareto optimal solutions. The
majority of MOO techniques harness the idea of domination
in their quest to manage diverse objectives and identify these
Pareto solutions. An elaboration on the idea of domination
and associated terminologies are illustrated in Fig. 1.

Sorting based on Crowding
fitncss distance
Start Combined
. Rank 1 Rank 1
population
Tnitialize the population of
candidate solutions Fitness evaluation
* of previous best =
solutions
Combine previous and Rank 3
present population from Rank 3 = Rank 3 =
—»| Information Feedback |——
Model (IFM) using e = == ==e — . —E — s — e — ¢ — ¢ — —_—
MOGMO Algorithm
+ Fitness of present
solutions
Solution selection

Output
solution

Update the
solutions

Fig.2 The procedure of the NDS approach based on MOGMO algorithm

Output
population

Rejected
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3.2 Multi-objective Geometric Mean Optimizer
(GMO) (MOGMO)

MOGMO algorithm starts with a random population of size
N. the current generation is z, x§ and xﬁ“ the i th individual at
t and (7 + 1) generation. uﬁ“ the i th individual at the ( + 1)
generation generated through the GMO algorithm and par-
ent populationP,. the fitness value of ulf“ is f*! and U™
is the set ofu/*'. Then, we can calculate x!*' according to
ug“ generated through the GMO algorithm and Information
Feedback Mechanism (IFM) Eq. (10)

fkt ft+1
) — 1

ft+l +ft’a _ft+l+ { 9
i k i k

+1 _ t+1 r. —
X[ =0T 4 0,x,50 =

(10)
where x is the k th individual we chose from the 7 th gen-
eration, the fitness value of x is f;,0; and d, are weight
coefficients. Generate offspring population Q,. Q, is the set
of x/*!The combined population R, = P, U Q, is sorted into
different w-non-dominant levels (F\,F,,...,F,...,F,).
Beginning from F|, all individuals in level 1 to [ are added
to S, = U;le,- and remaining members of R, are rejected,

illustrated in Fig. 2. If |S,| = N, no other actions are required

and the next generation is begun with P, ; = §, directly.
Otherwise, solutions in S,/F) are included in P, and the

remaining solutions N — Zf;(])|Fl| are selected from F,

according to the Crowding Distance (CD) mechanism, the
way to select solutions is according to the CD of solutions
in F;. The larger the crowding distance, the higher the prob-
ability of selection and check termination condition is met.
If the termination condition is not satisfied, ¢t = ¢ + 1 than
repeat and if it is satisfied, P, is generated represent in
Algorithm-1, it is then applied to generate a new popula-
tion Q,,; by GMO algorithm. Such a careful selection strat-
egy is found to computational complexity of M-Objectives
O(N*M). MOGMO that incorporates proposed information
feedback mechanism to effectively guide the search process,
ensuring a balance between exploration and exploitation.
This leads to improved convergence, coverage and diversity
preservation, which are crucial aspects of multi-objective
optimization. MOGMO algorithm does not require to set
any new parameter other than the usual GMO parameters
such as the population size, termination parameter and their
associated parameters. The flowchart of MOGMO algorithm
can be shown in Fig. 3.

Algorithm 1 Generation £ of MOGMO Algorithm with IFM Procedure

Input: Initial population P; (t=0), population size (N), GMO algorithm
parameters
Output: Pr;
I: Si=¢,i=1
2: Proposed Information Feedback Mechanism (IFM)
GMO algorithm applies on the initial population P, to generate u!™?,
calculate x{*1 according to uf*1 can be expressed as follows:
t+1
xit+1 = alufﬂ +62X]€,' 61 = W,az = ﬁ,al + 62 =1
0r= GMO Algorithm (x{*) U Oy, (Q, is the set of x/ 1)
3: Rz = P; UQ;
4: Different non-domination levels (Fi, F>, ... F;) = Non-dominated-sort (R;)
5: repeat
6: Si=SUF;and i =i+]
7: until | S: | >N
8: Last front to be included: F; = UleFi
9: if | ;| = N then
10: Pi1=S, Elseif Pi;= S//Fl
11: Else
12: Pt = UZ{F;
13: Chosen N — |U§;}F i| individuals are selected from F; according to the
, Fitl _ pi-1
large value of Crowding Distance (C D‘) lerr—
14: end if

@ Springer
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Fig.3 Flowchart of MOGMO
algorithm

Initialize GMO Parameters, N-size random

population P, (t=0)

e

v

Generate new population U'*! using the
GMO Algorithm

vt

Select the i-th individual from generation t
and the i-th individual from X*! to produce a

new individual U;+!

Proposed Information Feedback
Model

v —
Q:=Q. Ux# ‘ 1_‘1@

N
iZ N
v Y
R =P, UQ t=t+1 |
Fi Non-dominated Sorting A
irst Second
A front £
a ront | S.=(F1,F,..F,Fy) |
Cuboid of
-1 i %
'"."., [S|=2N
o9
«>0'tD N
© Oy | P,sz / F
Fitl _ pi-1 A4

CDi —

~ pmax _ pmin

Select N-| Pu+1| individuals from F,
into Pi+1 according to the Crowding
Distance (CD) mechanism

Pi+1=S;

4 Results and Discussion
4.1 Algorithmic Comparison and Settings

To validate the results, MOGMO is weighed against
NSGA-II widely acknowledged MOO methods. In addition,
MOGMO is contrasted with the newer MOO algorithms:
MOEO, MOSOS/D, MOMVO and MOPGO. Original
papers recommended parameter settings were retained for
this study.

l<
<

Is termination
condition met?

‘ Output Qt+1 = GMO (Pt+1) ‘

End

4.2 Benchmark Settings and Parameters

This section utilizes thirty prominent multi-objective bench-
mark challenges, sourced from reputable academic works,
to assess the efficacy of MOGMO. These challenges encom-
pass objective functions with unique attributes and varying
dimensions of design parameters. They are organized ZDT
[42] (Appendix A), DTLZ [43] (Appendix B and Appendix
C), Appendix D based on Constraint [44, 45] (CONSTR,
TNK, SRN, BNH, OSY and KITA) and Appendix E based

@ Springer
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Q. Obtained Pareto Qv Obtained Pareto
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Fig.4 Mathematical and schematic view of the a GD, b IGD, ¢ SP, d SD and e HV metrics
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Table 1 Results of GD metric of different multi-objective algorithms on ZDT 2-objective benchmark

Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO

ZDT1 2 23175e—4(5.15¢ 9.6767¢ — 3 7.7856e — 4 3.4698e—4 1.0892¢ — 3 (3.32¢  5.6142e — 4 (1.75¢
- 5+ (5.06e—3) — (3.06e—4) — (6.43e=5)+ —4) - -3)

ZDT2 2 1.5387c—4 6.0940e — 3 (3.08¢  5.1700c — 4 (9.45¢  2.1139¢ — 4 (7.53¢  1.2059¢—3 4.5592¢—6
(3.42¢-5) — -3)- -5 - -5)— (1.27e-3) — (4.05e—6)

ZDT3 2 1.4393¢—4(7.09 1.3429¢—2 5.1468e—4 1.6704e—4 3.6260e—3 1.3089¢—3
—5)+ (5.06e—3) — (1.48e—4) + (5.60e—5) + (3.86e—3) — (3.45¢-3)

ZDT4 2 7320le—4(7.29¢ 12413 —2(9.78¢ 1.1897¢ —3 (7.08¢ 5.4448¢ — 4 (3.62¢ 8.3869¢ — 3 (5.78¢ 1.9414e+1
-4+ -3+ -4+ —4)+ -3+ (4.60e+0)

ZDT5 2 9.883le—2(2.88¢ 4.1108c—1(1.24¢ 9.925le —2 (4.2le 1.2897e —1(1.92¢ 1.8582¢ — 1 (I.1le 1.1290e+3
-2+ - D+ -2+ -2+ -2+ (1.30e+3)

ZDT6 2 2.5375e—4(1.73e 1.7469¢ — 2 (5.78¢  9.3877¢ — 4 (5.30e  2.8165¢ — 4 (2.08¢  1.7519¢ — 3 (5.56e  3.5245¢ — 2 (6.24e

—4)=

—-3)=

—4)=

—4)=

—4)=

-2)

Table 2 Results of IGD metric of different multi-objective algorithms on ZDT 2-objective benchmark

Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO

ZDT1 2 5.6305e¢ —3(7.82e 1.5385¢ —1(6.93e 3.5273e —2(2.66e 59815¢e —3 (1.17e 4.3740e — 2 (3.38¢ 5.7620e — 3 (2.81e
-4= -2) - -2)- -3)= -2)- )

ZDT2 2 7.5229¢ —3(6.00e 2.4411e —1(1.09¢e 1.6574e —1(7.85¢ 9.5180e —3 (7.27e 1.5492¢ — 1 (1.74e 2.1749¢ — 1 (2.77¢
—3)+ - 1= -2)= -3)= -1= )

ZDT3 2 3.6580e — 2 (7.87e 1.4040e — 1 (6.39¢ 6.8356e — 2 (7.97e 5.5765¢ — 2 (7.82e 4.1417e —2(1.99¢ 1.5722e —2 (2.33¢
-2)= -2)- -2)- -2)= -2)- ~2)

ZDT4 2 7.4860e — 3 (3.05¢ 2.5136e — 1 (1.13e  4.5254e —2 (3.41e 9.5089¢ — 3 (6.59¢ 8.5365¢ — 2 (4.3le 2.4082e+1
-3)+ - D+ -2+ -3)+ -2+ (4.81e+0)

ZDT5 2 5.2617e —1(8.11e 2.9539¢+0 6.2302¢ — 1 (1.53e  5.4197e — 1 (4.75¢ 7.9288¢+0 (2.86e  2.4084e+1 (3.33e
-+ (1.02e+0)+ -+ -+ -+ -1

ZDT6 2 4.8052e —3(l.11e 9.2865¢ — 2 (2.67e 9.9025¢ — 3 (4.82e 4.4595e¢ — 3 (1.53e 1.3995e¢ — 2 (3.47¢ 3.6857e — 3 (2.57¢

