
Vol.:(0123456789)

International Journal of Computational Intelligence Systems (2024) 17:41
https://doi.org/10.1007/s44196-024-00432-9

RESEARCH ARTICLE

DeepMCGCN: Multi‑channel Deep Graph Neural Networks

Lei Meng1,2 · Zhonglin Ye1,2 · Yanlin Yang1,2 · Haixing Zhao1,2

Received: 19 September 2023 / Accepted: 5 February 2024
© The Author(s) 2024

Abstract
Graph neural networks (GNNs) have shown powerful capabilities in modeling and representing graph structural data across
various graph learning tasks as an emerging deep learning approach. However, most existing GNNs focus on single-relational
graphs and fail to fully utilize the rich and diverse relational information present in real-world graph data. In addition,
deeper GNNs tend to suffer from overfitting and oversmoothing issues, leading to degraded model performance. To deeply
excavate the multi-relational features in graph data and strengthen the modeling and representation abilities of GNNs, this
paper proposes a multi-channel deep graph convolutional neural network method called DeepMCGCN. It constructs mul-
tiple relational subgraphs and adopts multiple GCN channels to learn the characteristics of different relational subgraphs
separately. Cross-channel connections are utilized to obtain interactions between different relational subgraphs, which can
learn node embeddings richer and more discriminative than single-channel GNNs. Meanwhile, it alleviates overfitting issues
of deep models by optimizing convolution functions and adding residual connections between and within channels. The
DeepMCGCN method is evaluated on three real-world datasets, and the experimental results show that its node classifica-
tion performance outperforms that of single-channel GCN and other benchmark models, which improves the modeling and
representation capabilities of the model.

Keywords Deep graph neural networks · Multi-relational graphs · Multi-channel interaction · Channel-level attention
mechanism

1 Introduction

In the past few years, there has been widespread attention
and research on graph data as an important type of unstruc-
tured data. Graph data express complex relationships
between objects through nodes and links between nodes,
and its topology contains rich connectivity, relevance, and
global structural information. Numerous crucial data can be

effectively represented by graphs in the real world, encom-
passing domains like social networks [1], protein–protein
networks [2], scientific collaboration networks [3], public
transport networks [4]. The study of graph data has signifi-
cant theoretical significance and wide application value.

The advancement of deep learning methods has simul-
taneously offered fresh perspectives to the field of graph
data mining. Researchers have harnessed deep learning tech-
niques for analyzing graph data, leading to the development
of GNNs. GNNs learn graph topology recursively, and can
extract node structural features and global graph topology
information features effectively. Based on these features,
various downstream tasks like node classification [5, 6],
node clustering [7, 8], link prediction [9–11], knowledge
graph [12, 13] and recommendation systems [14–17] can
be performed well.

However, in the current research of graph neural network,
most of them focus on the design of graph convolution func-
tion and graph convolution framework, without consider-
ing the multi-relationship features between graph data and
ignoring the influence of different relationship features on

 * Haixing Zhao
 haixing_zhao@163.com

 Lei Meng
 lei_meng@foxmail.com

 Zhonglin Ye
 zhonglin_ye@foxmail.com

 Yanlin Yang
 yanlin_yang@foxmail.com

1 College of Computer, Qinghai Normal University,
Xining 810001, Qinghai, China

2 The State Key Laboratory of Tibetan Intelligent Information
Processing and Application, Xining 810008, Qinghai, China

http://orcid.org/0000-0003-0957-1603
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00432-9&domain=pdf

 International Journal of Computational Intelligence Systems (2024) 17:41 41 Page 2 of 13

node features, and most of them only consider the vertical
network deepening, while ignoring the width of the network
in the model design. To address the aforementioned issues,
a multi-channel deep graph convolutional network (Deep-
MCGCN) is proposed, which forms a wide and deep graph
neural network model through the interaction of informa-
tion between multiple channels and the deepening of the
graph convolutional layers. By introducing multi-channel
graph convolution, we aim to overcome the limitations of
current methods in capturing diverse information within
the graph. Firstly, multi-relational features between nodes
are considered to extract more hidden information from the
network by constructing multi-relational feature maps. Sec-
ondly, the graph convolutional function is optimized in sin-
gle-relational feature convolution channels to reduce over-
smoothing and over-fitting. Then, residual connections with
information interactions within and between channels are
added to deepen the network. And finally, attention mecha-
nism is employed to aggregate different relational features.
DeepMCGCN addresses limitations in existing GCNs by
introducing a multi-channel graph convolution mechanism,
enabling more effective capture of diverse information
within the graph. This helps to improve the model's abil-
ity to represent graph structures and node features, thereby
enhancing performance and overcoming some of the limita-
tions of current GCNs.

Briefly, contributions are as follows:

1. A multi-channel deep graph convolutional neural net-
work approach is proposed, called DeepMCGCN for
short, which is used for the task of semi-supervised node
classification.

2. Multiple relationship features of the network are utilized
to construct multiple relationship feature subgraphs in
order to uncover more hidden information within the
graph.

3. The graph convolution function and residual connec-
tions within and between channels are optimized and
introduced to alleviate over-smoothing and overfitting
issues. Finally, a channel-level attention mechanism is
applied to integrate the learned node feature information
from each channel.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 introduces the basic
concepts of graph and some preparatory knowledge. Sec-
tion 4 introduces multi-channel deep graph convolutional
neural network method. Section 5 presents the experimental
results. Finally, we conclude this paper in Sect. 6.

2 Related Work

GNNs [18, 19] are specialized neural network archi-
tectures tailored for learning graph data. Their primary
objective is to iteratively enhance node representations
by amalgamating information from neighboring nodes
as well as from the preceding layer [20–23]. Zeng et al.
[24] proposed the concept of Cut subgraphs and extend
the encoding paradigm of random walk to the probabili-
ties of returning to the root node of the subgraph. This
strategy is employed to capture structure information as
node features, consequently bolstering the expressiveness
of GNNs. Sriramulu et al. [25] introduced a novel hybrid
approach that combines neural networks and statistical
structure learning. This approach is designed to learn the
relationships between multiple variables in data and create
dynamic dependency graphs. The integration of statisti-
cal structure modeling and neural networks can effectively
identify causal relationships in time series. Peng et al. [26]
improved feature learning by learning graph structures in
the intrinsic space of raw data points, proposing a reverse
graph learning method for GNNs. Liu et al. [27] proposed
an evolutionary GNN (EGNN) approach that uses evolu-
tionary algorithms to optimize GNN parameters and per-
forms mutation by estimating different graph structures.
Zou et al. [28] designed an explicit selection strategy that
aggregates only similar neighbors instead of all weighted
ones. A threshold is introduced to select aggregated neigh-
bors for mean aggregation. Zhong et al. [29] constructed a
hierarchy in graphs by dividing nodes into different levels
of super-nodes and performed top-down message passing
and aggregation via ensembles. The paper also proposed
an attention mechanism to adaptively learn contribution
weights at various levels, thereby enhancing the signifi-
cance of multi-level messages. A time-series-based GNN
is proposed by Oskarsson et al. [30] to handle irregular
time steps and partially observed graphs. This model uti-
lizes continuous time to define latent states and can make
predictions at arbitrary future time points. Islam et al. [31]
introduced a pattern-based graph pooling method called
MPool, which combines the advantages of selective pool-
ing and clustering pooling, allowing for the simultane-
ous capture of both local and global graph structures.
In the selective pooling model, a node ranking model is
designed based on pattern relationships among nodes,
and the top-ranked nodes are selected to create the next
layer of the pooling graph. Bo et al. [32] introduced an
effective method that encodes all feature values and per-
forms self-attention in the spectral domain, thus achiev-
ing learnable set-to-set spectral filters. Additionally, Spec-
former designed a decoder with learnable basis functions
to enable non-local graph convolution. Dudzik et al. [33]

