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Abstract
Graph neural networks (GNNs) have shown powerful capabilities in modeling and representing graph structural data across 
various graph learning tasks as an emerging deep learning approach. However, most existing GNNs focus on single-relational 
graphs and fail to fully utilize the rich and diverse relational information present in real-world graph data. In addition, 
deeper GNNs tend to suffer from overfitting and oversmoothing issues, leading to degraded model performance. To deeply 
excavate the multi-relational features in graph data and strengthen the modeling and representation abilities of GNNs, this 
paper proposes a multi-channel deep graph convolutional neural network method called DeepMCGCN. It constructs mul-
tiple relational subgraphs and adopts multiple GCN channels to learn the characteristics of different relational subgraphs 
separately. Cross-channel connections are utilized to obtain interactions between different relational subgraphs, which can 
learn node embeddings richer and more discriminative than single-channel GNNs. Meanwhile, it alleviates overfitting issues 
of deep models by optimizing convolution functions and adding residual connections between and within channels. The 
DeepMCGCN method is evaluated on three real-world datasets, and the experimental results show that its node classifica-
tion performance outperforms that of single-channel GCN and other benchmark models, which improves the modeling and 
representation capabilities of the model.

Keywords Deep graph neural networks · Multi-relational graphs · Multi-channel interaction · Channel-level attention 
mechanism

1 Introduction

In the past few years, there has been widespread attention 
and research on graph data as an important type of unstruc-
tured data. Graph data express complex relationships 
between objects through nodes and links between nodes, 
and its topology contains rich connectivity, relevance, and 
global structural information. Numerous crucial data can be 

effectively represented by graphs in the real world, encom-
passing domains like social networks [1], protein–protein 
networks [2], scientific collaboration networks [3], public 
transport networks [4]. The study of graph data has signifi-
cant theoretical significance and wide application value.

The advancement of deep learning methods has simul-
taneously offered fresh perspectives to the field of graph 
data mining. Researchers have harnessed deep learning tech-
niques for analyzing graph data, leading to the development 
of GNNs. GNNs learn graph topology recursively, and can 
extract node structural features and global graph topology 
information features effectively. Based on these features, 
various downstream tasks like node classification [5, 6], 
node clustering [7, 8], link prediction [9–11], knowledge 
graph [12, 13] and recommendation systems [14–17] can 
be performed well.

However, in the current research of graph neural network, 
most of them focus on the design of graph convolution func-
tion and graph convolution framework, without consider-
ing the multi-relationship features between graph data and 
ignoring the influence of different relationship features on 
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node features, and most of them only consider the vertical 
network deepening, while ignoring the width of the network 
in the model design. To address the aforementioned issues, 
a multi-channel deep graph convolutional network (Deep-
MCGCN) is proposed, which forms a wide and deep graph 
neural network model through the interaction of informa-
tion between multiple channels and the deepening of the 
graph convolutional layers. By introducing multi-channel 
graph convolution, we aim to overcome the limitations of 
current methods in capturing diverse information within 
the graph. Firstly, multi-relational features between nodes 
are considered to extract more hidden information from the 
network by constructing multi-relational feature maps. Sec-
ondly, the graph convolutional function is optimized in sin-
gle-relational feature convolution channels to reduce over-
smoothing and over-fitting. Then, residual connections with 
information interactions within and between channels are 
added to deepen the network. And finally, attention mecha-
nism is employed to aggregate different relational features. 
DeepMCGCN addresses limitations in existing GCNs by 
introducing a multi-channel graph convolution mechanism, 
enabling more effective capture of diverse information 
within the graph. This helps to improve the model's abil-
ity to represent graph structures and node features, thereby 
enhancing performance and overcoming some of the limita-
tions of current GCNs.

Briefly, contributions are as follows:

1. A multi-channel deep graph convolutional neural net-
work approach is proposed, called DeepMCGCN for 
short, which is used for the task of semi-supervised node 
classification.

2. Multiple relationship features of the network are utilized 
to construct multiple relationship feature subgraphs in 
order to uncover more hidden information within the 
graph.

3. The graph convolution function and residual connec-
tions within and between channels are optimized and 
introduced to alleviate over-smoothing and overfitting 
issues. Finally, a channel-level attention mechanism is 
applied to integrate the learned node feature information 
from each channel.

The rest of this paper is organized as follows. Section 2 
summarizes the related work. Section 3 introduces the basic 
concepts of graph and some preparatory knowledge. Sec-
tion 4 introduces multi-channel deep graph convolutional 
neural network method. Section 5 presents the experimental 
results. Finally, we conclude this paper in Sect. 6.