-3)—-

-2)-

-3)-

—3)=

-3)-

—4)

Table 3 Results of SP metric of different multi-objective algorithms on ZDT 2-objective benchmark

Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO

ZDT1 2 3.2908e —3(4.65¢ 1.6272¢ —2(3.93¢ 1.1779%¢ —2(3.50e 7.2989% —3(5.39¢ 8.3417e — 3 (2.49¢ 1.9642¢ — 2 (1.42¢
-4+ -3)= -3)+ -4+ -3)+ -2)

ZDT2 2 5.3432e -3 (3.05e 1.6306e —2(9.56e 9.4092e — 3 (7.59¢ 7.0771le —3 (1.06e 7.6033e — 3 (5.73e  7.2252e — 2 (1.55e
-3)= -3)= -3)= -3)= -3)= -1

ZDT3 2 3.5084e — 3 (7.16e 3.4169¢ —2 (1.09¢ 9.4898e — 3 (2.08¢ 7.7203e — 3 (3.20e  3.0426e — 2 (2.34e  2.9414e — 2 (2.83¢
-4+ -2)= -3)+ -3)+ -2)= -2

ZDT4 2 4.0163e —3(5.55¢ 2.7365¢ —2(1.96e 1.1520e —2 (5.55¢ 6.9650e — 3 (7.16e  1.2349¢ — 2 (5.49¢ None
) -2) -3) ) -3)

ZDT5 2 0.0000e+0 1.8953e+0(4.38¢  2.0271e — 1 (3.07e  0.0000e+0 1.6656e —2 (5.27e  8.8223e+3
(0.00e +0) + - D+ -2+ (0.00e +0) + -2+ (1.25¢+4)

ZDT6 2 2.5958¢—3(3.12¢ 2.1389¢ —2(7.59¢ 5.098% — 3 (9.25¢ 5.8687¢ — 3 (8.90e 5.3165¢ — 3 (1.33e  1.8080e — 1 (3.65¢

-4+

-3)=

-4+

—4)=

-3)+

_1)
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Table 4 Results of SD metric of different multi-objective algorithms on ZDT 2-objective benchmark

Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
ZDT1 2 1.5164e —1(2.62e 7.0110e —1(1.00e 5.6514e —1(1.31e 4.2442e —1(4.93e 6.6062e — 1 (1.35¢ 5.4307e — 1 (1.25¢
-2)+ -1)- -1)= -2)+ -1 - -1
ZDT2 2 2.1818e—1(8.06e 8.6185¢ —1(9.72¢ 8.6338e — 1 (1.16e 4.8344e — 1 (7.22¢ 8.0705¢ — 1 (2.41e 8.5441e — 1 (5.48¢
-2+ -2)= - D= -2)= - 1= -1
ZDT3 2 25021e —1(1.79¢ 7.2848e —1(8.43e 7.3410e —1(9.32e 5.7798¢ — 1 (1.4le 8.5958¢ —1(1.29¢ 6.8315¢ — 1 (9.30e
-+ -2)= -2)= - 1= -- -2)
ZDT4 2 1.8127e —1(3.30e 8.0406e — 1 (1.04e 6.2819¢e — 1 (1.4le 4.0462e — 1 (5.51e 9.4762¢ — 1 (2.40e  None
-2 -1 -1 -2) -D
ZDT5 2 1.0000e+0 79117e — 1 (5.16e  1.4004e+0 (1.16e  1.0000e +0 1.0043e+0 (1.37e  1.8349¢+0 (8.37¢
(0.00e+0)+ -2)+ -+ (0.00e +0)+ -2)+ -2)
ZDT6 2 1.4263e—1(2.25¢ 5.8048¢ —1(6.28¢ 3.2521e —1(9.24e 3.9877e¢ — 1 (5.16e 2.5499¢ — 1 (5.4le 6.8937e¢ — 1 (6.11e
-2)+ -2)= -2)+ -2)= -2)+ -1
Table 5 Results of HV metric of different multi-objective algorithms on ZDT 2-objective benchmark
Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
ZDT1 2 8.6859 —1(6.12¢ 7.0553e —1(5.89¢ 8.3831e —1(2.05¢ 8.6595¢ — 1 (1.66e 8.3066e — 1 (2.39¢ 8.6727e — 1 (1.48e
—4 -2)- -2) - -3)- -2)- -3)-
ZDT2 2 3.7675e —1(1.95¢ 2.6449¢ — 1 (8.14e 3.4266e — 1 (7.97e 5.2845e¢ — 1 (1.35¢ 3.7614e — 1 (1.56e 5.2412¢ — 1 (1.62¢
) -2)= -2)= -2)= - D= -2)=
ZDT3 2 1.0077e+0(4.39¢e  8.0713e — 1 (7.17e 9.3591e — 1 (1.0le 9.8031e —1(9.92e 9.547%9¢ — 1 (3.66e 9.5711e — 1 (9.92¢
-2) -2)- -1- ~2)- -2)- ~2)-
ZDT4 2 0.0000e+0 6.3304e — 1 (1.05¢  8.2722e — 1 (2.72¢ 8.6324e — 1 (5.35¢  7.4766e — 1 (6.92¢ 8.6003e — 1 (1.07e
(0.00e+0) - D+ -2)+ -3)+ -2)+ -2)+
ZDT5 2 3.6414e+6 3.0291e+2 3.1046e+2 3.0542e+2 2.7620e+2 3.0603e+2
(4.48e+06) (5.08e+0) — (5.06e+0) — (2.97e+0) — (3.70e+0) — (4.55¢+0) —
ZDT6 2 4.327le—1(3.4le 3.0127e —1(3.54e 4.2102e — 1 (7.15¢ 4.3005¢ — 1 (2.88¢ 4.1389¢ — 1 (5.27¢ 4.2961e — 1 (2.26¢
-4 -2)- -3)- -3)- -3)- -3)-
Table 6 Results of RT metric of different multi-objective algorithms on ZDT 2-objective benchmark
Problem  MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
ZDT1 1.0976e+0 (1.93e  1.3141e+0(1.50e 1.6116e+0 (2.91e 4.6492e+0(4.68¢e  1.930le+1 7.3758e+0
- D+ - D+ -+ -+ (3.39¢+0) — (1.05e+0)
ZDT2  1.3226e+0(3.36e  1.3182e+0(1.53e  1.8260e+0 (3.53¢  4.6145¢+0 (6.08¢  1.8094e+1 7.5228e+0
-+ -+ -D+ -+ (1.97e+0) — (1.38e+0)
ZDT3  1.0303e+0 (1.19¢e  1.3136e+0 (1.11e  1.4854e+0(1.81e  4.6336e+0 (5.62e  1.8987e+1 2.6912e+1
- D+ -+ - D+ - D+ (2.99¢+0)+ (6.23e+1)
ZDT4  9.448le —1(7.49¢ 1.2088e+0 (1.47¢  1.4572e+0 (3.0le  4.3909¢+0 (7.62¢  1.8138e+1 7.0698e +0
-2)+ - D+ -+ -+ (1.93e+0) — (1.15e+0)
ZDTS5  8.8124e —1(8.95¢ 1.2958e+0 (2.27¢  1.6195e+0 (1.77e  1.2307e+1 1.7181e+1 1.3723e+1
-2)+ - D+ -D+ (1.71e+0)= (2.83e+0) — (2.14e+0)
ZDT6  9.4608e — 1 (1.0le 1.2606e+0 (1.17¢  1.4623e+0 (2.13e  4.6856e+0 (4.78¢  1.9062e+1 7.0551e+0
-D+ -+ -D+ -D+ (3.47e+0) — (1.11e+0)
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Fig.5 Best Pareto optimal front obtained by the MOGMO algorithm on a ZDT1, b ZDT2, ¢ ZDT3, d ZDT4, e ZDTS5 and f ZDT6 problems
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Table 7 Results of GD metric of different multi-objective algorithms on DTLZ 2 and 3-objective benchmark

NSGA-II

MOMVO

MOPGO

1.0087e — 4 (7.85¢

2.8899¢ — 4 (1.49%¢

5.3985¢ — 6 (2.56e

5.1328e — 4 (2.43e

2.7558e — 2 (4.96e

1.2271e — 1 (1.28e

1.2858e — 5 (2.67¢

4.7300e — 4 (8.65¢

5.1055e — 6 (7.87¢

2.9975e — 4 (1.34e

4.1086e — 6 (2.46e

4.5751e — 6 (4.17¢

3.4044e — 4 (2.85¢e

Problem M MOGMO MOEO MOSOS/D
DTLZ1 2 24220e—4(1.17¢ 1.4371e —4(8.22¢
—-4) - -5= -5=
3 3.1594e — 4 (1.28¢ 2.4994e — 4 (6.52¢
-4+ -5+ -4)+
DTLZ2 2 29180e —6(2.87e 8.2947e — 5 (5.08¢
-N+ -5) - -6)+
3 5.0538¢ —4 (1.40e 5.2208e — 4 (2.09¢
-6)+ -5+ -5+
DTLZ3 2 3.5505e —2(6.78¢ 3.2094e — 1 (4.52¢
-2)= - D= -2)=
3 1.6017e — 1 (2.24e 2.5717e — 1 (2.51e
- D+ - D= - 1=
DTLZ4 2 22270e -5 (5.6le 6.6870e — 5 (6.09¢
-5+ -5)= -5+
3 3.8016e —4 (23le 5.1070e — 4 (4.66e
-4+ -6)+ -5+
DTLZ5 2 3.4663e —6(7.84e 1.3852e —4(7.97¢
-1+ -5 - -+
3 9.0575e —6(5.0le 4.5589%¢ — 2 (1.46e
-6)+ -2)- -4) -
DTLZ6 2 2.7054e — 6 (4.74e 4.2237e — 6 (2.76e
-D+ -7 - -7 -
3 6.1512e —4 (1.93e  4.5539e — 2 (1.34¢
-3)- -2)- -7=
DTLZ7 2 3.06lle—5(2.25¢ 2.5755e — 3 (6.86e
-5+ -4) - -4)=
3 2.2010e —3 (3.16e 6.9401e — 3 (1.37e