International Journal of Computational Intelligence Systems (2024) 17:41 Page 3 of 13 41

proposed integral transforms as an abstract object capable
of capturing both the message-passing/aggregation stage
of GNNs and the scoring/recombination stage of dynamic
programming (DP). By selecting the appropriate sup-
port set and latent space, the update rules of GNNs and
dynamic programming algorithms can be described as an
integral transform.

To handle more complex graph data, multi-channel graph
neural networks have emerged. The core idea of multi-chan-
nel graph neural networks is to utilize multiple channels (or
views) to capture different aspects of information within a
graph. Lin et al. [34] proposed a multi-view clustering model
with deep augmentation and fusion to learn more coincident
graphs, which comprises three core modules, that is, the
View Enhancement, Feature Fusion and Graph Embedding
Modules. The View Enhancement Module utilizes a Gen-
erative Adversarial Network (GAN) to generate enhanced
affinity graphs, enabling a more comprehensive exploration
of feature information. A meticulously crafted deep fusion
network can substantially bolster the complementarity of
each view utilizing the enhanced graph as a foundation.
The iterative processing of the fused graph through feature
extraction and reconstruction layers yields a uniform latent
representation well-suited for clustering. Zhu et al. [35]
introduced a graph convolutional network method called
CNIM-GCN for node classification tasks. This method inte-
grates topological and feature graphs and maintains shared
information between them through modeling a consistency
graph explicitly. Zhai et al. [36] proposed a multi-channel
Attention GCN and employed it to node classification tasks.
The model efficiently learns the mutual information between
node features and network topology by fusing them. The
difference between first-order and second-order neighbors
is captured by signals with different frequencies in order
to reduce the occurrence of over-smoothing. Chao et al.
[37] presented a residual GAT-based emotion recognition
method, which relies on a residual network to extract spatial
location information from electrode channels and the corre-
lation information among adjacent brain regions. It employs
a GAT to acquire knowledge about neural functional con-
nections among various brain regions. Li et al. [38] compre-
hensively learned graph representation from three aspects,
which are local and global topology information and feature
information, and utilized attention mechanism to fuse infor-
mation, and then proposed a multi-view unsupervised graph
representation learning, called MVGAE for short.

With the advancement of GNNs, researchers have found
that graph convolutional networks (GCNs) often achieve
optimal performance using two convolutional layers, while
deeper models with more convolutional layers tend to
underperform. To investigate this issue, deep graph neural
networks (DeepGCNs) have emerged. Numerous experi-
ments show that as the number of graph convolutional

layers increases, graph models may suffer from overfitting
and oversmoothing, which are the main causes of perfor-
mance degradation. Overfitting refers to good performance
on training data but decreased performance on test data,
harming generalization on small datasets. Over-smoothing
means node features become increasingly similar after
multiple graph convolution operations, making it difficult
for the model to distinguish different nodes. To tackle
these concerns, researchers have proposed various opti-
mization methods for deep GNNs. A jumping knowledge
(JK) network model was proposed to leverage informa-
tion from different receptive field sizes, thereby improv-
ing the learned representations [39]. Li et al. [40] argued
that graph convolutions in GCNs fundamentally amount
to a type of Laplacian smoothing, may causing over-
smoothing. They proposed joint training and self-training
to address the shortcomings of shallow GCNs, showing
significant improvements with little labeled data. Li et al.
[41] proposed DeeperGCN for training deep GCNs, incor-
porating jumping connections, specialized normalization,
residual connections, and improved weight initialization
to address vanishing gradients. Experiments show Deep-
erGCN can effectively train deep GCNs and achieve better
performance and faster training on many tasks. DropEdge
[42] was proposed to mitigate overfitting and over-smooth-
ing, which randomly removed a portion of edges from the
input data with all training epochs, serving as both a data
augmentation technique and a means to reduce message
passing. They proved DropEdge reduces over-smoothing
theoretically. Chen et al. [43] proposed GCNII, which
incorporates initial residual and identity mapping to alle-
viate the issue of oversmoothing. GCNII builds jumping
connections from the input layer with initial residuals and
adds identity matrices in the weight matrices. Experi-
ments show these simple techniques effectively prevent
over-smoothing and consistently improve performance
when increasing depth. Gao et al. [44] introduced a novel
deep GNN framework called WD-GNN. It is composed by
wide and deep components, which are linear graph filters
and non-linear graph neural networks, respectively. During
the training process, the architecture jointly learns non-
linear representations from the data. During the testing
process, the wide part undergoes online retraining while
the deep part remains fixed. Feng et al. [45] proposed a
GNN generation process for autonomously creating high-
performance deep graph neural network models. In con-
trast to existing manually designed and neural architecture
search (NAS)-based GNN models, this approach alleviates
the oversmoothing problem by introducing various flexible
residual connections and initial residual connections. It
also applies a two-stage search strategy within the search
space to explore diversity and depth in GNN architectures.

 International Journal of Computational Intelligence Systems (2024) 17:41 41 Page 4 of 13

3 Preliminaries

3.1 Main Symbols

See Table 1.

3.2 Graph and Its Representation

Suppose G = (A,X) is an undirected simple graph with n
nodes, where A ∈ ℝ

n×n is adjacency matrix, if Aij = 1 , it
indicates that node i is adjacent to node j, and if Aij = 0 ,
it indicates that that node i is not adjacent to node j.
X ∈ ℝ

n×d is the node feature matrix, and d is the feature
dimension. The degree of node i is the number of edges
associated with node i, D is the diagonal degree matrix, L
is the Laplacian matrix, L = D − A.

The Laplacian matrix of a graph has a close relationship
with its underlying structure. It provides information about
the graph's topology and connectivity. The eigenvalues
and eigenvectors of the Laplacian matrix contain spectral
information about the graph. The Laplacian matrix serves
as the basis for graph convolution operations. In graph
convolutional networks (GCN), the convolution operation
commonly used relies on the multiplication between the
Laplacian matrix and the node feature representation. The
eigenvectors of the Laplacian matrix can be regarded as
the representation of graph nodes in the spectral domain.
By multiplying them with the node features, we can per-
form smoothing operations or other transformations on
the node features in the frequency domain. The eigenvalue
decomposition and Laplacian matrix provide mathematical
tools and theoretical foundations for modeling and analyz-
ing the structure and topology of graphs in graph neural
networks.