2  Related Work

GNNs [18, 19] are specialized neural network archi-
tectures tailored for learning graph data. Their primary 
objective is to iteratively enhance node representations 
by amalgamating information from neighboring nodes 
as well as from the preceding layer [20–23]. Zeng et al. 
[24] proposed the concept of Cut subgraphs and extend 
the encoding paradigm of random walk to the probabili-
ties of returning to the root node of the subgraph. This 
strategy is employed to capture structure information as 
node features, consequently bolstering the expressiveness 
of GNNs. Sriramulu et al. [25] introduced a novel hybrid 
approach that combines neural networks and statistical 
structure learning. This approach is designed to learn the 
relationships between multiple variables in data and create 
dynamic dependency graphs. The integration of statisti-
cal structure modeling and neural networks can effectively 
identify causal relationships in time series. Peng et al. [26] 
improved feature learning by learning graph structures in 
the intrinsic space of raw data points, proposing a reverse 
graph learning method for GNNs. Liu et al. [27] proposed 
an evolutionary GNN (EGNN) approach that uses evolu-
tionary algorithms to optimize GNN parameters and per-
forms mutation by estimating different graph structures. 
Zou et al. [28] designed an explicit selection strategy that 
aggregates only similar neighbors instead of all weighted 
ones. A threshold is introduced to select aggregated neigh-
bors for mean aggregation. Zhong et al. [29] constructed a 
hierarchy in graphs by dividing nodes into different levels 
of super-nodes and performed top-down message passing 
and aggregation via ensembles. The paper also proposed 
an attention mechanism to adaptively learn contribution 
weights at various levels, thereby enhancing the signifi-
cance of multi-level messages. A time-series-based GNN 
is proposed by Oskarsson et al. [30] to handle irregular 
time steps and partially observed graphs. This model uti-
lizes continuous time to define latent states and can make 
predictions at arbitrary future time points. Islam et al. [31] 
introduced a pattern-based graph pooling method called 
MPool, which combines the advantages of selective pool-
ing and clustering pooling, allowing for the simultane-
ous capture of both local and global graph structures. 
In the selective pooling model, a node ranking model is 
designed based on pattern relationships among nodes, 
and the top-ranked nodes are selected to create the next 
layer of the pooling graph. Bo et al. [32] introduced an 
effective method that encodes all feature values and per-
forms self-attention in the spectral domain, thus achiev-
ing learnable set-to-set spectral filters. Additionally, Spec-
former designed a decoder with learnable basis functions 
to enable non-local graph convolution. Dudzik et al. [33] 
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proposed integral transforms as an abstract object capable 
of capturing both the message-passing/aggregation stage 
of GNNs and the scoring/recombination stage of dynamic 
programming (DP). By selecting the appropriate sup-
port set and latent space, the update rules of GNNs and 
dynamic programming algorithms can be described as an 
integral transform.

To handle more complex graph data, multi-channel graph 
neural networks have emerged. The core idea of multi-chan-
nel graph neural networks is to utilize multiple channels (or 
views) to capture different aspects of information within a 
graph. Lin et al. [34] proposed a multi-view clustering model 
with deep augmentation and fusion to learn more coincident 
graphs, which comprises three core modules, that is, the 
View Enhancement, Feature Fusion and Graph Embedding 
Modules. The View Enhancement Module utilizes a Gen-
erative Adversarial Network (GAN) to generate enhanced 
affinity graphs, enabling a more comprehensive exploration 
of feature information. A meticulously crafted deep fusion 
network can substantially bolster the complementarity of 
each view utilizing the enhanced graph as a foundation. 
The iterative processing of the fused graph through feature 
extraction and reconstruction layers yields a uniform latent 
representation well-suited for clustering. Zhu et al. [35] 
introduced a graph convolutional network method called 
CNIM-GCN for node classification tasks. This method inte-
grates topological and feature graphs and maintains shared 
information between them through modeling a consistency 
graph explicitly. Zhai et al. [36] proposed a multi-channel 
Attention GCN and employed it to node classification tasks. 
The model efficiently learns the mutual information between 
node features and network topology by fusing them. The 
difference between first-order and second-order neighbors 
is captured by signals with different frequencies in order 
to reduce the occurrence of over-smoothing. Chao et al. 
[37] presented a residual GAT-based emotion recognition 
method, which relies on a residual network to extract spatial 
location information from electrode channels and the corre-
lation information among adjacent brain regions. It employs 
a GAT to acquire knowledge about neural functional con-
nections among various brain regions. Li et al. [38] compre-
hensively learned graph representation from three aspects, 
which are local and global topology information and feature 
information, and utilized attention mechanism to fuse infor-
mation, and then proposed a multi-view unsupervised graph 
representation learning, called MVGAE for short.

With the advancement of GNNs, researchers have found 
that graph convolutional networks (GCNs) often achieve 
optimal performance using two convolutional layers, while 
deeper models with more convolutional layers tend to 
underperform. To investigate this issue, deep graph neural 
networks (DeepGCNs) have emerged. Numerous experi-
ments show that as the number of graph convolutional 