-4+

-3)=

2.9585¢ — 3 (2.87¢
~ 4+

6.6598e — 5 (6.51e
- 5=

3.4843¢ — 4 (1.45¢
-4+

8.8396e — 5 (1.82¢
-5-

9.5694e — 4 (1.43e
—4)—

1.8353e — 3 (9.45¢
—-4)+

2.8842e — 1 (4.61¢
- D+

5.5361e — 5 (3.2%
-5)—

8.4080e — 4 (3.42¢
—4)=

6.2084e — 5 (2.04e
-5)—

2.0999% — 4 (5.68e
-5)—

4.7771e — 6 (2.74e
-7 -

4.7196e — 6 (1.90e
-7N=

3.7043e — 5 (2.58¢
-5+

2.0786e — 3 (2.86e
—-4)+

7.4773e — 5 (6.12¢
—5)=

5.2842e — 4 (3.77e
-4+

1.0286e — 4 (2.88e
-5)—

1.1951e — 3 (1.45¢
—4) -

1.9586e — 2 (4.20e
-2)+

1.0545¢ — 1 (1.67¢
-+

8.2218e — 5 (5.88e
- 5=

1.0447e — 3 (3.86e
—4)=

1.0791e — 4 (2.49¢
-5)—

2.8646e — 4 (6.28¢
-5 -

4.8377e — 6 (2.68¢
-7 -

4.7611e — 6 (2.37¢
—-7)=

7.217% — 5 (4.12¢
- 5=

3.5116e — 3 (1.24e
-3)+

1.2081e — 4 (1.91e
— 4)

1.2813¢ — 2 (2.74¢
— 2)

1.7612¢ — 5 (2.81e
— 6)

8.2856¢ — 4 (5.68¢
-5)

1.0134¢+0
(1.65¢+0)

2.7550e +0
(3.70e +0)

3.0926e — 5 (3.5%
-6)

8.9649¢ — 4 (3.70e
- 4)

1.7282e — 5 (2.14e
—6)

8.5966¢ — 5 (4.01e
— 5)

3.3193¢ — 6 (2.70e
-7

4.7992¢ — 6 (3.23¢
— 7)

1.4969¢ — 4 (1.09%
— 4)

7.2740e — 3 (7.21e
—3)

on real-world engineering design problems: Brushless DC
wheel motor [46] (RWMOPI), Safety isolating transformer
[47]1 (RWMOP2), Helical spring [45] (RWMOP3), Two-bar
truss [45] (RWMOP4) and Welded beam [48] (RWMOPS).
All mathematical models for these challenges can be found
in Appendices A, B, C, D and E.

4.3 Evaluative Metrics

MOO fundamentally pursues two objectives: achieving
solutions converging to the Pareto optimal front and ensur-
ing diverse solutions within the Pareto set. Hence, a range
of performance metrics is essential to accurately evaluate
MOO algorithm outcomes. Within this work, 'PFtrue' rep-
resents the consistent Pareto optimal front as defined by
functions constituting an MOP. On the other hand, 'PFob'
denotes the Pareto optimal front derived from a specific
MOQO algorithm. In multi-objective optimization (MOO),
the performance metrics [49] of algorithms in terms of

@ Springer

faster convergence Generational Distance (GD), combined
uniformity-convergence-coverage spread (SD), Hyper Vol-
ume (HV) and Inverted Generational Distance (IGD), Com-
putational complexity (RT) and coverage spacing (SP) met-
rics shown in Fig. 4 to offer a comprehensive performance
assessment. Comparative analysis employs four performance
metrics: GD, IGD, SP, SD and HV. It is crucial to note that
all performance metrics here are assessed in a normalized
objective space. Optimal Pareto fronts are indicated by
smaller values for GD, IGD, SP, SD and larger values for
HV. Subsequent sections detail the metrics employed here.
During benchmark optimization, every technique is indepen-
dently executed thirty times per case, facilitating a statistical
evaluation. “+/—/~" Wilcoxon signed-rank test (WSRT)
was conducted at a significance level of 0.05 between the
total amount of test problems on which the corresponding
optimizers has a better performance, a worse performance
and an equal performance of MOEO, MOSOS/D, NSGA-II,
MOMVO and MOPGO w. r. t. MOGMO algorithm.
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Table 8 Results of IGD metric of different multi-objective algorithms on DTLZ 2 and 3-objective benchmark

Problem M MOGMO

MOEO

MOSOS/D

NSGA-II

MOMVO

MOPGO

2.2296e — 3 (4.81e

2.0879% — 2 (4.48e

3.9730e — 3 (1.72¢

5.4492e — 2 (3.36e

1.8774e — 1 (3.26e

6.4340e — 1 (6.64e

7.7811e — 2 (2.33e

2.9809% — 1 (2.57e

3.9672e — 3 (4.03e

1.2529e — 2 (1.48e

3.9668¢ — 3 (1.17¢

2.0326e — 2 (4.01e

5.0902e — 3 (4.41e

DTLZ1 2 2.078% —3(3.30e 2.4076e — 3 (4.75¢
-4= -4= -4=
3 2.0678¢ —2(6.02¢ 2.0748e — 2 (1.75¢
-4+ - H+ ~ 4+
DTLZ2 2 4.2092e —3(5.53e 4.2858e — 3 (3.00e
-5 - -4 - -5+
3 5418le —2(4.94e 5.4493e —2(2.92¢
-4+ -5+ -5+
DTLZ3 2 1.9591e —2(9.89¢ 1.0343e+0
-3)+ (1.25¢+0)= — =
3 6.8513e —2(2.30e 1.2877e+0
-2+ (1.35¢+0)= -+
DTLZ4 2 1.5176e —1(3.11e 4.2045e¢ — 3 (2.37e
-1- —4)= -1
3 2.003% — 1(2.35e 5.4502e — 2 (8.0le
- D= -5+ - D=
DTLZS 2 4.1713e —3(5.3%9¢ 4.5625e — 3 (4.30e
-5 - -4- -7+
3 4.4363e —3(1.06e 7.5312e — 2 (6.44e
—4)+ -3)- —-3)+
DTLZ6 2 4.0944e —3(2.97e 3.9666e — 3 (2.47¢
-5 - -7N- -6) -
3 4.0913e —3(2.99¢ 8.2374e — 2 (9.64¢
-5+ -3)- -3)-
DTLZ7 2 4.7645¢ —3(1.0le 2.2917e — 2 (4.02¢
-4+ -3)= -5+
3 6.1051e —2(1.66e 1.0831e — 1 (1.87¢

- 3)+

-3+

7.7893¢ — 2 (3.30¢
-3+

2.4420e — 3 (2.93e
—4)=

2.8070e — 2 (2.23e
-3)+

5.0489% — 3 (1.32¢
—4) -

6.8008e — 2 (2.42¢
-3+

1.2713e — 1 (3.15¢
- D=

4.8702e — 1 (7.12e
- D+

2.2621e — 1 (3.56e
--

1.5432e — 1 (2.78e
--

4.9268e — 3 (1.6%¢
—4) -

6.0924e — 3 (4.10e
-4+

5.6445¢ — 3 (3.40e
—4) -

5.8576e — 3 (2.32¢
-4+

49141e — 2 (1.38¢
- D+

7.7535e — 2 (4.60e
-3)+

3.0083¢ — 3 (8.18¢
—4) -

2.0936¢ — 2 (3.53¢
—4)+

3.9766¢ — 3 (2.19%
-5+

5.4467¢ — 2 (1.13e
—6)+

1.6938¢ — 1 (2.33¢
- D=

9.8367¢ — 1
(1.26¢+0)+

1.5375¢ — 1 (3.10e
- D=

42774e — 1 (3.57¢
- D=

3.9663¢ — 3 (2.49%
-7+

3.3768¢ — 2 (1.00e
—4) -

3.9661¢ — 3 (7.8%
- 8)+

3.3873¢ — 2 (4.97¢
—-5-

3.1585¢ — 1 (2.11e
-1 -

1.5580¢ — 1 (2.52¢
-3)+

2.4560e — 3 (1.33e
-3)

8.9564e — 2 (1.73e
-1

3.9777¢ =3 (3.11e
- 6)

7.5688e — 2 (5.99¢
—4)

6.0844e+0
(1.19e+1)

1.4219+1
(2.24e+1)

4.0535¢ — 3 (6.31e
-5)

1.3907e — 1 (8.42¢
-2)

3.9766e — 3 (2.59%
-6)

1.4345e — 2 (1.29¢
—4)

3.9663e — 3 (7.01le
-8)

1.4532e — 2 (2.50e
-5)

2.6899%¢ — 1 (2.25¢
-1

2.0503e — 1 (6.86e
-2)

4.4 Analysis and Observation

Simulations were conducted 30 times for each test issue on a
system featuring: Windows 10 (64-bit), Intel i5 CPU, 8 GB
RAM and MATLAB R2021a. This section delves into the
results from distinct metrics and offers insights.

4.4.1 ZDT Benchmark Analysis

Tables 1, 2, 3, 4, 5, 6 provide the comprehensive statisti-
cal analysis using GD, IGD, SP, SD, HV and RT meas-
urements for various algorithms like MOGMO, MOEO,
MOSOS/D, NSGA-II, MOMVO and MOPGO. These
are all tested against the ZDT suite. From the results in
Table 2, it is evident that MOGMO outperforms the other
algorithms, especially when we focus on the average and
standard deviation for the IGD metric. A majority of the
other algorithms could not achieve a near-optimal Pareto
front. Their struggle is evident in their high IGD values.
Notably, MOGMO leads in the SP and SD metrics and

it also tops in the HV measurement. For visual clarity,
Fig. 5 shows how MOGMO's results align with the true
Pareto fronts for ZDT suites. The results depict a consist-
ent alignment of MOGMO outputs with the true Pareto
optimal fronts.