3.3 Node Classification

The main research focus of this paper is the application of
graph neural networks (GNNs) in the task of node classifica-
tion. GNNs are deep learning models based on graph struc-
tures, capable of classifying and predicting the labels of nodes.
In the node classification task, the objective is to learn the fea-
ture representations of each node using GNNs and assign them
to pre-defined categories. GNNs are able to capture complex
relationships and contextual information between nodes by
taking into account the relationships and local neighborhood
information among nodes. GNNs employ graph convolution
operations to progressively aggregate and update node repre-
sentations, enabling richer information to be incorporated into
the node features.

Given a set of nodes
{

v1, v2,… , vn
}

⊂ V , the correspond-
ing label categories of them are

{

l1, l2,… , ld
}

⊂ Labels , and
then the node classification is to learn the node representation,
thereby obtaining the following mapping: f ∶ V → Labels.

3.4 Graph Convolutional Network

The graph convolutional neural network in the spectral
domain mainly uses the graph spectral theory to design
the convolution operation, which defines the convolution
operation by computing the eigenvalue decomposition
of the Laplacian matrix and using the Fourier transform.
Given a graph signal x ∈ ℝ

N , the graph Fourier transform
is performed on the graph signal in the spatial domain, the
obtained graph Fourier coefficients are modulated, and then
the graph signal is reconstructed in the spatial domain, that
is

where g� = diag(�) is the convolution kernel, � ∈ ℝ
N is the

parameter need to learn, U is the matrix consisting of the
eigenvectors of the normalized Laplacian matrix, that is

where L is the normalized graph Laplacian matrix, A is the
adjacency matrix, D is the degree matrix, and Λ is the diago-
nal matrix of eigenvalues.

Using k-order truncated Chebyshev polynomials Tk(x) to
approximate g�(Λ) , we have

where L̃ =
2

𝜆max

L − I , �max is the maximum eigenvalue of the
normalized graph Laplacian matrix L , and � ∈ ℝ

k is the
parameter vector consisting of the Chebyshev polynomial
coefficients.

(1)g� ⋅ x = Ug�(Λ)U
Tx,

(2)L = I − D
−

1

2AD
−

1

2 = UΛUT ,

(3)g𝜃 ⋅ x ≈

K
∑

k=0

𝜃kTk
(

L̃
)

x,

Table 1 Main symbols

G Graph G
G̃ Graph with self-looped
A Adjacency matrix
X Characteristic matrix
U The matrix consisting of the eigenvectors of

the normalized Laplacian matrix
L The normalized graph Laplacian matrix
D The diagonal degree matrix
c The number of Channel
l The number of graph convolution layers
A
o

Optimized adjacency matrix
H(c,l) Characterization of lth layer of the cth channel

International Journal of Computational Intelligence Systems (2024) 17:41 Page 5 of 13 41

Let the order of the Chebyshev polynomial K equal to
1 and the maximum eigenvalue approximate to 2, we have

where �′
0
, �′

1
 are the adjustable parameters. Let ��

0
= ��

1
= −�� ,

we have

The renormalization operation is performed on
IN + D

−
1

2AD
−

1

2 , that is IN + D
−

1

2AD
−

1

2 → D̃
−

1

2 ÃD̃
−

1

2 and
Ã = A + IN , D̃ii =

∑

j Ãij , therefore, the final graph convo-
lution operation is

where X ∈ ℝ
N×C is the node representation before perform-

ing graph convolution, Θ ∈ ℝ
C×F is the convolution kernel

parameter matrix, Z ∈ ℝ
N×C is the node representation after

performing graph convolution, C is the number of channels,
and F is the number of convolution kernels.

The ith and jth term of D̃−
1

2 ÃD̃
−

1

2 is not 0 only when
node i and node j are connected. And for a single node,
this process can be seen as aggregating information about
its 1-hop neighbors, whose nodes themselves are consid-
ered 1-hop neighbors.

In order to get better results, the number of layers of
neural networks becomes more and more. However, with
the network model deepening, problems such as over-
fitting, gradient disappearance and gradient explosion
will occur. The appearance of these problems not only
does not improve expressiveness of the model, but also
reduces the effectiveness of the model. To solve the above
problems, residual connectivity is proposed and applied
to graph neural networks. Graph data possess complex
structures and topological relationships, typically consist-
ing of a large number of nodes and edges. In the stacked
structure of GNNs, the propagation of information and
gradients can be constrained by local propagation, lead-
ing to information loss or gradient decay. The introduc-
tion of residual connections in GNNs helps facilitate the
better propagation of information and gradients within
the network, thereby improving the performance of graph
neural networks.

The general form of ResGCN is

where F is the graph convolution operation, Hl is the hid-
den state matrix of the lth layer, and Wl is the parameter
matrix of the lth layer.

(4)g� ⋅ x ≈ ��
0
x + ��

1

(

L − IN
)

x = ��
0
x − ��

1
D

−
1

2AD
−

1

2 x,

(5)g� ⋅ x ≈ �

(

IN + D
−

1

2AD
−

1

2

)

x.

(6)Z = D̃
−

1

2 ÃD̃
−

1

2XΘ,

(7)Hl+1
ReS

= Hl+1 + Hl = F
(

Hl,Wl
)

+ Hl,

4 4. Proposed Methods

4.1 Definition

To more comprehensively capture features in graph data,
a multi-channel graph neural network allows for greater
flexibility in learning and representing various aspects of
information within the graph. This enhances the model's
capability to model complex relationships by introducing
multiple channels to learn different facets of the data.

Due each relationship, subgraph is corresponded to a
channel in this article. Suppose c is the index of the chan-
nel, and the channel input for a graph is Gc = (Xc,Ac) .
For a given channel, it contains multiple layers and each
layer contains two operations: graph convolution and node
feature learning. Suppose l is the number of layers, the lth
layer of the cth channel is denoted as Gc =

(

X(c,l),A(c,l)
)

.

4.2 Overall Framework

The framework diagram of DeepMCGCN is presented in
Fig. 1.

The framework primarily comprises three components,
the relational network construction module, the graph
convolution module and the feature aggregation module,
respectively. In the relational network construction mod-
ule, the main purpose is to construct a relational network
for each channel. Three kinds of relational networks are
constructed, where relational network 1 is built on the
basis of the citation relationship between nodes, that is,
the paper is regarded as a node, and if there is a citation
relationship between papers, the two nodes are connected,
relational network2 is constructed based on the word co-
occurrence relationship of node text, that is, if the title of
the paper is treated as a node and the same word appears in
the title of the paper, then there is a link between the two
nodes, and relationship network3 is a hybrid relationship
network between relationship network1 and relationship
network2, whose adjacency matrix is formed by summing
the elements of the adjacency matrices from relationship
network1 and relationship network2, and the non-zero
elements are set to 1. By constructing different channel
networks, we can capture relationship information of
different levels and types, enabling a more comprehen-
sive understanding and analysis of graph data. It helps to
uncover complex associations between nodes. In the graph
convolution module, a single-channel deep graph convolu-
tion module and a convolution module for inter-channel
information interaction are designed. Graph convolutional
modules are used to extract node features from each dif-
ferent relationship network. The feature aggregation

 International Journal of Computational Intelligence Systems (2024) 17:41 41 Page 6 of 13

module mainly includes the attention fusion and node
feature aggregation modules. Attention Fusion is used to
emphasize important information through the utilization
of attention mechanisms for feature fusion. Node feature
aggregation, on the other hand, aims to aggregate features
from different channels to obtain the final representation
of node features. The introduction of multi-channel graph
convolution allows DeepMCGCN to simultaneously utilize
information captured by different channels, providing a
more comprehensive understanding of graph structures.
This contributes to improved modeling of complex rela-
tionships and node features, thereby enhancing the model's
performance.