layers increases, graph models may suffer from overfitting 
and oversmoothing, which are the main causes of perfor-
mance degradation. Overfitting refers to good performance 
on training data but decreased performance on test data, 
harming generalization on small datasets. Over-smoothing 
means node features become increasingly similar after 
multiple graph convolution operations, making it difficult 
for the model to distinguish different nodes. To tackle 
these concerns, researchers have proposed various opti-
mization methods for deep GNNs. A jumping knowledge 
(JK) network model was proposed to leverage informa-
tion from different receptive field sizes, thereby improv-
ing the learned representations [39]. Li et al. [40] argued 
that graph convolutions in GCNs fundamentally amount 
to a type of Laplacian smoothing, may causing over-
smoothing. They proposed joint training and self-training 
to address the shortcomings of shallow GCNs, showing 
significant improvements with little labeled data. Li et al. 
[41] proposed DeeperGCN for training deep GCNs, incor-
porating jumping connections, specialized normalization, 
residual connections, and improved weight initialization 
to address vanishing gradients. Experiments show Deep-
erGCN can effectively train deep GCNs and achieve better 
performance and faster training on many tasks. DropEdge 
[42] was proposed to mitigate overfitting and over-smooth-
ing, which randomly removed a portion of edges from the 
input data with all training epochs, serving as both a data 
augmentation technique and a means to reduce message 
passing. They proved DropEdge reduces over-smoothing 
theoretically. Chen et al. [43] proposed GCNII, which 
incorporates initial residual and identity mapping to alle-
viate the issue of oversmoothing. GCNII builds jumping 
connections from the input layer with initial residuals and 
adds identity matrices in the weight matrices. Experi-
ments show these simple techniques effectively prevent 
over-smoothing and consistently improve performance 
when increasing depth. Gao et al. [44] introduced a novel 
deep GNN framework called WD-GNN. It is composed by 
wide and deep components, which are linear graph filters 
and non-linear graph neural networks, respectively. During 
the training process, the architecture jointly learns non-
linear representations from the data. During the testing 
process, the wide part undergoes online retraining while 
the deep part remains fixed. Feng et al. [45] proposed a 
GNN generation process for autonomously creating high-
performance deep graph neural network models. In con-
trast to existing manually designed and neural architecture 
search (NAS)-based GNN models, this approach alleviates 
the oversmoothing problem by introducing various flexible 
residual connections and initial residual connections. It 
also applies a two-stage search strategy within the search 
space to explore diversity and depth in GNN architectures.
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3  Preliminaries

3.1  Main Symbols

See Table 1.

3.2  Graph and Its Representation

Suppose G = (A,X) is an undirected simple graph with n 
nodes, where A ∈ ℝ

n×n is adjacency matrix, if Aij = 1 , it 
indicates that node i is adjacent to node j, and if Aij = 0 , 
it indicates that that node i is not adjacent to node j. 
X ∈ ℝ

n×d is the node feature matrix, and d is the feature 
dimension. The degree of node i is the number of edges 
associated with node i, D is the diagonal degree matrix, L 
is the Laplacian matrix, L = D − A.

The Laplacian matrix of a graph has a close relationship 
with its underlying structure. It provides information about 
the graph's topology and connectivity. The eigenvalues 
and eigenvectors of the Laplacian matrix contain spectral 
information about the graph. The Laplacian matrix serves 
as the basis for graph convolution operations. In graph 
convolutional networks (GCN), the convolution operation 
commonly used relies on the multiplication between the 
Laplacian matrix and the node feature representation. The 
eigenvectors of the Laplacian matrix can be regarded as 
the representation of graph nodes in the spectral domain. 
By multiplying them with the node features, we can per-
form smoothing operations or other transformations on 
the node features in the frequency domain. The eigenvalue 
decomposition and Laplacian matrix provide mathematical 
tools and theoretical foundations for modeling and analyz-
ing the structure and topology of graphs in graph neural 
networks.

3.3  Node Classification

The main research focus of this paper is the application of 
graph neural networks (GNNs) in the task of node classifica-
tion. GNNs are deep learning models based on graph struc-
tures, capable of classifying and predicting the labels of nodes. 
In the node classification task, the objective is to learn the fea-
ture representations of each node using GNNs and assign them 
to pre-defined categories. GNNs are able to capture complex 
relationships and contextual information between nodes by 
taking into account the relationships and local neighborhood 
information among nodes. GNNs employ graph convolution 
operations to progressively aggregate and update node repre-
sentations, enabling richer information to be incorporated into 
the node features.

Given a set of nodes 
{

v1, v2,… , vn
}

⊂ V , the correspond-
ing label categories of them are 

{

l1, l2,… , ld
}

⊂ Labels , and 
then the node classification is to learn the node representation, 
thereby obtaining the following mapping: f ∶ V → Labels.

3.4  Graph Convolutional Network

The graph convolutional neural network in the spectral 
domain mainly uses the graph spectral theory to design 
the convolution operation, which defines the convolution 
operation by computing the eigenvalue decomposition 
of the Laplacian matrix and using the Fourier transform. 
Given a graph signal x ∈ ℝ

N , the graph Fourier transform 
is performed on the graph signal in the spatial domain, the 
obtained graph Fourier coefficients are modulated, and then 
the graph signal is reconstructed in the spatial domain, that 
is

where g� = diag(�) is the convolution kernel, � ∈ ℝ
N is the 

parameter need to learn, U is the matrix consisting of the 
eigenvectors of the normalized Laplacian matrix, that is

where L is the normalized graph Laplacian matrix, A is the 
adjacency matrix, D is the degree matrix, and Λ is the diago-
nal matrix of eigenvalues.