4.4.2 DTLZ 2 and 3-Objective Benchmark Insights

Tables 7, 8, 9, 10, 11 and 12 dive into the performance
metrics of each algorithm when tested on DTLZ1-DTLZ7
two and three objectives’ functions. MOGMO continues to
shine, surpassing MOEO, MOSOS/D, NSGA-II, MOMVO
and MOPGQO, especially in DTLZ functions. Notably,
MOMVO ranks after MOGMO in terms of performance. In
general, MOGMO demonstrates better spread and distribu-
tion in Pareto optimal solutions compared to its counter-
parts. Using the HV metric to assess performance, MOGMO
consistently ranks higher than its peers for the majority of
functions. Figures 6 and 7 provide a visual representation
for DTLZ1-DTLZ7 two and three objectives’ functions. The
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Table 9 Results of SP metric of different multi-objective algorithms on DTLZ 2 and 3-objective benchmark

Problem M MOGMO

MOEO

MOSOS/D

NSGA-II

MOMVO

MOPGO

DTLZ1 2 13259 —3(1.46e 5.8888e —4 (4.25¢ 5.4457e —4 (6.58¢
-4) - -4)= -4)=
3 7.3305e -3(5.36e 1.6391e —3(5.21e 1.3023e —3(6.17¢
-4+ -4+ -4+
DTLZ2 2 3.4998e —3(3.73e 6.0147e —3 (1.19¢ 6.1647¢e — 3 (9.85¢
-+ -4+ -5+
3 2.3837e —2(1.85e 5.7018e —2(9.78e 5.6986e — 2 (2.73e
-3+ -5+ -4+
DTLZ3 2 4.8627e¢—3(2.22e 1.6535¢ —1(2.12e 5.3744e — 2 (8.87¢
-3)+ - 1= -2)=
3 2.3466e+0 1.9101e — 1 (1.09¢  4.5659% — 1
(4.46e+0)= -D+ (1.04e+0)+
DTLZ4 2 6.0895¢ — 3 (2.59¢ None 5.4735e — 3 (1.92¢e
-4+ -3)+
3 5.691le —2(2.84e 1.8424e —2(1.0de 3.4777e — 2 (2.33e
-4= -2+ -2)+
DTLZ5 2 3.4974e -3 (2.52e 5.8455¢ —3(1.90e 6.1244e — 3 (2.28¢
-4+ -4+ -5+
3 45903e -3 (3.97e 1.206le — 1 (1.80e 1.4743e —2 (2.47e
-4+ -2)- -3)=
DTLZ6 2 3.5395¢ —3(2.85¢ 6.0865¢ — 3 (2.4%9¢ 6.0905¢ — 3 (3.94¢
-4+ -5+ -5+
3 4.6847e —3(4.82e 1.3917e —1(5.00e 1.6458e —2 (2.15¢
-4+ -2)- -3)-
DTLZ7 2 3.6998e —3 (4.43¢ 1.7902¢ —2 (3.50e 1.1721e — 2 (5.18e
-4= -3) - —4)=
3 3.5258e —2(2.40e 1.1406e — 1 (2.90e 7.3550e — 2 (3.37e

- 3)+

-3+

-3+

3.6715¢ — 3 (2.12¢
—4)—

2.2014e — 2 (1.64e
—-3)+

6.6746¢ — 3 (5.59%
—4)—

5.4126e — 2 (3.90e
—3)+

2.2431e — 2 (3.67¢
-2+

7.3693¢ — 1
(1.41e+0)+

None

5.1602e — 2 (1.84e
—2)=

6.6198¢ — 3 (5.62¢
—4) -

1.0089% — 2 (7.04e
-4+

9.3280e — 3 (7.54e
—4) -

1.1429¢ — 2 (7.96¢
—4) -

7.8142¢ — 3 (2.05¢
-3)=

7.0139% — 2 (5.38¢
-3+

7.1397¢ — 4 (3.86¢
—4) -

1.1794e — 3 (4.22¢
—4)+

6.0973¢ — 3 (5.66¢
-5+

5.7083¢ — 2 (4.93¢
-5+

1.0719e — 2 (4.92¢
—3)=

1.7931e — 1 (1.88e
—- 1+

5.2705¢ — 3 (3.02¢
-3)+

27549 — 2 (2.36e
-2)+

6.1245¢ — 3 (2.43¢
—6)+

1.3264e — 2 (2.93¢
-4+

6.1225¢ — 3 (3.68¢
—6)+

1.6341e — 2 (1.19%
-2)—

6.4419 — 3 (6.05¢
—-3)=

1.8852e — 1 (7.66¢
—-3)—

4.8386e — 4 (8.13¢
— 4)

3.7337e — 2 (2.40e
— 2)

6.1917¢ — 3 (3.5%
-3

9.4062¢ — 2 (2.83¢
— 3)

1.3136e — 1 (2.12¢
— 1)

2.1867¢+0
(2.74e+0)

6.4608¢ — 3 (2.91e
— 4)

7.9274e — 2 (3.14e
— 2)

6.1811e — 3 (2.86e
)

1.4433e — 2 (1.78¢
—3)

6.1350e — 3 (2.50e
-6)

8.7560e — 3 (9.66¢
—-5)

6.9912¢ — 3 (5.93¢
-3)

1.3078¢ — 1 (2.17¢
— 2)

graphs solidify MOGMO ability to closely align with the
true Pareto fronts.

From Table 1, we observe that for the GD metric,
MOGMO and MOSOS/D outperform other algorithms
in most cases for ZDT1-ZDT6 problems, showing better
convergence. MOGMO shows best results in 4 / 6 cases,
whereas MOSOS/D and NSGA-II achieve 2 best results
each. In Table 2, for the IGD metric, MOGMO again dem-
onstrates superior performance in 3/6 cases, indicating bet-
ter convergence and diversity. MOGMO, MOSOS/D and
MOMVO each achieve the best results in some cases, with
MOGMO leading. Table 3 shows the SP metric, where
MOGMO stands out in 3/6 cases, indicating better diver-
gence. MOGMO, MOSOS/D and MOPGO demonstrate
competitive performance, but MOGMO leads in achieving
the best results. As seen from Table 4 for the SD metric,
MOGMO again leads by achieving the best performance in
3/6 cases. This suggests that MOGMO has a better spread of
non-dominated solutions. Other algorithms like MOSOS/D
and MOMVO also show good performance in some cases.

@ Springer

In Table 5, considering the HV metric, MOGMO exhibits
superior performance in 4/6 cases, indicating a better bal-
ance between convergence and diversity. MOSOS/D and
NSGA-II also show competitive results in certain cases.
Finally, Table 6 presents the RT metric, where MOGMO
shows the best performance in 4/6 cases, indicating a faster
running speed and minimal computational burden. Other
algorithms like MOEO and MOSOS/D also perform well in
certain instances. From Table 7, observing the GD metric,
we can see that MOGMO, MOEO and MOSOS/D gener-
ally exhibit better convergence compared to other algo-
rithms across most DTLZ problems. MOGMO particularly
shows strong performance in DTLZ2 and DTLZ4 for both
2 and 3 objectives. In Table 8, analyzing the IGD metric,
MOGMO and MOEO have superior performance in sev-
eral instances, particularly in DTLZ1 and DTLZ2 for both
2 and 3 objectives. This indicates their better convergence
and diversity in these scenarios. Looking at Table 9 for the
SP metric, MOGMO, MOEO and MOSOS/D show com-
petitive performances, with MOGMO excelling in DTLZ2



International Journal of Computational Intelligence Systems (2024) 17:91

Page 150f29 91

Table 10 Results of SD metric of different multi-objective algorithms on DTLZ 2 and 3-objective benchmark

Problem M MOGMO

MOEO

MOSOS/D

NSGA-II

MOMVO

MOPGO

4.6738e — 2 (5.66e

1.3977e — 2 (6.63e

1.9290e — 1 (6.24¢

1.7126e — 1 (1.27¢

7.9382¢ —1(2.83¢

6.5480e — 1 (4.15¢

2.2912e — 1 (2.31e

1.9022e — 1 (1.10e

8.7062e — 1 (3.94¢

1.8850e — 1 (1.15¢

1.3457e+0 (8.87¢

5.8791e — 1 (4.03e

DTLZ1 2 1.1634e —1(1.24e 4.7701le — 2 (2.94¢
-2)— —-2)= -2)=
3 8.5724e -2 (8.11e 1.8018e — 2 (6.03e
-3)+ -3+ -3+
DTLZ2 2 1.3738e—1(1.63¢e 1.8570e — 1 (4.04¢
-2)+ -3)+ -3)=
3 9.5563e —2(8.08¢e 1.7043e — 1 (4.94e
-3+ -4+ -3)+
DTLZ3 2 2.3624e —1(1.58¢ 7.4387¢ —1(1.91e
- D+ -= - D=
3 6.5015¢—1(7.24e 3.6808e — 1 (1.20e
-= -+ -+
DTLZ4 2 2.7438e —1(2.55¢ 1.8736e —1(3.72¢ None
-1 - -3)+
3 57941le -1 (4.30e 1.7010e — 1 (1.02¢
-D= -3)+ -D+
DTLZ5 2 1.3063e—1(1.35¢ 1.832le —1(4.74e
-2+ -3+ -3+
3 1.3655¢ —1(7.35¢ 4.1376e — 1 (8.3%
-3)+ -2)+ -2)+
DTLZ6 2 1.2854e—1(1.31e 1.8824e — 1 (6.66¢
-2)+ -4+ -3+
3 1.3310e — 1 (1.50e 4.3218e — 1 (1.21e
-2+ -+ -2+
DTLZ7 2 1.3170e —1(2.14e 3.8793e — 1 (4.42¢
-2+ -2+ -2)=
3 13421e—1(1.47e 3.4872e—1(1.56e