4.3 Single‑Channel Feature Learning

In the single-channel node learning process, the classical GCN
graph convolution process is optimized, that is, optimizing
the matrix Ã so that the information of its own nodes can be
aggregated several times for different nodes and graph struc-
tures during the process of updating its own node information
by convolution operation. Therefore, let

where D is the degree matrix, Dii =
∑

j Aij , A is adjacency
matrix, and � is the adjustable parameter. Replacing Ã in the
above equation with Ao , we have

where D̃oii =
∑

j Ãoii.

(8)Ão = Ã + 𝜃D,

(9)Z = D̃
−

1

2

o ÃoD̃
−

1

2

o XΘ,

For the cth-channel and lth-layer input Gc =
(

X(c,l),A(c,l)
)

 ,
the feature learning process is

where H(c,l+1) is feature representation of the l + 1th layer of
the cth channel.

4.4 Multi‑channel Interactive Learning

In the feature learning of multiple channels, the information
feature interactions between channels are designed by consid-
ering different node features in different relational networks.
The node features learned at layer l in the first channel are
added to the node features learned at layer l in the second
channel as part of the input at layer l + 1 of the second channel,
and then the residual connection is added to form a residual
connection with information interaction between channels.
The second channel is the same as above. Specially, the third
channel is a mixed information channel, where the node fea-
tures of the first two channels in the l layer are added to the
node features of the third channel as the input of the l + 1 layer
of the third channel during the learning process.

For the cth-channel and lth-layer input Gc =
(

X(c,l),A(c,l)
)

 ,
the feature learning process between channels is as follows:

(10)H(c,l+1) = 𝜎

(

D̃
(c,l)−

1

2

o Ã(c,l)
o

D̃
(c,l)−

1

2

o W (c,l)

)

.

(11)H(1,l+1) = F
�
([

H(1,l) + H(2,l)
]

⋅Wl
)

+ H(1,l),

(12)H(2,l+1) = F
�
([

H(1,l) + H(2,l)
]

⋅Wl
)

+ H(2,l),

Fig. 1 Schematic description of DeepMCGCN framework

International Journal of Computational Intelligence Systems (2024) 17:41 Page 7 of 13 41

where F′ is the graph convolution operation defined in this
article, and Wl is the parameter matrix can be learned.

4.5 Feature Aggregation

Considering that different features in different relational
feature networks have different effects on nodes, a chan-
nel-level attention mechanism is employed to combine
different relational features to account for the varying
importance of distinct node features, and the aggregation
function is defined by this attention mechanism. Spe-
cifically, the node feature input Xv ∈ ℝ

d performs linear
transformation, and the importance coefficients of the
node features are converted into the correlation between
the attention vector and the node feature matrix after lin-
ear transformation:

where W ∈ ℝ
da×d is the weighting parameter, b ∈ ℝ

da is the
bias, and ReLU is a activation function. The normalization
process of tv is performed to obtain the final attention coef-
ficients, that is

where �v is the attention coefficient. Therefore, the different
node features are aggregated as:

where H(l)

ATT
 is the network representation after aggregating

different relational features.
In order to get the final node representations of the

three channels, H(l)

ATT
 and the feature H(3,l) which is learned

after the third channel are fused by the concatenation
operation, that is

where Hl
final

 is the network representation after concatenating
H

(l)

ATT
 and H(3,l) , and it is the input of the final fully connected

layer.

(13)H(3,l+1) = F
�
([

H(1,l) + H(2,l) + H(3,l)
]

⋅Wl
)

+ H(3,l),

(14)tv = aT ⋅ ReLU(W ⋅ Xv+b),

(15)�v =
exp(tv)

∑

v∈V exp(tv)
,

(16)H
(l)

ATT
= �v ⋅ H

(1,l) + �v ⋅ H
(2,l),

(17)Hl
final

= concat
(

Hl
ATT

,H(3,l)
)

.

4.6 Model Training

When the model is trained, the obtained final node embed-
ding is used as inputs for the node classification task, start-
ing with a fully connected layer and a softmax activation
function:

where node labels are assumed to have class C , Θ� ∈ ℝ
dm×C

is the dimension reduction transformation matrix, P ∈ ℝ
N×C

is the final probability matrix.
And then, the model is trained by computing the cross-

entropy between the actual minimum value and the predicted
value, that is

where VL is the set of labeled nodes, Yv is the one-hot vec-
tor indicates the ground-truth labels of nodes, Pv is the true
value of the node.

5 Experiment and Result Analysis

5.1 Datasets

All experiments were carried out on three publicly avail-
able citation network datasets, that is, Citeseer (M10),
DBLP (V4), and SDBLP. In each experiment, the effective-
ness of the proposed method was demonstrated by compar-
ing it with baseline methods. Detailed description of these
three datasets is provided in Table 2. These datasets were
chosen because they are widely used for evaluating graph
classification and node classification tasks. Specifically, Cit-
eseer involves academic paper citation relationships, DBLP
includes relationships among academic papers and authors,
and SDBLP contains more granular information. The selec-
tion aims to provide diversity and challenges for a more
comprehensive evaluation of DeepMCGCN's performance.

Each dataset is partitioned into semantic relationship
networks and structural relationship networks based on the
type of relationship in Table 1. In the semantic network, the
relationships between nodes are constructed based on word
co-occurrence, meaning that if the same word appears in the

(18)P = softmax
(

Hl
final

Θ�
)

,

(19)LOSS = −
∑

v∈VL

C
∑

c=1

Yv[c] ⋅ ln(Pv[c]),

Table 2 Description of dataset
attributes

Dataset CiteSeer DBLP SDBLP

Structure Semantics Structure Semantics Structure Semantics

Node 4610 4610 17,725 17,725 3119 3119
Edge 5923 819,346 105,781 1,253,600 39,516 439,182

 International Journal of Computational Intelligence Systems (2024) 17:41 41 Page 8 of 13

titles of two papers, there is a connection between the cor-
responding nodes. In the structural network, the connections
between nodes are determined based on the citation relation-
ships between different papers. To validate the feasibility
in a dense network, a high average degree network called
SDBLP is constructed based on DBLP (V4). In the SDBLP
network, nodes with less than 3 citations are deleted, mean-
ing nodes with a degree less than 3 are removed.

5.2 Baseline Methods

We categorize the baseline methods into two groups. The
first group consists of traditional network representation
learning methods like DeepWalk [46], LINE [47], Node-
2Vec [48] and GraRep [49]. These methods described above
are traditional network representation learning methods
that have been widely adopted and studied in the literature.
These methods have shown competitive performance and
have been benchmarked on various network analysis tasks.
The second group consists of graph neural network methods,
including GCN [20], GAT [21] and GCNII [43]. Compari-
son with these methods allows for a better understanding of
the advantages of different methods in the context of specific
network analysis tasks.