Using k-order truncated Chebyshev polynomials Tk(x) to 
approximate g�(Λ) , we have

where L̃ =
2

𝜆max

L − I , �max is the maximum eigenvalue of the 
normalized graph Laplacian matrix L , and � ∈ ℝ

k is the 
parameter vector consisting of the Chebyshev polynomial 
coefficients.

(1)g� ⋅ x = Ug�(Λ)U
Tx,

(2)L = I − D
−

1

2AD
−

1

2 = UΛUT ,

(3)g𝜃 ⋅ x ≈

K
∑

k=0

𝜃kTk
(

L̃
)

x,

Table 1  Main symbols

G Graph G
G̃ Graph with self-looped
A Adjacency matrix
X Characteristic matrix
U The matrix consisting of the eigenvectors of 

the normalized Laplacian matrix
L The normalized graph Laplacian matrix
D The diagonal degree matrix
c The number of Channel
l The number of graph convolution layers
A
o

Optimized adjacency matrix
H(c,l) Characterization of lth layer of the cth channel
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Let the order of the Chebyshev polynomial K  equal to 
1 and the maximum eigenvalue approximate to 2, we have

where �′
0
, �′

1
 are the adjustable parameters. Let ��

0
= ��

1
= −�� , 

we have

The renormalization operation is performed on 
IN + D

−
1

2AD
−

1

2 , that is IN + D
−

1

2AD
−

1

2 → D̃
−

1

2 ÃD̃
−

1

2 and 
Ã = A + IN , D̃ii =

∑

j Ãij , therefore, the final graph convo-
lution operation is

where X ∈ ℝ
N×C is the node representation before perform-

ing graph convolution, Θ ∈ ℝ
C×F is the convolution kernel 

parameter matrix, Z ∈ ℝ
N×C is the node representation after 

performing graph convolution, C is the number of channels, 
and F is the number of convolution kernels.

The ith and jth term of D̃−
1

2 ÃD̃
−

1

2 is not 0 only when 
node i and node j are connected. And for a single node, 
this process can be seen as aggregating information about 
its 1-hop neighbors, whose nodes themselves are consid-
ered 1-hop neighbors.

In order to get better results, the number of layers of 
neural networks becomes more and more. However, with 
the network model deepening, problems such as over-
fitting, gradient disappearance and gradient explosion 
will occur. The appearance of these problems not only 
does not improve expressiveness of the model, but also 
reduces the effectiveness of the model. To solve the above 
problems, residual connectivity is proposed and applied 
to graph neural networks. Graph data possess complex 
structures and topological relationships, typically consist-
ing of a large number of nodes and edges. In the stacked 
structure of GNNs, the propagation of information and 
gradients can be constrained by local propagation, lead-
ing to information loss or gradient decay. The introduc-
tion of residual connections in GNNs helps facilitate the 
better propagation of information and gradients within 
the network, thereby improving the performance of graph 
neural networks.

The general form of ResGCN is

where F    is the graph convolution operation, Hl is the hid-
den state matrix of the lth layer, and Wl is the parameter 
matrix of the lth layer.

(4)g� ⋅ x ≈ ��
0
x + ��

1

(

L − IN
)

x = ��
0
x − ��

1
D

−
1

2AD
−

1

2 x,

(5)g� ⋅ x ≈ �

(

IN + D
−

1

2AD
−

1

2

)

x.

(6)Z = D̃
−

1

2 ÃD̃
−

1

2XΘ,

(7)Hl+1
ReS

= Hl+1 + Hl = F
(

Hl,Wl
)

+ Hl,

4  4. Proposed Methods

4.1  Definition

To more comprehensively capture features in graph data, 
a multi-channel graph neural network allows for greater 
flexibility in learning and representing various aspects of 
information within the graph. This enhances the model's 
capability to model complex relationships by introducing 
multiple channels to learn different facets of the data.

Due each relationship, subgraph is corresponded to a 
channel in this article. Suppose c is the index of the chan-
nel, and the channel input for a graph is Gc = (Xc,Ac) . 
For a given channel, it contains multiple layers and each 
layer contains two operations: graph convolution and node 
feature learning. Suppose l is the number of layers, the lth 
layer of the cth channel is denoted as Gc =

(

X(c,l),A(c,l)
)

.

4.2  Overall Framework

The framework diagram of DeepMCGCN is presented in 
Fig. 1.