-2)+

-2+

6.4500e — 1 (7.35¢
-2)+

4.3171e — 1 (3.39%¢
—-2) -

4.8407e — 1 (5.21e
—-2)=

3.7142e — 1 (4.68¢
—2)—

4.6533e — 1 (5.08e
-2)+

5.7927e — 1 (3.20e
- D=

7.7882e — 1 (4.19¢
- D=

None

5.4734e — 1 (1.63¢
- D+

3.5530e — 1 (3.76e
-2)-

5.0438e — 1 (6.57¢
-2)+

6.6913e — 1 (5.87¢
-2)—

6.9578e — 1 (8.04e
-2)+

4.9381e — 1 (1.54¢
-+

4.8782¢ — 1 (4.80e
-2)+

5.1995¢ — 2 (2.60e
—-2)=

1.3033e — 2 (4.70e
-3+

1.8850e — 1 (2.02¢
-3+

1.7030e — 1 (2.51e
—4)+

6.3928¢ — 1 (3.21e
- D=

3.9766e — 1 (2.21e
- D+

4.8375¢ — 1 (4.95¢
- D=

6.7968¢ — 1 (4.44e
- D=

1.8943¢ — 1 (1.03¢
—4)+

2.0213e+0 (3.07¢
—-2)—

1.8947e — 1 (1.51e
—4)+

2.0567¢+0 (1.4%
-2)—

7.2448¢ — 1 (1.99
- 1=

1.0206e +0 (1.45¢
—-2)=

4.236%9e — 2 (7.66e
-2)

5.3803e — 1 (1.17¢
-1

1.9338¢ — 1 (1.81e
-3)

6.7595¢ — 1 (4.68e
-2)

7.9691e — 1 (3.73e
-D

1.0107e+0 (1.46e
-1

2.0448e — 1 (9.96e
-3)

9.2859% — 1 (1.40e
-1

1.9272e — 1 (1.97¢
-3)

1.4990e +0 (7.75¢
-2)

1.8995¢ — 1 (1.54e
—4)

1.8201e+0 (3.43e
-2

7.1258e — 1 (1.55¢
-1

1.0228e+0 (4.97¢
-2)

and DTLZ5 for both 2 and 3 objectives, suggesting better
divergence capabilities. As seen in Table 10 for the SD
metric, MOGMO consistently achieves strong performance
across most DTLZ problems, indicating a better spread of
non-dominated solutions. MOEO and MOSOS/D also show
good results in specific instances like DTLZ2 and DTLZ3.
In Table 11, examining the HV metric, MOGMO, MOEO
and MOSOS/D again demonstrate superior performance in
several instances, particularly in DTLZ2 and DTLZ4 for
both 2 and 3 objectives. This suggests their effective balance
between convergence and diversity. Finally, Table 12 pre-
sents the RT metric, where MOGMO and MOEO frequently
exhibit better performance, indicating faster running speeds
and lower computational burdens in scenarios like DTLZ1
and DTLZ2 for both 2 and 3 objectives. Overall, MOGMO
appears to be the most consistent performer across different
metrics for the ZDT 2-objective benchmark, MOGMO and
MOEUO appear to be the most consistent performers across
different metrics for the DTLZ 2 and 3-objective benchmark

demonstrating its effectiveness in various aspects such as
convergence, diversity and computational efficiency.

4.4.3 Evaluation of Constraint Benchmark

Tables 13, 14, 15, 16, 17 and 18 present the performance
data on GD, IGD, SP, SD, HV and RT metrics, as deter-
mined by the MOGMA for test operations including
CONSTR, TNK, SRN, BNH, OSY and KITA. To manage
constraints within MOGMO, a death penalty function is uti-
lized. Other algorithms like MOEO, MOSOS/D, NSGA-II,
MOMVO and MOPGO were also tested on these functions
for a comparative view. Insights from Table 13 suggest that
MOGMO consistently outperforms its counterparts, espe-
cially in the domain of constrained multi-objective sce-
narios. Table 14 also underscores the standout average and
SD values for the IGD metric associated with MOGMO.
Further, MOSGA achieves superior results in producing
well-distributed Pareto optimal results. Moreover, the SP
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Table 11 Results of HV metric of different multi-objective algorithms on DTLZ 2 and 3-objective benchmark

NSGA-II

MOMVO

MOPGO

1.7552e — 1 (5.84e

1.3961e — 1 (4.50e

4.2012e — 1 (1.14e

7.4464e — 1 (6.15¢

2.9411e — 1 (1.3%

2.9563e — 1 (3.24e

3.8903e — 1 (9.80e

5.9828e — 1 (1.54¢

4.2012e — 1 (4.74e

1.2888e — 1 (6.67¢

4.2013e — 1 (1.59%

1.2688e — 1 (1.31e

1.0099e 40 (5.92¢

Problem M MOGMO MOEO MOSOS/D
DTLZ1 2 1.7574e —1(4.64e 1.7532¢ — 1 (5.08¢
~4)= ~ 4= ~ 4=
3 1.3965¢ — 1 (4.81e 1.3974e — 1 (2.06e
-4+ -4+ -4+
DTLZ2 2 4.2004e—1(9.21e 4.1960e — 1 (4.63¢
-5+ -4)= -5+
3 7.3915¢ —1(9.54e 7.4435e — 1 (2.98e
-4+ -4+ -5+
DTLZ3 2 39014e—1(1.77¢ 1.0258¢ — 1 (1.27¢
-2+ - = — =
3 6.9087e —1(5.38¢ 1.8135e — 1 (2.29%¢
-2)+ - 1= - =
DTLZ4 2 3.5819¢ —1(1.31e 4.1968e — 1 (4.45¢
-1 - —-4)= -2) -
3 6.5562e — 1 (1.34e 7.4454e — 1 (9.90e
- 1= -5+ - 1=
DTLZ5 2 4.202le—1(697¢ 4.1910e — 1 (6.85¢
-5+ -4) - -6)+
3 1.3277e —1(8.7le 1.0149e — 1 (4.19¢
-5+ -3) - —-4)=
DTLZ6 2 4.2052¢ —1(3.88¢ 4.2013e — 1 (3.54¢
-5+ -TN= -6)—
3 1.3313e—1(2.85¢ 9.8635e — 2 (6.15¢
-5+ -3)- -3)-
DTLZ7 2 1.0102¢e+0(1.33e 9.6768¢ — 1 (1.13e
-4+ -2)= -5+
3 1.6298e+0 (7.37¢e  1.5445e+0 (1.66e

- 3)+

-2+

1.5850e +0 (1.69
-2)+

1.7545e — 1 (3.87¢
—4)=

1.3597e — 1 (1.66e
-3+

4.1937e — 1 (1.90e
—4)—

7.0770e — 1 (7.87¢
-3+

3.4322e — 1 (1.26e
- D=

4.4876e — 1 (3.10e
-=

3.2648e — 1 (1.49¢
-1-

6.5251e — 1 (1.87¢
-1)-

4.1929¢ — 1 (1.97¢
—4)—

1.3246e — 1 (1.39¢
—4)+

4.1914e — 1 (2.87¢
—4)—

1.3277e — 1 (7.12¢
-5+

9.8177e — 1 (8.77¢
-2)+

1.5781e+0 (1.30e
-2)+

1.7471e — 1 (7.39¢
—4) -

1.3951e — 1 (3.62¢
-4+

4.2011e — 1 (2.82¢
- 6)+

7.4467e — 1 (4.49¢
-5+

2.5730e — 1 (1.38¢e
- D=

3.5910e — 1 (3.11e
- 1=

3.5543e — 1 (1.30e
- D=

5.0290e — 1 (2.43¢
- 1=

4.2011e — 1 (9.66¢
—-6)+

1.2107e — 1 (2.47¢
-5)—

4.2013e — 1 (5.12¢
-8+

1.2104e—1 (1.85e
-5)—

8.1095e — 1 (1.30e
--

1.5008e+0 (9.25¢
-3)+

1.7545e — 1 (1.31e
-3)

1.1652e — 1 (4.14e
-2)

4.1988¢e — 1 (3.91e
-5)

7.0069¢ — 1 (1.83e
-3)

1.6814e — 1 (1.95¢
-D

1.0617e — 1 (2.17e
-1

4.1968e — 1 (5.52¢
-5)

6.8401e — 1 (3.62¢
-2)

4.1989% — 1 (3.32¢
-5)

1.2934e — 1 (7.54¢
-5)

4.2013e — 1 (8.80e
-8)

1.2960e — 1 (1.27¢
-5)

8.4082¢ — 1 (1.41e
-1

1.2359¢+0 (6.28e¢
-2)

and SD indicators from Tables 15 and 16 signifty MOGMO
dominance over other methodologies. Regarding the HV
metric in Table 17, MOGMO outcomes are more promis-
ing, pointing towards its enhanced convergence and stabil-
ity. Amongst the algorithms considered, NSGA-II ranks just
behind MOGMO in terms of IGD outcomes for the majority
of test functions. However, the solutions derived from this
algorithm exhibit subpar distribution characteristics, evident
from its SP and SD metric values. Conversely, MOMVO
lags in convergence. Figure 8 offers visual representations
of the Pareto outcomes achieved by MOGMO across vari-
ous test functions. Certain tests reveal unique Pareto optimal
fronts; for instance, CONSTR possesses a combined con-
cave and linear front. Moreover, while the KITA function
showcases a continuous concave front, TNK's front is more
erratic. The depicted results in Fig. 8 demonstrate MOGMO
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proficiency in aligning closely with true Pareto optimal out-
comes, ensuring even distribution across all regions. This
analysis underlines MOGMO adeptness at managing con-
straints and delivering high-convergence Pareto results.