5.3 Experimental Settings

We evaluate our proposed algorithm against baseline meth-
ods on the node classification task. The DeepMCGCN
framework is implemented in Python and TensorFlow, and
experiments are conducted on an NVIDIA 3060 platform
(GPU:12G, CPU:16G). The GNN parameters are initialized
using the Xavier initialization method and optimized with
the Adam optimizer. Xavier initialization is a technique for
initializing the weights of neural network layers. It aims to
keep the variance of the activations and gradients relatively

constant across layers during forward and backward propa-
gation. The idea behind this initialization is to prevent the
gradients from vanishing or exploding, which can hinder
the training process. Adam (Adaptive Moment Estimation)
is an optimization algorithm that combines the ideas of both
momentum optimization and adaptive learning rates. It is
one of the most widely used optimization algorithms for
training deep neural networks. The logistic regression clas-
sifier is trained for 200 iterations to ensure convergence. To
validate the generalization ability, we set the training set
proportions to 0.2, 0.4, 0.6, and 0.8, using the remaining
nodes as the test set. Additionally, the hyper-parameters are
set as: Hidden size is 128, Learning rate is 0.005, Dropout
rate is 0.1, Degree Matrix coefficient is 0.5.

5.4 Experimental Results Analysis

The paper utilizes three real citation network datasets,
namely Citeseer, DBLP, and SDBLP, as evaluation data-
sets. Different training set proportions, specifically 0.2, 0.4,
0.6, and 0.8, were extracted from each dataset as training
sets, with the remaining data serving as the test set. The
node classification accuracy of both baseline methods and
the proposed algorithm on these three datasets at various
training set proportions is provided in Table 3. Accuracy
(ACC) is employed as the metric to assess the effectiveness
of the models in classifying nodes, and the experimental
results are the averages of 10 repetitions.

As shown in Table 3, DeepMCGCN achieves average
ACC values of 0.89865, 0.8415, and 0.8802 across four
different training proportions on the Citeseer, DBLP, and
SDBLP datasets, respectively. At an 80% training propor-
tion, compared to the best performing baseline methods
on the Cora, DBLP and SDBLP datasets, DeepMCGCN
exhibits improvements of 6.64%, 2.09% and 3.34%, respec-
tively. Therefore, it can be observed that the proposed

Table 3 Accuracy of node
classification on Citeseer,
DBLP, and SDBLP

Dataset Training
rate (%)

Deepwalk LINE Node2Vec GraRep GCN GAT GCNII Deep MCGCN

Citeseer 20 0.5930 0.4706 0.6561 0.5309 0.7738 0.8148 0.8109 0.8867
40 0.6148 0.4957 0.6707 0.5975 0.7875 0.8299 0.8213 0.8924
60 0.6230 0.5102 0.6715 0.6105 0.8026 0.8429 0.8315 0.9019
80 0.6233 0.5307 0.6807 0.6209 0.8069 0.8472 0.8457 0.9136

DBLP 20 0.6434 0.6653 0.7398 0.6590 0.8010 0.8237 0.8152 0.8366
40 0.6598 0.6787 0.7561 0.6792 0.8018 0.8240 0.8118 0.8412
60 0.6618 0.6830 0.7585 0.6888 0.8051 0.8229 0.8138 0.8438
80 0.6703 0.6889 0.7573 0.6956 0.8029 0.8235 0.8087 0.8444

SDBLP 20 0.8065 0.7701 0.8287 0.8252 0.8146 0.8194 0.8272 0.8722
40 0.8149 0.7828 0.8451 0.8378 0.8211 0.8202 0.8326 0.8806
60 0.8235 0.7897 0.8401 0.8417 0.8156 0.8154 0.8243 0.8819
80 0.8271 0.7882 0.8473 0.8527 0.8217 0.8228 0.8313 0.8861

International Journal of Computational Intelligence Systems (2024) 17:41 Page 9 of 13 41

DeepMCGCN method outperforms the seven baseline meth-
ods mentioned above across the four training proportions on
all three datasets. It not only achieves favorable results on
sparse datasets but also surpasses other methods on dense
datasets, thus demonstrating the feasibility of the proposed
DeepMCGCN. Comparisons with other graph neural net-
works demonstrate that DeepMCGCN exhibits good scal-
ability in handling large-scale graph data. Its multi-channel
design enables more effective processing of complex graph
structures.

To visually demonstrate the effectiveness of the Deep-
MCGCN method, this paper presents a graph illustrating
the node classification performance of DeepMCGCN with
respect to increasing network depth and training ratio. The
specific results are shown in Fig. 2.

As shown in Fig. 2, the heatmaps depict the changes in
ACC values for the Citeseer, DBLP, and SDBLP datasets
with respect to network depth and training rate. Lighter
colors indicate better model performance. From the figure,
it is evident that the ACC of the DeepMCGCN method
increases as the network depth and training ratio increase
in all three datasets. The highest ACC is achieved when the
network depth is 16 layers and the training ratio is 80%.

5.5 Ablation Experiment

Ablation experiments are conducted to evaluate its perfor-
mance on different datasets in order to validate the effective-
ness of the DeepMCGCN method. These ablation experi-
ments were designed to systematically remove or modify
components of the DeepMCGCN method, allowing for an
understanding of their contributions to the overall perfor-
mance. By conducting these ablation experiments on these
datasets, a more comprehensive evaluation of the DeepM-
CGCN method's effectiveness and its adaptability in differ-
ent scenarios can be obtained.

As shown in Table 4, SingleCGCN represents a single-
channel graph neural network model, while MultiCGCN
denotes a multi-channel graph neural network model with
residual connections within channels but no inter-channel
interactions. Observing Table 3, it can be noted that on the
Citeseer, DBLP, and SDBLP datasets, the SingleCGCN
model's performance rapidly deteriorates with an increase
in the number of network layers. For instance, at 16 layers,
the ACC values are 0.18467, 0.3293, and 0.26475, respec-
tively. On the other hand, the MultiCGCN model exhibits
improved performance as the number of network layers
increases up to 4 layers. Subsequently, its performance
begins to decline with further layer increments, but it still
achieves ACC values of 0.87329, 0.79646, and 0.82807 on
the Citeseer, DBLP, and SDBLP datasets, respectively, even
at 16 layers. This demonstrates that the multi-channel graph
neural network model with residual connections effectively
alleviates overfitting and oversmoothing phenomena. The
DeepMCGCN model consistently shows an upward trend in
performance with an increase in the number of network lay-
ers, providing evidence of the effectiveness of the approach
presented in this paper. Although DeepMCGCN achieves

(a) Citeseer (b) DBLP (c) SDBLP

Fig. 2 Heat map of ACC values with network depth and training rate on three datasets

Table 4 Accuracy of node classification for different network layers

Dataset Method Lays

2 4 8 16

Citeseer SingleCGCN 0.879 0.64866 0.32299 0.18467
MultiCGCN 0.88158 0.89068 0.88137 0.87329
DeepMCGCN 0.88425 0.89941 0.9006 0.9136

DBLP SingleCGCN 0.79546 0.62969 0.4393 0.3293
MultiCGCN 0.80449 0.81086 0.80133 0.79646
DeepMCGCN 0.8135 0.81632 0.83175 0.8438

SDBLP SingleCGCN 0.84926 0.68476 0.42614 0.26475
MultiCGCN 0.84548 0.84657 0.83460 0.82807
DeepMCGCN 0.8492 0.8506 0.864 0.8819

 International Journal of Computational Intelligence Systems (2024) 17:41 41 Page 10 of 13

better performance, it has higher complexity compared to
single-channel GNNs methods and requires high-perfor-
mance equipment and environment during training.