The framework primarily comprises three components, 
the relational network construction module, the graph 
convolution module and the feature aggregation module, 
respectively. In the relational network construction mod-
ule, the main purpose is to construct a relational network 
for each channel. Three kinds of relational networks are 
constructed, where relational network 1 is built on the 
basis of the citation relationship between nodes, that is, 
the paper is regarded as a node, and if there is a citation 
relationship between papers, the two nodes are connected, 
relational network2 is constructed based on the word co-
occurrence relationship of node text, that is, if the title of 
the paper is treated as a node and the same word appears in 
the title of the paper, then there is a link between the two 
nodes, and relationship network3 is a hybrid relationship 
network between relationship network1 and relationship 
network2, whose adjacency matrix is formed by summing 
the elements of the adjacency matrices from relationship 
network1 and relationship network2, and the non-zero 
elements are set to 1. By constructing different channel 
networks, we can capture relationship information of 
different levels and types, enabling a more comprehen-
sive understanding and analysis of graph data. It helps to 
uncover complex associations between nodes. In the graph 
convolution module, a single-channel deep graph convolu-
tion module and a convolution module for inter-channel 
information interaction are designed. Graph convolutional 
modules are used to extract node features from each dif-
ferent relationship network. The feature aggregation 
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module mainly includes the attention fusion and node 
feature aggregation modules. Attention Fusion is used to 
emphasize important information through the utilization 
of attention mechanisms for feature fusion. Node feature 
aggregation, on the other hand, aims to aggregate features 
from different channels to obtain the final representation 
of node features. The introduction of multi-channel graph 
convolution allows DeepMCGCN to simultaneously utilize 
information captured by different channels, providing a 
more comprehensive understanding of graph structures. 
This contributes to improved modeling of complex rela-
tionships and node features, thereby enhancing the model's 
performance.

4.3  Single‑Channel Feature Learning

In the single-channel node learning process, the classical GCN 
graph convolution process is optimized, that is, optimizing 
the matrix Ã so that the information of its own nodes can be 
aggregated several times for different nodes and graph struc-
tures during the process of updating its own node information 
by convolution operation. Therefore, let

where D is the degree matrix, Dii =
∑

j Aij , A is adjacency 
matrix, and � is the adjustable parameter. Replacing Ã in the 
above equation with Ao , we have

where D̃oii =
∑

j Ãoii.

(8)Ão = Ã + 𝜃D,

(9)Z = D̃
−

1

2

o ÃoD̃
−

1

2

o XΘ,

For the cth-channel and lth-layer input Gc =
(

X(c,l),A(c,l)
)

 , 
the feature learning process is

where H(c,l+1) is feature representation of the l + 1th layer of 
the cth channel.

4.4  Multi‑channel Interactive Learning

In the feature learning of multiple channels, the information 
feature interactions between channels are designed by consid-
ering different node features in different relational networks. 
The node features learned at layer l in the first channel are 
added to the node features learned at layer l in the second 
channel as part of the input at layer l + 1 of the second channel, 
and then the residual connection is added to form a residual 
connection with information interaction between channels. 
The second channel is the same as above. Specially, the third 
channel is a mixed information channel, where the node fea-
tures of the first two channels in the l layer are added to the 
node features of the third channel as the input of the l + 1 layer 
of the third channel during the learning process.

For the cth-channel and lth-layer input Gc =
(

X(c,l),A(c,l)
)

 , 
the feature learning process between channels is as follows:

(10)H(c,l+1) = 𝜎

(

D̃
(c,l)−

1

2

o Ã(c,l)
o

D̃
(c,l)−

1

2

o W (c,l)

)

.

(11)H(1,l+1) = F
�
([

H(1,l) + H(2,l)
]

⋅Wl
)

+ H(1,l),

(12)H(2,l+1) = F
�
([

H(1,l) + H(2,l)
]

⋅Wl
)

+ H(2,l),

Fig. 1  Schematic description of DeepMCGCN framework
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where F′ is the graph convolution operation defined in this 
article, and Wl is the parameter matrix can be learned.

4.5  Feature Aggregation

Considering that different features in different relational 
feature networks have different effects on nodes, a chan-
nel-level attention mechanism is employed to combine 
different relational features to account for the varying 
importance of distinct node features, and the aggregation 
function is defined by this attention mechanism. Spe-
cifically, the node feature input Xv ∈ ℝ

d performs linear 
transformation, and the importance coefficients of the 
node features are converted into the correlation between 
the attention vector and the node feature matrix after lin-
ear transformation:

where W ∈ ℝ
da×d is the weighting parameter, b ∈ ℝ

da is the 
bias, and ReLU is a activation function. The normalization 
process of tv is performed to obtain the final attention coef-
ficients, that is

where �v is the attention coefficient. Therefore, the different 
node features are aggregated as:

where H(l)

ATT
 is the network representation after aggregating 

different relational features.
In order to get the final node representations of the 

three channels, H(l)

ATT
 and the feature H(3,l) which is learned 

after the third channel are fused by the concatenation 
operation, that is

where Hl
final

 is the network representation after concatenating 
H

(l)

ATT
 and H(3,l) , and it is the input of the final fully connected 

layer.

(13)H(3,l+1) = F
�
([

H(1,l) + H(2,l) + H(3,l)
]

⋅Wl
)

+ H(3,l),

(14)tv = aT ⋅ ReLU(W ⋅ Xv+b),

(15)�v =
exp(tv)

∑

v∈V exp(tv)
,

(16)H
(l)

ATT
= �v ⋅ H

(1,l) + �v ⋅ H
(2,l),

(17)Hl
final

= concat
(

Hl
ATT

,H(3,l)
)

.