4.4.4 Real-World Applications of MOGMO

While standard multi-objective test functions provide
valuable insights, grappling with real-world optimization
dilemmas often poses unique challenges. To test its real-
world applicability, MOGMO is applied to five engineer-
ing design challenges, with their mathematical formula-
tions found in Appendix E. Replicating earlier methods,
MOGMO is run thirty times for every problem. The results
are stacked against MOEO, MOSOS/D, NSGA-II, MOMVO
and MOPGO, with all algorithms retaining consistent
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Table 12 Results of RT metric of different multi-objective algorithms on DTLZ 2 and 3-objective benchmark

Problem MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
DTLZ1 8.3202e—1(4.19¢ 9.610le — 1 (1.47¢ 1.1453e+0 (2.80e  3.5872e+0 1.1786e + 1 1.0998e + 1
-D+ -D+ - D+ (1.49¢+0)+ (6.73e+0)= (6.30e+0)
8.2933e — 1 (3.53¢e  1.1091e+0 (4.71e 1.3405¢+4+0 (5.42¢  4.9974e+0 1.2245¢+1 1.1123e+1
- D+ - D+ - D+ (291e+0)+ (6.88¢+0)= (6.26e+0)
DTLZ2 8.0586e —1(3.27¢ 1.1191e+0 (4.86e  1.2936e+0 (5.5le  5.1929¢+0 1.2331e+1 9.9206e +0
-D+ -D+ -D+ (2.76e+0)+ (7.01e+0)= (2.86¢+0)
7.8570e — 1 (1.11e  9.9857¢ — 1 (1.49¢ 1.2287e+0(1.71e  7.4431e+0 1.053%¢+1 9.5849¢+0
-+ -+ - D+ (1.42¢+0)+ (247e+0)= (2.28¢+0)
DTLZ3 7.5153e —1(1.09¢ 9.7607¢ — 1 (1.46e  1.1064e+0 (1.69¢  2.4636e+0 (4.35¢ 1.0360e + 1 9.6933e+0
-1+ - D+ - D+ - D+ (2.59¢+0)= (2.60e+0)
8.6631e — 1 (3.87¢  1.1417¢+0(4.99¢  1.3560e+0 (6.00e  3.5999¢+0 1.2242e+1 1.1156e+1
-D+ - D+ -D+ (2.11e+0)+ (7.0le+0)= (6.50e+0)
DTLZ4 1.0244e+0(7.32¢  1.0998¢+0(5.07¢  1.3853e+0 (6.33¢  4.4025¢+0 1.2854e+1 1.1471e+1
- D+ - D+ - D+ (2.94e+0)+ (7.84e+0)= (6.76e+0)
9.1387e — 1 (3.85¢  1.1395¢+0 (5.34e  1.9573e+0 7.5293e+0 1.0852e+ 1 9.3750e+0
- D+ - D+ (1.21e+0)+ (4.80e+0)+ (3.31e+0)= (1.63e+0)
DTLZ5 7.0059¢ —1(7.19¢  9.3817e — 1 (1.04e  1.0879¢+0 (1.29¢  4.1702¢+0 (4.60e  9.9760e+0 9.1283e+0
-2+ -D+ -D+ - D+ (1.78e+0)= (1.59¢+0)
7.2837e — 1(6.73¢  8.4787¢ — 1 (1.07e  1.6858¢+0 (2.43¢  4.7825¢+0(5.92e  9.9930e+0 9.3836e+0
-2)+ -+ -+ -+ (1.75e+0)= (1.65e+0)
DTLZ6 1.1616e+0(1.57e  9.4173e — 1 (1.23e  7.0681e — 1 (6.86e  6.5084e+0 (8.50e  1.1236e+1 1.0758e+1
-+ - D+ -2)+ - D+ (5.97e+0) — (6.50e+0)
2.0446e+0 (8.52e  1.0563e+0 (4.73¢e  8.3659%¢ — 1 (3.67e  7.7402¢ +0 1.1934e+2 1.5033e+2
- D+ - D+ - D+ (4.65¢+0)+ (3.40e+2)= (4.40e +2)
DTLZ7 8.7234e — 1 (3.57e 9.8759¢ — 1 (1.19¢  1.1929e+0(1.28¢  3.9085e+0 (5.89¢  1.0328e+1 9.6366e +0
-1+ - D+ -+ -+ (2.38¢+0)= (2.05e+0)
8.0237¢ — 1 (1.20e  9.2743e — 1 (1.23e  1.3889¢+0 (1.92¢  6.2699¢+0 1.0410e+1 9.5262e+0
- D+ -+ - D+ (1.12e+0)+ (2.37e+0) — (2.19¢+0)

parameters. the six MOO algorithms are assessed using GD,
IGD, SP, SD, HV and RT metrics. Tables 19, 20, 21, 22,
23 and 24 provide a comprehensive comparison, highlight-
ing MOGMO knack for delivering a broader array of Pareto
optimal solutions. This is further validated by MOGMO
superior average and minimal deviation in SP, SD and HV
metrics, establishing its edge in convergence and diversity.
Further insights can be gleaned from Fig. 9, which exhibits
the Pareto optimal front achieved by MOGMO. The out-
comes underscore MOGMO efficiency, better in terms of
convergence (GD, SP), divergence (IGD, HV), computa-
tional burden (RT) and solution distribution (SD) compared
MOEO, MOSOS/D, NSGA-II, MOMVO and MOPGO algo-
rithms for solving real world problems This underscores

MOGMO supremacy in consistency and reliability over
other MOO algorithms. Tables 6, 12, 18 and 24 delve into
the mean CPU durations of all algorithms, showcasing that
MOGMO computation speed trumps most others in 19 out
of 25 test problems. In the remainder, MOGMO is a close
second in computational speed.

The effectiveness of MOGMO has been assessed using 25
benchmark functions and five engineering problems oriented
towards multiple objectives. In this assessment, MOGMO
performance is juxtaposed with MOEO, MOSOS/D, NSGA-
II, MOMVO and MOPGO, employing indicators like GD,
IGD, SP, SD, HV and RT. Within this context, GD and
IGD metrics evaluate the precision and convergence of the
algorithm. Simultaneously, SP and SD metrics gauge the
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Fig.6 Best Pareto optimal front obtained by the MOGMO algorithm on DTLZ1-DTLZ7 problems with 2-objectives
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Fig. 7 Best Pareto optimal MOGMO on DTLZ1 (M=3) MOGMO on DTLZ2 (M=3)
front obtained by the MOGMO
algorithm on DTLZ1-DTLZ7
problems with 3-objectives
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Table 13 Results of GD metric of different multi-objective algorithms on constrained benchmark

Problem M MOGMO

MOEO

MOSOS/D

NSGA-II

MOMVO

MOPGO

CONSTR 2 3.2274e — 4 (2.25¢

TNK 2
SRN 2
OSY 2
BNH 2
KITA 2

-5-

1.3156e — 4 (1.80e
—-5)

1.7777e — 2 (9.13e
—3)

7.8650e — 1 (7.91e
-2)

4.8784e — 3 (2.50e
—4) -

1.1683e — 3 (1.30e
-5+

5.2468¢ — 3 (1.04e
—3)—

4.2545¢ — 3 (2.06¢
—3)

1.4007e 40 (5.52¢
-1

6.2676€ +0
(7.65¢+0)

2.3885¢ — 2 (4.94¢
—3)—

3.8937¢ — 3 (1.72¢
—3)—

3.5077e — 4 (2.82¢
-5) -

1.4318e — 4 (2.08e
—-5)

4.6992¢ — 2 (4.33¢
-3)

8.7008e — 1 (9.68e
-2)

1.1333e — 2 (1.79¢
—3)—

1.2920e — 3 (5.37¢
-5+

5.3999¢ — 4 (9.95¢
—4) -
None

None

None

9.2037e — 3 (1.10e
—3)—

1.4693¢ — 3 (8.27¢
—5+

8.4027e — 5 (3.48e
-6)—
None

None

None

5.4332e — 3 (1.90e
—3)—

6.4170e — 3 (2.22¢
—-3)—

8.1240e — 5 (3.83e
-7
None

None
None
4.1489%¢ — 3 (1.44e

—4)

2.3965¢ — 3 (1.57¢
—4)

Table 14 Results of IGD metric of different multi-objective algorithms on constrained benchmark

Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
CONSTR 2 2.7367e —2 (1.67e 1.4934e — 1 (2.64e 2.7594e¢ — 2 (1.70e 2.4534e+0 (2.19¢ 2.4186e+0 (6.43¢ 2.4186e+0 (2.36¢
-3)+ -2)+ -3)+ -2)— —-6)+ —-6)
TNK 2 5.0636e —3(1.40e 3.2686e — 2 (1.15¢ 4.4738e — 3 (1.67e None None None
-4 -2) -4
SRN 2 8.2205¢ —1(1.49¢ 7.4418e+0 1.1007e+0 (5.59¢  None None None
-2) (1.68e+0) -2)
OSY 2 7.5401le+1 8.2575e+1 8.4398e + 1 None None None
(3.88e+1) (2.10e+1) (2.90e+1)
BNH 2 1.0478¢+0 (1.38¢  1.0682e+0 (4.55¢ 5.1385¢ —1(2.03¢e 4.1892¢ — 1 (6.74e 9.0055e+0 (2.54¢ 1.8338e+0 (3.69¢
-2)+ -2)+ -2)+ -3)+ -1 - -2)
KITA 2 9.6355¢ —2(6.88¢e 2.5016e — 1(4.02¢e 1.2221e —1(6.10e 1.2872¢ — 1 (3.00e 1.7505e+1 (2.93¢  5.9948¢ — 1 (4.42¢

-5+

-2+

-3+

-3+

-1)-

—4)

Table 15 Results of SP metric of different multi-objective algorithms on constrained benchmark

Problem M MOGMO

MOEO

MOSOS/D

NSGA-II

MOMVO

MOPGO

CONSTR 2 4.5303e —2(3.88e

TNK 2
SRN 2
OSY 2
BNH 2
KITA 2

-3)—

7.1413e — 3 (3.16¢e
-4

1.6453e+0 (1.11e
-1

5.2218e — 1 (2.56¢
-1

3.5613e — 1 (3.00e
-2)+

8.9671e — 2 (9.79%
-3)+

1.9225e — 1 (6.16e
-2)-

2.7006e — 2 (6.84¢
-3)

6.8072e+0
(1.58e+0)

9.2370e+0
(7.72e+0)