5.6 Parameter Analysis

An analysis of the experiment's parameters is conducted
to assess the impact of parameter changes on the model's
node classification performance during the experiments.
The primary parameters in the experiments include hidden
layer embedding dimensions, learning rate, dropout rate, and
the coefficient of the degree matrix in graph convolution
calculations. The dimensionality of hidden layer embed-
dings determines the model's complexity and expressive
power. Increasing the number of layers in the hidden layers
enhances the model's depth, allowing it to better capture
the intricate features of graph data. However, the choice
of the number of hidden layers requires a delicate balance.
Too many layers may lead to overfitting, where the model
performs well on the training set but poorly on the test set.
Therefore, selecting the number of hidden layers should
take into account the dataset's scale, complexity, and avail-
able computational resources. The learning rate governs
the magnitude of each parameter update, playing a crucial
role in model training. Optimal learning rate selection is
vital; if too high, it may cause parameters to diverge dur-
ing training, preventing model convergence. Conversely,
if too low, the training speed slows down, requiring more
iterations to achieve satisfactory performance. The Dropout
rate, a widely used regularization technique, reduces over-
fitting by randomly dropping a portion of neuron outputs
during training. The dropout rate determines the probability
of retaining each neuron's output. Selecting an appropriate
dropout rate helps balance model complexity and generali-
zation. Higher dropout rates may enhance model robustness
but could potentially compromise fitting capabilities. The
coefficient of the degree matrix is a parameter introduced
in this paper for optimizing graph convolution. The selec-
tion of these hyperparameters is an empirical process, typi-
cally involving multiple experiments and cross-validation to
determine the optimal values.

The chart in Fig. 3 illustrates how these four parameters
impact the experimental results on the Cora dataset.

Observing Fig. 3, it is evident that, concerning three
parameters: Hidden layer embedding dimensions, Learning
rate and the Coefficient of the degree matrix in graph con-
volution during computation—increasing these parameters
has a relatively minimal impact on the number of layers.
The model performance consistently reaches its peak at 16
layers for all three parameters. However, in the case of the
Dropout rate, the influence of parameter variations on the
number of layers is less stable, yet the highest performance
is still attained at 16 layers.

From Fig. 3, it can be deduced that when the hidden
layer embedding dimension is equal to 128, the Dropout
rate is 0.5, the learning rate is 0.05, and the coefficient of
the degree matrix during graph convolution is 0.5, the model
achieves its optimal performance.

5.7 Visual Analysis

To better assess the effectiveness of the proposed method,
the t-SNE algorithm is utilized in this study for dimensional-
ity reduction and clustering comparison. The primary pur-
pose of visualization is to observe whether the final node
representations exhibit clustering phenomena. The more
prominent the clustering phenomena, the better the per-
formance of the model. In this study, the clustering of the
results of the DeepMCGCN model on the Citeseer dataset
with 2, 4, 8, and 16 layers is shown in Fig. 4.

Upon observing Fig. 4, it becomes evident that as the
number of convolutional layers increases, the clustering
effect of the DeepMCGCN model becomes more pro-
nounced. At 16 layers, it is distinctly observable that nodes
of the same color cluster closely together, and the clus-
tering of different colors becomes more pronounced with
well-defined boundaries. This visualization experiment also
provides evidence that the method proposed in this paper
improves model performance.

6 Conclusion

The paper proposes a multi-channel deep graph convolu-
tional neural network model DeepMCGCN to deeply exca-
vate the multi-relational features in graph data by deepening
and widening the network architecture for more compre-
hensive and multi-perspective graph representation learn-
ing. Specifically, it constructs multiple relational subgraphs
with each channel focusing on learning one type of relational
subgraph features to capture different relationships. Cross-
channel connections are introduced to learn the mutual
information between different relational subgraphs. Convo-
lution functions are optimized and residual connections are
added within and between channels to alleviate overfitting
and over-smoothing issues. Finally, a channel-wise attention
mechanism is employed to aggregate node representation
from each channel. Experiments on three actual datasets
illustrate that DeepMCGCN adeptly captures intricate node
relationships and bolsters the model's representation prow-
ess. The research in this paper focuses on DeepMCGCN,
a supervised graph neural network model that requires a
large amount of data annotation, which hinders its practi-
cal application. Additionally, the model only handles initial
graph data from a single modality. In future research, more
attention will be devoted to self-supervised multi-channel

International Journal of Computational Intelligence Systems (2024) 17:41 Page 11 of 13 41

(a) (b)

(c) (d)

Fig. 3 Effect of parameters on experimental results on the Cora dataset

Fig. 4 Visualization of layers 2, 4, 8 and 16 on Citeseer dataset

 International Journal of Computational Intelligence Systems (2024) 17:41 41 Page 12 of 13

graph neural network methods and their integration with
multimodal studies to enhance the applicability of graph
neural network models in real-world scenarios.

Author Contributions LM proposed an overall framework, and was
a major contributor in writing the manuscript. ZY collected the data-
set, proofread the manuscript. YY edited the formula, proofread the
experimental data, and drew figures. HZ provided ideas for the paper
and provided funding support. All authors read and approved the final
manuscript.

Funding This work is partially supported by the National Key
Research and Development Program of China under Grant no.
2020YFC1523300, the Construction of Innovation Platform Program
of Qinghai Province of China under Grant no. 2022-ZJ-T02.

Data Availability Data will be made available from the corresponding
author on reasonable request.

Declarations

Conflict of Interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Scott, J., Carrington, P.J.: The SAGE handbook of social network
analysis. SAGE publications, London (2011)

 2. Gligorijević, V., Barot, M., Bonneau, R.: deepNF: deep network
fusion for protein function prediction. Bioinformatics 34(22),
3873–3881 (2018). https:// doi. org/ 10. 1093/ bioin forma tics/ bty440

 3. Newman, M.E.J.: Scientific collaboration networks. I. Network
construction and fundamental results. Phys. Rev. E 64(1), 016131
(2001). https:// doi. org/ 10. 1103/ PhysR evE. 64. 016131

 4. Farahani, R.Z., Miandoabchi, E., Szeto, W.Y., Rashidi, H.: A
review of urban transportation network design problems. Eur. J.
Oper. Res.Oper. Res. 229(2), 281–302 (2013). https:// doi. org/ 10.
1016/j. ejor. 2013. 01. 001

 5. Xiao, S., Wang, S., Dai, Y., Guo, W.: Graph neural networks in
node classification: survey and evaluation. Mach. Vis. Appl. 33,
1–19 (2022). https:// doi. org/ 10. 1007/ s00138- 021- 01251-0