4.6  Model Training

When the model is trained, the obtained final node embed-
ding is used as inputs for the node classification task, start-
ing with a fully connected layer and a softmax activation 
function:

where node labels are assumed to have class C , Θ� ∈ ℝ
dm×C 

is the dimension reduction transformation matrix, P ∈ ℝ
N×C 

is the final probability matrix.
And then, the model is trained by computing the cross-

entropy between the actual minimum value and the predicted 
value, that is

where VL is the set of labeled nodes, Yv is the one-hot vec-
tor indicates the ground-truth labels of nodes, Pv is the true 
value of the node.

5  Experiment and Result Analysis

5.1  Datasets

All experiments were carried out on three publicly avail-
able citation network datasets, that is, Citeseer (M10), 
DBLP (V4), and SDBLP. In each experiment, the effective-
ness of the proposed method was demonstrated by compar-
ing it with baseline methods. Detailed description of these 
three datasets is provided in Table 2. These datasets were 
chosen because they are widely used for evaluating graph 
classification and node classification tasks. Specifically, Cit-
eseer involves academic paper citation relationships, DBLP 
includes relationships among academic papers and authors, 
and SDBLP contains more granular information. The selec-
tion aims to provide diversity and challenges for a more 
comprehensive evaluation of DeepMCGCN's performance.

Each dataset is partitioned into semantic relationship 
networks and structural relationship networks based on the 
type of relationship in Table 1. In the semantic network, the 
relationships between nodes are constructed based on word 
co-occurrence, meaning that if the same word appears in the 

(18)P = softmax
(

Hl
final

Θ�
)

,

(19)LOSS = −
∑

v∈VL

C
∑

c=1

Yv[c] ⋅ ln(Pv[c]),

Table 2  Description of dataset 
attributes

Dataset CiteSeer DBLP SDBLP

Structure Semantics Structure Semantics Structure Semantics

Node 4610 4610 17,725 17,725 3119 3119
Edge 5923 819,346 105,781 1,253,600 39,516 439,182
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titles of two papers, there is a connection between the cor-
responding nodes. In the structural network, the connections 
between nodes are determined based on the citation relation-
ships between different papers. To validate the feasibility 
in a dense network, a high average degree network called 
SDBLP is constructed based on DBLP (V4). In the SDBLP 
network, nodes with less than 3 citations are deleted, mean-
ing nodes with a degree less than 3 are removed.

5.2  Baseline Methods

We categorize the baseline methods into two groups. The 
first group consists of traditional network representation 
learning methods like DeepWalk [46], LINE [47], Node-
2Vec [48] and GraRep [49]. These methods described above 
are traditional network representation learning methods 
that have been widely adopted and studied in the literature. 
These methods have shown competitive performance and 
have been benchmarked on various network analysis tasks. 
The second group consists of graph neural network methods, 
including GCN [20], GAT [21] and GCNII [43]. Compari-
son with these methods allows for a better understanding of 
the advantages of different methods in the context of specific 
network analysis tasks.

5.3  Experimental Settings

We evaluate our proposed algorithm against baseline meth-
ods on the node classification task. The DeepMCGCN 
framework is implemented in Python and TensorFlow, and 
experiments are conducted on an NVIDIA 3060 platform 
(GPU:12G, CPU:16G). The GNN parameters are initialized 
using the Xavier initialization method and optimized with 
the Adam optimizer. Xavier initialization is a technique for 
initializing the weights of neural network layers. It aims to 
keep the variance of the activations and gradients relatively 

constant across layers during forward and backward propa-
gation. The idea behind this initialization is to prevent the 
gradients from vanishing or exploding, which can hinder 
the training process. Adam (Adaptive Moment Estimation) 
is an optimization algorithm that combines the ideas of both 
momentum optimization and adaptive learning rates. It is 
one of the most widely used optimization algorithms for 
training deep neural networks. The logistic regression clas-
sifier is trained for 200 iterations to ensure convergence. To 
validate the generalization ability, we set the training set 
proportions to 0.2, 0.4, 0.6, and 0.8, using the remaining 
nodes as the test set. Additionally, the hyper-parameters are 
set as: Hidden size is 128, Learning rate is 0.005, Dropout 
rate is 0.1, Degree Matrix coefficient is 0.5.

5.4  Experimental Results Analysis

The paper utilizes three real citation network datasets, 
namely Citeseer, DBLP, and SDBLP, as evaluation data-
sets. Different training set proportions, specifically 0.2, 0.4, 
0.6, and 0.8, were extracted from each dataset as training 
sets, with the remaining data serving as the test set. The 
node classification accuracy of both baseline methods and 
the proposed algorithm on these three datasets at various 
training set proportions is provided in Table 3. Accuracy 
(ACC) is employed as the metric to assess the effectiveness 
of the models in classifying nodes, and the experimental 
results are the averages of 10 repetitions.