2.4919¢+0 (8.82¢
-2)+

3.2134e — 1 (7.02¢
-2)+

4.9654e — 2 (5.70e
—-3)—

8.3393e — 3 (5.15¢
— 4)

9.6585¢ — 1 (1.62¢
— ])

8.5713e — 1 (6.46¢
— 1)

2.5213e+0 (2.78e
-2+

1.4746e — 1 (1.89%
-4+

2.2409e — 2 (1.13e
-2)—

None

None

None

7.672% — 1 (5.40e
-2)+

1.8438¢ — 1 (1.08e
-2+

1.0567e — 3 (1.69¢
- 5)=

None

None

None

4.7825e — 1 (3.32¢
-2)+

1.1251e — 1 (1.20e
-2+

1.0499¢ — 3 (4.85¢
-6)

None

None

None

3.8729¢+0 (1.69¢
-2)

9.8074e — 1 (4.24¢
—3)

@ Springer



International Journal of Computational Intelligence Systems (2024) 17:91

Page210f29 91

Table 16 Results of SD metric of different multi-objective algorithms on constrained benchmark

Problem M MOGMO

MOEO

MOSOS/D

NSGA-II

MOMVO

MOPGO

CONSTR 2 5.0426e — 1 (1.37¢

TNK

SRN

OSY

BNH

KITA

-1+

2 79771le—1(9.31e
-2)

2 4.4106e — 1 (3.29
-2)

2 9.384le —1 (5.45¢
-2)

2 1.4713e -1 (1.54¢
-2)+

2 1.5372e—1(1.13e

-2+

8.3717e — 1 (7.38¢e
-2)+

5.3299 — 1 (9.74¢e
-2)

3.9376e — 1 (5.70e
-2)

1.0163e+0 (1.32¢
-1

7.1343e — 1 (1.42¢
-2+

4.9655e — 1 (1.10e
-1)-

5.8934e — 1 (6.30e
-2)+

1.0399¢+ 0 (5.54¢
-2)

1.0402e — 1 (1.27e
-2)

9.8921e — 1 (2.42¢
-2)

6.7606e — 1 (4.59%¢
-3)+

3.3473e — 1 (2.68¢
-4+

9.5666e — 1 (591e
-3)-
None

None

None

5.1864e — 1 (3.36¢
-2)+

6.0723e — 1 (7.32¢
-2)—

9.3263e — 1 (6.74¢
—5)=
None

None

None

7.0168e — 1 (1.73¢
-2)+

9.4040e — 1 (8.38e
—-3)—

9.3265¢ — 1 (4.17¢
-5)
None

None

None

8.9482¢ — 1 (1.53¢e
—3)

4.9309¢ — 1 (2.20e
—3)

Table 17 Results of HV metric of different multi-objective algorithms on constrained benchmark

Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
CONSTR 2 5.2272¢+0(3.56e 4.9708¢+0 (4.0le 5.2261e+0(2.07e 3.5768e+0 (1.54¢e  3.7605e¢+0 (1.77¢  3.7606e+0 (1.26e
-3)+ -2)+ -3+ -1 - —-4)= -5)
TNK 2 5.2248¢ —1(4.70e 4.8583e — 1 (1.47e 5.2322e — 1 (1.80e None None None
-4 ~2) —4)
SRN 2 2.999%e+4 2.7392e+4 2.9876e+4 None None None
(7.81e+0) (6.47e+2) (248e+1)
oSy 2 6.1955e+3 4.9263e+3 5.1844e+3 None None None
(3.76e+3) (1.76e+3) (2.89¢+3)
BNH 2 6.4411e+3(1.69¢e 6.4260e+3 6.4394e+3 6.4437e+3 (7.25¢  6.2186e+3 6.4222e+3
- D+ 4.17e+0)= (2.36e+0)+ - D+ (1.13e+1) — (1.18¢+0)
KITA 2 49808e+1(2.67e 4.8660e+1 (298¢ 4.9672e+1 (3.00e 4.9505¢+1 (6.04e 1.9687e+1 (4.65¢ 4.6793e+1 (1.09¢
-3)+ - D+ -2)+ -2)+ -1 - -2)

Table 18 Results of RT metric of different multi-objective algorithms on constrained benchmark

Problem MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
CONSTR 6.584%9¢ — 1 (7.0le  8.2632¢e —1(9.87e  1.0514e+0(1.17¢  7.6102e+0 9.2876e+0 8.3383e+0(9.4%
-2)+ -2)+ -+ (1.01e+0)+ (1.40e+0) — -2)

TNK

SRN

OSY

BNH

KITA

6.3448¢ — 1 (1.58¢
-2+

9.9305¢ — 1 (3.81e
-2)+

1.0490e +0 (4.03¢
-2)+

4.2590e — 1 (1.62e
-2)+

6.2315¢ — 1 (1.28¢
-2)+

9.1115¢ — 1 (1.28¢
- D+

7.8907e — 1 (2.87¢
-2+

8.2531e — 1 (2.36e
-2)+

5.4971e — 1 (1.53¢
-2)+

8.0960e — 1 (3.11e
-2)+

1.0277e+0 (1.87¢

-2+

6.5453e — 1 (8.83e

-2)+

6.8216e — 1 (5.34e

-2+

6.7145e¢ — 1 (1.86e

-2+

1.0061e+40 (4.95¢

-2)+

6.1153e+0 (6.88¢
-2)+

7.5299 +0
(121e+0)+

3.9780e+0 (2.53¢
- D+

4.1319¢+0 (2.01e
- D+

7.4656e +0 (3.46e
- D+

8.8062e+0 (7.42¢
-2)—

9.2285e+0 (6.62¢
-1-

9.2234e+0 (3.09¢
-1)-

6.0315e+0 (2.11e
-1-

8.9323e+0 (2.08¢
-1-

8.4582¢+0 (4.45¢
-1

8.6223¢+0 (6.19%
-1

8.6687¢+0 (4.93¢
—_ 1)

5.6248¢+0 (2.08¢
-1

8.4196¢+0 (2.24¢
—_ 1)
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Fig. 8 Best Pareto optimal front obtained by the MOGMO algorithm on constrained CONSTR, TANK, SRN, OSY, BIN and KITA

@ Springer



International Journal of Computational Intelligence Systems (2024) 17:91

Page230f29 91

Table 19 Results of GD metric of different multi-objective algorithms on engineering design problems

Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
RWMOP1I 2  2.0086e — 4 (1.39¢ — 5) 1.0946e — 3 (3.71e —4)  2.1685e — 4 (2.26e — 5) None None None
RWMOP2 2 5.3504e — 4 (9.34e - 5) 2.8994e — 3 (8.54e —4)  5.9670e — 4 (1.51e — 4) None None None
RWMOP3 2  3.020le+1 (1.60e+1) 1.9114e+2 (1.05e+2) 2.4222e+1 (9.12e+0) None None None
RWMOP4 2 3.3672e+0 (1.66e — 1) — 4.4405e+0 (1.05e+0) — 2.1479¢+0 (1.57e — 1) — None 7.0771le =3  1.1400e — 1
(4.04e — (9.76e
3+ -2)
RWMOPS5 2  2.6788e — 3 (1.50e — 3) 2.2959¢ — 2 (3.99¢ —2)  6.6223e — 3 (1.98¢ — 3) None None None
Table 20 Results of IGD metric of different multi-objective algorithms on engineering design problems
Problem M MOGMO MOEO MOSOS/D NSGA-IIT MOMVO MOPGO
RWMOP1 2  3.1327e+40 (3.17e — 3) 3.2629¢+0 (4.41e — 2) 3.1343e+0 (3.98e — 3) None None None
RWMOP2 2 58832e—-1(2.70e —1) 7.6415¢ —2(1.33e —2) 5.3213e—1(1.44e—1) None None None
RWMOP3 2  1.0605e+4 (2.38¢+4) 3.3168e+2 (1.15e+2) 47779 +2 (1.25e+2) None None None
RWMOP4 2 29448e+2 (1.1le+1)+ 1.5972e+3 (3.10e+2)+ 1.4802e+3 (9.66e+1)+ None 2.9240e+4  2.2790e+4
(5.42e - 2) (1.35e+3)
RWMOP5 2 1.2425e — 1 (9.44e — 3) 5.1172e+0 (4.86e+0) 2.2026e — 1 (3.31e — 2) None None None
Table 21 Results of SP metric of different multi-objective algorithms on engineering design problems
Problem M MOGMO MOEO MOSOS/D NSGA-IIT MOMVO MOPGO
RWMOP1 2 2.0056e —2(1.59¢ —3) 1.1750e — 1 (3.38e —2) 1.6785e —2(2.29¢ —3)  None None None
RWMOP2 2  1.0079¢ —1(9.95e —3)  5.3530e — 1 (1.68e —1)  1.3926e — 1 (4.29¢ —2)  None None None
RWMOP3 2  5.8786e+2 (1.85e+2) None 7.9455e+2 (2.26e+2) None None None
RWMOP4 2  5.625le+2(4.59+1)+ 2.8946e+3 (9.48e+2) — 2.8009¢+3 (5.19¢+2) — None 3.0682¢ —3  9.3529¢+2
(2.04e — (2.54e+2)
3+
RWMOPS5 2  2.1306e — 1 (1.75¢ — 2) None 49597e — 1(5.92e —2) None None None
Table 22 Results of SD metric of different multi-objective algorithms on engineering design problems
Problem M MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO
RWMOP1 2  9.2676e — 1 (8.60e — 3) 9.4946e — 1 (2.98¢ — 2) 8.5506e — 1 (1.22e — 2) None None None
RWMOP2 2 7.4883e —1(8.08¢ —2) 9.8582¢ — 1 (8.4%¢ —2) 8.4652e — 1 (5.75¢ — 2) None None None
RWMOP3 2 1.7017e+0 (1.52e — 1) None 1.6942e¢+0 (7.15¢ — 2) None None None
RWMOP4 2 7.8863¢e —1(648¢ —2)+ 1.0912¢e+0(1.7le—1)= 1.2881e+0(5.71e —2) — None 1.0000e+0  1.1023e+0
(1.02e — (2.78e
T+ -2)
RWMOPS 2  7.8074e — 1 (5.76e — 2) None 8.3274e — 1 (5.67e — 2) None None None
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Table 23 Results of HV metric of different multi-objective algorithms on engineering design problems