 6. Luan, S., Hua, C., Xu, M., Lu, Q. C., Zhu, J. Q., Chang, X. W., Fu,
J., Leskovec, J., Precup, D.: When do graph neural networks help
with node classification: Investigating the homophily principle on
node distinguishability (2023). arXiv preprint arXiv: 2304. 14274.
https:// doi. org/ 10. 48550/ arXiv. 2304. 14274

 7. Wang, C., Pan, S., Yu, P.C., Hu, R.Q., Long, G.D., Zhang, C.Q.:
Deep neighbor-aware embedding for node clustering in attributed
graphs. Pattern Recognit. 122, 108230 (2022). https:// doi. org/ 10.
1016/j. patcog. 2021. 108230

 8. Khan, M.F., Bibi, M., Aadil, F., Lee, J.W.: Adaptive node clus-
tering for underwater sensor networks. Sensors. 21(13), 4514
(2021). https:// doi. org/ 10. 3390/ s2113 4514

 9. Zhang, M., Chen, Y.: Link prediction based on graph neural
networks. In: NeurIPS 2018. MIT Press, Oxford (2018)

 10. Guo, Z., Shiao, W., Zhang, S., Liu, Y.Z., Chawla, N.V., Shah,
N., Zhao, T.: Linkless link prediction via relational distillation.
In: PMLR 2023, vol. 202, pp. 12012–12033 (2023).

 11. Yang, Y.L., Ye, Z.L., Zhao, H.X., Meng, L.: A graph repre-
sentation learning framework predicting potential multivariate
interactions. Int. J. Comput. Intell. Syst. 16(1), 1–16 (2023).
https:// doi. org/ 10. 1007/ s44196- 023- 00329-z

 12. Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning
over knowledge graph. Expert Syst. Appl. 141, 112948 (2020).
https:// doi. org/ 10. 1016/j. eswa. 2019. 112948

 13. Liu, S., Qin, Y.F., Xu, M., Kolmanič, S.: Knowledge graph
completion with triple structure and text representation. Int. J.
Comput. Intell. Syst. 16(1), 95 (2023). https:// doi. org/ 10. 1007/
s44196- 023- 00271-0

 14. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.,
Leskovec, J.: Graph convolutional neural networks for web-
scale recommender systems. In: ACM SIGKDD’24, pp. 974–
983 (2018). https:// doi. org/ 10. 1145/ 32198 19. 32198 90

 15. Wu, C., Liu, S., Zeng, Z., Chen, M., Alhudhaif, A., Tang, X.Y.,
Alenezi, F., Alnaim, N., Peng, X.C.: Knowledge graph-based
multi-context-aware recommendation algorithm. Inf. Sci. 595,
179–194 (2022). https:// doi. org/ 10. 1016/j. ins. 2022. 02. 054

 16. Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y.,
Chang, J., Jin, D., He, X., Li, Y.: A survey of graph neural
networks for recommender systems: challenges, methods, and
directions. ACM Trans. Web 1(1), 1–51 (2023). https:// doi. org/
10. 1145/ 35680 22

 17. Zhang, Y., Li, C., Cai, J., Liu, Y., Wang, H.: BKGNN-TI: a
bilinear knowledge-aware graph neural network fusing text
information for recommendation. Int. J. Comput. Intell. Syst.
15(1), 95 (2022). https:// doi. org/ 10. 1007/ s44196- 022- 00154-w

 18. Wu, L., Cui, P., Pei, J., Zhao, L.: Graph neural networks.
Springer, Singapore (2022)

 19. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A
comprehensive survey on graph neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 32(1), 4–24 (2020). https:// doi. org/
10. 1109/ TNNLS. 2020. 29783 86

 20. Kipf, T. N., Welling, M.: Semi-supervised classification with
graph convolutional networks (2016). arXiv preprint arXiv:
1609. 02907. https:// doi. org/ 10. 48550/ arXiv. 1609. 02907

 21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,
Bengio, Y. S.: Graph attention networks (2017). arXiv preprint
arXiv: 1710. 10903. https:// doi. org/ 10. 48550/ arXiv. 1710. 10903

 22. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation
learning on large graphs. In: NeurIPS 2017. MIT Press, Oxford
(2017)

 23. Wu, F., Souza, A., Zhang, T. Y, Fifty, C., Yu, T., Weinberger,
K.: Simplifying graph convolutional networks. In: PMLR 2019,
vol. 97, pp. 6861–6871 (2019).

 24. Zeng, D.Y., Liu, W. L., Chen, W.Y, Zhou, L., Zhang, M.L., Qu,
H.: Substructure aware graph neural networks. In: AAAI’2023.
AAAI Press. vol. 37(9), pp. 11129–11137 (2023). https:// doi.
org/ 10. 1609/ aaai. v37i9. 26318

 25. Sriramulu, A., Fourrier, N., Bergmeir, C.: Adaptive dependency
learning graph neural networks. Inf. Sci. 625, 700–714 (2023).
https:// doi. org/ 10. 1016/j. ins. 2022. 12. 086

 26. Peng, L., Hu, R., Kong, F., Gan, J.Z., Mo, Y.J., Shi, X.S., Zhu,
X.F.: Reverse graph learning for graph neural network. IEEE
Trans. Neural Netw. Learn. Syst. (2022). https:// doi. org/ 10.
1109/ TNNLS. 2022. 31610 30

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bioinformatics/bty440
https://doi.org/10.1103/PhysRevE.64.016131
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1007/s00138-021-01251-0
http://arxiv.org/abs/2304.14274
https://doi.org/10.48550/arXiv.2304.14274
https://doi.org/10.1016/j.patcog.2021.108230
https://doi.org/10.1016/j.patcog.2021.108230
https://doi.org/10.3390/s21134514
https://doi.org/10.1007/s44196-023-00329-z
https://doi.org/10.1016/j.eswa.2019.112948
https://doi.org/10.1007/s44196-023-00271-0
https://doi.org/10.1007/s44196-023-00271-0
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1016/j.ins.2022.02.054
https://doi.org/10.1145/3568022
https://doi.org/10.1145/3568022
https://doi.org/10.1007/s44196-022-00154-w
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.48550/arXiv.1609.02907
http://arxiv.org/abs/1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.1609/aaai.v37i9.26318
https://doi.org/10.1609/aaai.v37i9.26318
https://doi.org/10.1016/j.ins.2022.12.086
https://doi.org/10.1109/TNNLS.2022.3161030
https://doi.org/10.1109/TNNLS.2022.3161030

International Journal of Computational Intelligence Systems (2024) 17:41 Page 13 of 13 41

 27. Liu, Z., Yang, D., Wang, Y.J., Lu, M.J., Li, R.R.: EGNN: graph
structure learning based on evolutionary computation helps more
in graph neural networks. Appl. Soft Comput.Comput. 135,
110040 (2023). https:// doi. org/ 10. 1016/j. asoc. 2023. 110040

 28. Zou, M.H., Gan, Z.X., Cao, R.Z., Guan, C., Leng, S.Y.: Similar-
ity-navigated graph neural networks for node classification. Inf.
Sci. 633, 41–69 (2023). https:// doi. org/ 10. 1016/j. ins. 2023. 03. 057

 29. Zhong, Z., Li, C.T., Pang, J.: Hierarchical message-passing graph
neural networks. Data. Min. Knowl. Discov. 37(1), 381–408
(2023). https:// doi. org/ 10. 1007/ s10618- 022- 00890-9

 30. Oskarsson, J., Sidén, P., Lindsten, F.: Temporal graph neural net-
works for irregular data. In: PMLR 2023, pp. 4515–4531 (2023).