As shown in Table 3, DeepMCGCN achieves average 
ACC values of 0.89865, 0.8415, and 0.8802 across four 
different training proportions on the Citeseer, DBLP, and 
SDBLP datasets, respectively. At an 80% training propor-
tion, compared to the best performing baseline methods 
on the Cora, DBLP and SDBLP datasets, DeepMCGCN 
exhibits improvements of 6.64%, 2.09% and 3.34%, respec-
tively. Therefore, it can be observed that the proposed 

Table 3  Accuracy of node 
classification on Citeseer, 
DBLP, and SDBLP

Dataset Training 
rate (%)

Deepwalk LINE Node2Vec GraRep GCN GAT GCNII Deep MCGCN

Citeseer 20 0.5930 0.4706 0.6561 0.5309 0.7738 0.8148 0.8109 0.8867
40 0.6148 0.4957 0.6707 0.5975 0.7875 0.8299 0.8213 0.8924
60 0.6230 0.5102 0.6715 0.6105 0.8026 0.8429 0.8315 0.9019
80 0.6233 0.5307 0.6807 0.6209 0.8069 0.8472 0.8457 0.9136

DBLP 20 0.6434 0.6653 0.7398 0.6590 0.8010 0.8237 0.8152 0.8366
40 0.6598 0.6787 0.7561 0.6792 0.8018 0.8240 0.8118 0.8412
60 0.6618 0.6830 0.7585 0.6888 0.8051 0.8229 0.8138 0.8438
80 0.6703 0.6889 0.7573 0.6956 0.8029 0.8235 0.8087 0.8444

SDBLP 20 0.8065 0.7701 0.8287 0.8252 0.8146 0.8194 0.8272 0.8722
40 0.8149 0.7828 0.8451 0.8378 0.8211 0.8202 0.8326 0.8806
60 0.8235 0.7897 0.8401 0.8417 0.8156 0.8154 0.8243 0.8819
80 0.8271 0.7882 0.8473 0.8527 0.8217 0.8228 0.8313 0.8861
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DeepMCGCN method outperforms the seven baseline meth-
ods mentioned above across the four training proportions on 
all three datasets. It not only achieves favorable results on 
sparse datasets but also surpasses other methods on dense 
datasets, thus demonstrating the feasibility of the proposed 
DeepMCGCN. Comparisons with other graph neural net-
works demonstrate that DeepMCGCN exhibits good scal-
ability in handling large-scale graph data. Its multi-channel 
design enables more effective processing of complex graph 
structures.

To visually demonstrate the effectiveness of the Deep-
MCGCN method, this paper presents a graph illustrating 
the node classification performance of DeepMCGCN with 
respect to increasing network depth and training ratio. The 
specific results are shown in Fig. 2.

As shown in Fig. 2, the heatmaps depict the changes in 
ACC values for the Citeseer, DBLP, and SDBLP datasets 
with respect to network depth and training rate. Lighter 
colors indicate better model performance. From the figure, 
it is evident that the ACC of the DeepMCGCN method 
increases as the network depth and training ratio increase 
in all three datasets. The highest ACC is achieved when the 
network depth is 16 layers and the training ratio is 80%.

5.5  Ablation Experiment

Ablation experiments are conducted to evaluate its perfor-
mance on different datasets in order to validate the effective-
ness of the DeepMCGCN method. These ablation experi-
ments were designed to systematically remove or modify 
components of the DeepMCGCN method, allowing for an 
understanding of their contributions to the overall perfor-
mance. By conducting these ablation experiments on these 
datasets, a more comprehensive evaluation of the DeepM-
CGCN method's effectiveness and its adaptability in differ-
ent scenarios can be obtained.

As shown in Table 4, SingleCGCN represents a single-
channel graph neural network model, while MultiCGCN 
denotes a multi-channel graph neural network model with 
residual connections within channels but no inter-channel 
interactions. Observing Table 3, it can be noted that on the 
Citeseer, DBLP, and SDBLP datasets, the SingleCGCN 
model's performance rapidly deteriorates with an increase 
in the number of network layers. For instance, at 16 layers, 
the ACC values are 0.18467, 0.3293, and 0.26475, respec-
tively. On the other hand, the MultiCGCN model exhibits 
improved performance as the number of network layers 
increases up to 4 layers. Subsequently, its performance 
begins to decline with further layer increments, but it still 
achieves ACC values of 0.87329, 0.79646, and 0.82807 on 
the Citeseer, DBLP, and SDBLP datasets, respectively, even 
at 16 layers. This demonstrates that the multi-channel graph 
neural network model with residual connections effectively 
alleviates overfitting and oversmoothing phenomena. The 
DeepMCGCN model consistently shows an upward trend in 
performance with an increase in the number of network lay-
ers, providing evidence of the effectiveness of the approach 
presented in this paper. Although DeepMCGCN achieves 

(a) Citeseer           (b) DBLP         (c) SDBLP

Fig. 2  Heat map of ACC values with network depth and training rate on three datasets

Table 4  Accuracy of node classification for different network layers

Dataset Method Lays

2 4 8 16

Citeseer SingleCGCN 0.879 0.64866 0.32299 0.18467
MultiCGCN 0.88158 0.89068 0.88137 0.87329
DeepMCGCN 0.88425 0.89941 0.9006 0.9136

DBLP SingleCGCN 0.79546 0.62969 0.4393 0.3293
MultiCGCN 0.80449 0.81086 0.80133 0.79646
DeepMCGCN 0.8135 0.81632 0.83175 0.8438

SDBLP SingleCGCN 0.84926 0.68476 0.42614 0.26475
MultiCGCN 0.84548 0.84657 0.83460 0.82807
DeepMCGCN 0.8492 0.8506 0.864 0.8819
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better performance, it has higher complexity compared to 
single-channel GNNs methods and requires high-perfor-
mance equipment and environment during training.