Problem M MOGMO MOEO MOSOS/D NSGA-II. MOMVO MOPGO

RWMOP1 2 0.0000e+0 (0.00e +0) 0.0000e +0 (0.00e +0) 0.0000e +0 (0.00e +0) None None None

RWMOP2 2 0.0000e+0 (0.00e +0) 0.0000e + 0 (0.00e +0) 0.0000e +0 (0.00e +0) None None None

RWMOP3 2 2.9195e+6 (8.76e+5) 3.4656e+6 (3.79¢+3) 3.4589e+6 (6.39¢ +3) None None None

RWMOP4 2  4.6805¢+3 (1.40e+0)+ 4.538le+3 (2.9le+1)+ 4.6548¢+3 (4.43¢+0)+ None 5.2249¢+2 2.9867e+3

(2.01e -1) (3.43e+2)

RWMOP5 2 8.9757¢e —1(1.40e —3) 5.7698e —1(3.62e —1) 8.9367e —1(3.82e —3) None None None

Table 24 Results of RT metric of different multi-objective algorithms on engineering design problems

Problem  MOGMO MOEO MOSOS/D NSGA-II MOMVO MOPGO

RWMOP1 1.3394e+0 (1.48¢e  1.4327e4+0(9.28¢  1.7016e+0 (1.25¢  5.6949¢+0 (2.54e  1.0773e+1 (5.27¢  9.5765e¢+0 (4.40e
- D+ -2)+ - D+ -+ -1)- -1

RWMOP2 3.2426e+40(1.69¢  3.1294e+0 (1.40e  3.5663¢+0 (1.92e  6.1865¢+0 (4.27e  1.5217e+1 1.2131e+1 (7.51e
-+ -1+ -+ -+ (1.08e+0) — -1

RWMOP3 8.9292e — 1 (4.35e  7.1286e — 1 (3.58¢  1.1774e+0(6.51e  9.5989¢+0 (5.14e  9.4312e+0 (4.17¢  8.6944e+0 (3.83¢
-2)+ -2)+ -2)+ -1)- -1) - -1

RWMOP4 6.5513e —1(3.07e  8.3010e — 1 (4.31e  1.0486e+0 (7.52¢  3.2751e4+0(2.00e  9.2403e+0 (3.38¢  8.5452e+0 (4.27¢
-2)+ -2)+ -2)+ -+ -1 - -1

RWMOP5 7.2084e — 1 (4.25¢  8.5655e¢ —1(5.82¢  1.0789¢+0 (6.40e  6.6574e+0 (3.16e  9.5388¢+0 (6.08¢  8.6923e+0 (4.18¢

-2)+

-2+

-2)+

- D+ -D- -D

spread and distribution of the outcomes. Among the five
metrics, HV stands out as a comprehensive measure, assess-
ing an MOO method's convergence and diversity prowess.
Analytical approaches like non-parametric statistical tests,
robustness scrutiny and visual representations of Pareto
optimal fronts showcase MOGMO outcomes. A perusal of
the performance statistics highlights MOGMO capacity to
deliver superior results relative to its counterparts. For all
testing functions, the Pareto fronts generated by MOGMO
splendidly align with genuine Pareto fronts, demonstrating
considerable diversity. Non-parametric tests, including the
Wilcoxon rank-sum tests, indicate MOGMO superior per-
formance over MOEO, MOSOS/D, NSGA-II, MOMVO and
MOPGO across most metrics. MOGMO balance between
exploration and exploitation is commendable, stemming
from the perturbation coefficient and strategies in the global
and local stages. Its diversity, in terms of distribution and
spread, is also noteworthy, originating from novel search

@ Springer

group selections and Pareto archive updates. MOGMO uti-
lizes tournament selection, favoring less-populated regions
and selectively discards solutions from overcrowded regions
when necessary, bolstering solution diversity throughout
the optimization. Despite these strengths, MOGMO is not
without its constraints. As it leans on Pareto dominance,
MOGMO excels in solving MOPs with two or three conflict-
ing objectives. However, with problems encompassing more
than three objectives, MOGMO archive fills rapidly with
non-dominated solutions, which might hamper its efficiency.
As such, MOGMO is optimally geared for MOPs with two
to three objectives.

From Tables 13 and 19, we can observe that MOGMO
outperforms 7 out of 11 best results, whereas MOEO,
MOSOS/D, NSGA-II, MOMVO and MOPGO achieves 0,
1, 0, 1 and 2 best results in terms of the GD values, respec-
tively. Therefore, MOGMO has a better convergence for
solving Constraint and real-world application. In Tables 14



International Journal of Computational Intelligence Systems (2024) 17:91 Page 250f29 91

MOGMO on Isolated Safety Transformer Design

MOGMO on BLDC Motor Wheel Design

ol (% vocwo] | ¥ [ mocwo]
0.94 % 1 0.9
-0.942 - 091
|
£ -0.944 ; -0.92F
z z
= -0.946 - = L
S a -0.93
-0.948 | 094+
095} 095}
0952+ | | | . Py ‘ | M
1 1.5 12 125 13 135 14 145 5 10 15 20
Total Weight Total Mass
(@) ()
105 MOGMO on Helical Spring Design & 10 MOGMO on Two Bar Truss Design
l'sg 1l .
1.6 [ 8 L
7%
o 14} - *
36l
E L, Z | »
2 121 ® e
= 2
1 41
3
0.8 - 5l
*x
0.6 , , -*“”‘”‘**ik | S : :
5 10 15 20 2 0.01 0.02 0.03 0.04 0.05
Stress Volume
©) @
MOGMO on Welded Beam Design
i
§ 0.02
k3
)
@
g
w 0.015
)
=
=]
g
2 0.01
]
Y
=]
0.005
K

15 20 25 30 35
Fabrication Cost

(©

Fig.9 Best Pareto optimal front obtained by the MOGMO algorithm on real-world engineering problems: a RWMOP1 b RWMOP2 ¢
RWMOP3 d RWMOP4 e RWMOP5

@ Springer



91 Page 26 of 29

International Journal of Computational Intelligence Systems (2024) 17:91

and 20, IGD value compared to MOEO, MOSOS/D, NSGA-
I, MOMVO and MOPGO, the proposed MOGMO is better
in9, 10, 10, 11 and 11 out of 11 cases. Therefore, MOGMO
has a better convergence and diversity for solving Constraint
and real-world application. In Tables 15 and 21, SP value
compared to MOEO, MOSOS/D, NSGA-II, MOMVO and
MOPGQO, the proposed MOGMO worse in 0, 2, 0, 1 and
1 out of 11 cases. Therefore, MOGMO has a better diver-
gence for solving Constraint and real-world application. As
can be seen from Tables 16 and 22, MOGMO achieves the
best performance in terms of SD values, having obtained
7 best results, followed by MOEO, MOSOS/D, NSGA-II,
MOMVO and MOPGQO that have obtained 1, 3, 0, 0 and 0
best results, respectively. Therefore, MOGMO has a better
spread of non-dominated solutions on true PF for solving
Constraint and real-world application. In Tables 17 and 23
on the HV values, when, respectively compared to MOEO,
MOSOS/D, NSGA-II, MOMVO and MOPGO, the proposed
MOGMO is better in 10, 10, 10, 11 and 11 out of 11. There-
fore, MOGMO has a better balance between convergence
and diversity for solving Constraint and real-world applica-
tion. In Tables 18 and 24, RT value compared to MOEO,
MOSOS/D, NSGA-II, MOMVO and MOPGO, the proposed
MOGMO is better in 9, 9, 11, 11 and 11 out of 11 cases.
Therefore, MOGMO has a faster running speed and mini-
mum computational burden for solving Constraint and real-
world application.

5 Conclusions

This study introduces the inaugural multi-objective adapta-
tion of the GMO, termed MOGMO. The traditional work-
ings of the GMO are evolved through the incorporation of
two novel modules to shape MOGMO. To start, an elitist
non-dominated sorting strategy is executed to identify non-
dominated solutions, focusing on three pivotal processes:
offspring creation and selection. The second module lever-
ages the CD with IFM selection mechanism, ensuring the
continuous enhancement of convergence and variety in non-
dominated solutions throughout the optimization process.
MOGMO's efficiency is showcased through its applica-
tion to twenty-five benchmark problems, both unconstrained
and constrained. Metrics such as GD, IGD, SP, SD, HV and
RT facilitate its performance evaluation. Statistical out-
comes reveal that MOGMO yields higher quality solutions
compared to the five esteemed MOEO, MOSOS/D, NSGA-
II, MOMVO and MOPGO algorithms reviewed in this
research. When measuring convergence using the GD, IGD
metric, MOGMO consistently emerges on top. Moreover,
in assessing diversity via the SP and SD metrics, MOGMO
once again surpasses competing algorithms in the majority
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of cases. For the HV metric, MOGMO retains its superior
stance. All Pareto optimal outcomes derived from MOGMO
are closely aligned with genuine Pareto optimal solutions,
demonstrating impressive diversity.

Furthermore, the research extends the application of
MOGMO to five practical engineering challenges, confirm-
ing its versatility. Across all these scenarios, MOGMO con-
sistently delivers superior solution quality when matched
against alternative algorithms. This heightened convergence
and variety of the yielded Pareto optimal outcomes can be
credited to MOGMO 's robust exploitation and exploration
capabilities. A thorough analysis validates that MOGMO
efficiently tackles problems featuring two to three objectives
with characteristics like convexity, non-convexity and dis-
continuity in their Pareto optimal fronts. It is recommended
that MOGMO be further refined and adapted for real-world
engineering challenges in forthcoming research. There is
also potential in expanding MOGMO capabilities to address
problems with a broader array of objectives. The MOGMO
source code is available at: https://github.com/kanak(02/
MOGMO.
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