 31. Islam, M.I.K., Khanov, M., Akbas, E.: MPool: motif-based graph
pooling. In: PAKDD 2023. Springer Nature, Switzerland, pp.
105–117 (2023). https:// doi. org/ 10. 1007/ 978-3- 031- 33377-4_9

 32. Bo, D.Y., Shi, C., Wang, L.L., Liao, R.J.: Specformer: Spectral
graph neural networks meet transformers. In: ICLR 2023. (2023).
https:// openr eview. net/ forum? id= 0pdSt 3oyJa1

 33. Dudzik, A.J., Veličković, P.: Graph neural networks are dynamic
programmers. In: NeurIPS 2022, vol. 35, pp. 20635–20647
(2022).

 34. Lin, R.J., Du, S.D., Wang, S.P., Guo, W.Z.: Multi-channel aug-
mented graph embedding convolutional network for multi-view
clustering. IEEE Trans. Netw. Sci. Eng. 10(4), 2239–2249 (2023)

 35. Zhu, X.F., Li, C.H., Guo, J.F., Dietze, S.: CNIM-GCN: consen-
sus neighbor interaction-based multi-channel graph convolutional
networks. Expert Syst. Appl. 226, 120178 (2023). https:// doi. org/
10. 1016/j. eswa. 2023. 120178

 36. Zhai, R., Zhang, L.B., Wang, Y.Q., Song, Y.L.: A multi-channel
attention graph convolutional neural network for node classifi-
cation. J. Supercomput.Supercomput. 79(4), 3561–3579 (2023).
https:// doi. org/ 10. 1007/ s11227- 022- 04778-9

 37. Chao, H., Cao, Y.M., Liu, Y.L.: Multi-channel EEG emotion rec-
ognition using Residual Graph Attention Neural Network. Front.
Neurosci.Neurosci. 17, 1135850 (2023). https:// doi. org/ 10. 3389/
fnins. 2023. 11358 50

 38. Li, J.C., Lu, G.G., Wu, Z.T., Ling, F.Q.: Multi-view representation
model based on graph autoencoder. Inf. Sci. 632, 439–453 (2023).
https:// doi. org/ 10. 1016/j. ins. 2023. 02. 092

 39. Xu, K., Li, C., Tian, Y., et al.: Representation learning on graphs
with jumping knowledge networks. In: PMLR 2018, vol. 80, pp.
5453–5462 (2018).

 40. Li, Q., Han, Z., Wu, X. M.: Deeper insights into graph convolu-
tional networks for semi-supervised learning. In: AAAI’2018, pp.
32(1) (2018). https:// doi. org/ 10. 1609/ aaai. v32i1. 11604.

 41. Li, G. H., Xiong, C. X., Thabet, A., Ghanem, B.: Deepergcn: all
you need to train deeper GCNS (2020). arXiv preprint arXiv:
2006. 07739. https:// doi. org/ 10. 48550/ arXiv. 2006. 07739

 42. Rong, Y., Huang, W., Xu, T., Huang, J. Z.: Dropedge: towards
deep graph convolutional networks on node classification (2019).
arXiv preprint arXiv: 1907. 10903. https:// doi. org/ 10. 48550/ arXiv.
1907. 10903

 43. Chen, M., Wei, Z.W., Huang, Z.F., Ding, B.L., Li, Y.L.: Sim-
ple and deep graph convolutional networks. In: PMLR 2020, pp.
1725–1735 (2020).

 44. Gao, Z., Gama, F., Ribeiro, A.: Wide and deep graph neural net-
work with distributed online learning. IEEE Trans. Signal Process.
70, 3862–3877 (2022). https:// doi. org/ 10. 1109/ TSP. 2022. 31926 06

 45. Feng, G.S., Wang, H.Z., Wang, C.N.: Search for deep graph neu-
ral networks. Inf. Sci. (2023). https:// doi. org/ 10. 1016/j. ins. 2023.
119617

 46. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning
of social representations. In: ACM SIGKDD’14, pp. 701–710
(2014). https:// doi. org/ 10. 1145/ 26233 30. 26237 32

 47. Tang J, Qu M, Wang M, et al. Line: large-scale information net-
work embedding. In: WWW’15, pp. 1067–1077 (2015). https://
doi. org/ 10. 1145/ 27362 77. 27410 93

 48. Grover, A., Leskovec, J.: node2vec: scalable feature learning for
networks. In: ACM SIGKDD’16, pp. 855–864 (2016). https:// doi.
org/ 10. 1145/ 29396 72. 29397 54

 49. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations
with global structural information. In: CIKM’15, pp. 891–900
(2015). https:// doi. org/ 10. 1145/ 28064 16. 28065 12

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.asoc.2023.110040
https://doi.org/10.1016/j.ins.2023.03.057
https://doi.org/10.1007/s10618-022-00890-9
https://doi.org/10.1007/978-3-031-33377-4_9
https://openreview.net/forum?id=0pdSt3oyJa1
https://doi.org/10.1016/j.eswa.2023.120178
https://doi.org/10.1016/j.eswa.2023.120178
https://doi.org/10.1007/s11227-022-04778-9
https://doi.org/10.3389/fnins.2023.1135850
https://doi.org/10.3389/fnins.2023.1135850
https://doi.org/10.1016/j.ins.2023.02.092
https://doi.org/10.1609/aaai.v32i1.11604
http://arxiv.org/abs/2006.07739
http://arxiv.org/abs/2006.07739
https://doi.org/10.48550/arXiv.2006.07739
http://arxiv.org/abs/1907.10903
https://doi.org/10.48550/arXiv.1907.10903
https://doi.org/10.48550/arXiv.1907.10903
https://doi.org/10.1109/TSP.2022.3192606
https://doi.org/10.1016/j.ins.2023.119617
https://doi.org/10.1016/j.ins.2023.119617
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2806416.2806512

	DeepMCGCN: Multi-channel Deep Graph Neural Networks
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Main Symbols
	3.2 Graph and Its Representation
	3.3 Node Classification
	3.4 Graph Convolutional Network

	4 4. Proposed Methods
	4.1 Definition
	4.2 Overall Framework
	4.3 Single-Channel Feature Learning
	4.4 Multi-channel Interactive Learning
	4.5 Feature Aggregation
	4.6 Model Training

	5 Experiment and Result Analysis
	5.1 Datasets
	5.2 Baseline Methods
	5.3 Experimental Settings
	5.4 Experimental Results Analysis
	5.5 Ablation Experiment
	5.6 Parameter Analysis
	5.7 Visual Analysis

	6 Conclusion
	References