5.6  Parameter Analysis

An analysis of the experiment's parameters is conducted 
to assess the impact of parameter changes on the model's 
node classification performance during the experiments. 
The primary parameters in the experiments include hidden 
layer embedding dimensions, learning rate, dropout rate, and 
the coefficient of the degree matrix in graph convolution 
calculations. The dimensionality of hidden layer embed-
dings determines the model's complexity and expressive 
power. Increasing the number of layers in the hidden layers 
enhances the model's depth, allowing it to better capture 
the intricate features of graph data. However, the choice 
of the number of hidden layers requires a delicate balance. 
Too many layers may lead to overfitting, where the model 
performs well on the training set but poorly on the test set. 
Therefore, selecting the number of hidden layers should 
take into account the dataset's scale, complexity, and avail-
able computational resources. The learning rate governs 
the magnitude of each parameter update, playing a crucial 
role in model training. Optimal learning rate selection is 
vital; if too high, it may cause parameters to diverge dur-
ing training, preventing model convergence. Conversely, 
if too low, the training speed slows down, requiring more 
iterations to achieve satisfactory performance. The Dropout 
rate, a widely used regularization technique, reduces over-
fitting by randomly dropping a portion of neuron outputs 
during training. The dropout rate determines the probability 
of retaining each neuron's output. Selecting an appropriate 
dropout rate helps balance model complexity and generali-
zation. Higher dropout rates may enhance model robustness 
but could potentially compromise fitting capabilities. The 
coefficient of the degree matrix is a parameter introduced 
in this paper for optimizing graph convolution. The selec-
tion of these hyperparameters is an empirical process, typi-
cally involving multiple experiments and cross-validation to 
determine the optimal values.

The chart in Fig. 3 illustrates how these four parameters 
impact the experimental results on the Cora dataset.

Observing Fig. 3, it is evident that, concerning three 
parameters: Hidden layer embedding dimensions, Learning 
rate and the Coefficient of the degree matrix in graph con-
volution during computation—increasing these parameters 
has a relatively minimal impact on the number of layers. 
The model performance consistently reaches its peak at 16 
layers for all three parameters. However, in the case of the 
Dropout rate, the influence of parameter variations on the 
number of layers is less stable, yet the highest performance 
is still attained at 16 layers.

From Fig. 3, it can be deduced that when the hidden 
layer embedding dimension is equal to 128, the Dropout 
rate is 0.5, the learning rate is 0.05, and the coefficient of 
the degree matrix during graph convolution is 0.5, the model 
achieves its optimal performance.

5.7  Visual Analysis

To better assess the effectiveness of the proposed method, 
the t-SNE algorithm is utilized in this study for dimensional-
ity reduction and clustering comparison. The primary pur-
pose of visualization is to observe whether the final node 
representations exhibit clustering phenomena. The more 
prominent the clustering phenomena, the better the per-
formance of the model. In this study, the clustering of the 
results of the DeepMCGCN model on the Citeseer dataset 
with 2, 4, 8, and 16 layers is shown in Fig. 4.

Upon observing Fig. 4, it becomes evident that as the 
number of convolutional layers increases, the clustering 
effect of the DeepMCGCN model becomes more pro-
nounced. At 16 layers, it is distinctly observable that nodes 
of the same color cluster closely together, and the clus-
tering of different colors becomes more pronounced with 
well-defined boundaries. This visualization experiment also 
provides evidence that the method proposed in this paper 
improves model performance.

6  Conclusion

The paper proposes a multi-channel deep graph convolu-
tional neural network model DeepMCGCN to deeply exca-
vate the multi-relational features in graph data by deepening 
and widening the network architecture for more compre-
hensive and multi-perspective graph representation learn-
ing. Specifically, it constructs multiple relational subgraphs 
with each channel focusing on learning one type of relational 
subgraph features to capture different relationships. Cross-
channel connections are introduced to learn the mutual 
information between different relational subgraphs. Convo-
lution functions are optimized and residual connections are 
added within and between channels to alleviate overfitting 
and over-smoothing issues. Finally, a channel-wise attention 
mechanism is employed to aggregate node representation 
from each channel. Experiments on three actual datasets 
illustrate that DeepMCGCN adeptly captures intricate node 
relationships and bolsters the model's representation prow-
ess. The research in this paper focuses on DeepMCGCN, 
a supervised graph neural network model that requires a 
large amount of data annotation, which hinders its practi-
cal application. Additionally, the model only handles initial 
graph data from a single modality. In future research, more 
attention will be devoted to self-supervised multi-channel 
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(a) (b)

(c) (d)

Fig. 3  Effect of parameters on experimental results on the Cora dataset

Fig. 4  Visualization of layers 2, 4, 8 and 16 on Citeseer dataset
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graph neural network methods and their integration with 
multimodal studies to enhance the applicability of graph 
neural network models in real-world scenarios.
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