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Abstract
Music plays a vital role in human culture and society, serving as a universal form of expression. However, accurately clas-
sifying music emotions remains challenging due to the intricate nature of emotional expressions in music and the integration 
of diverse data sources. To address these challenges, we propose the Multilayered Music Decomposition and Multimodal 
Integration Interaction (MMD-MII) model. This model employs cross-processing to facilitate interaction between audio and 
lyrics, ensuring coherence in emotional representation. Additionally, we introduce a hierarchical framework based on the 
music theory, focusing on the main and chorus sections, with the chorus processed separately to extract precise emotional 
representations. Experimental results on the DEAM and FMA datasets demonstrate the effectiveness of the MMD-MII model, 
achieving accuracies of 49.68% and 49.54% respectively. Compared with the existing methods, our model outperforms in 
accuracy and F1 scores, offering promising implications for music recommendation systems, healthcare, psychology, and 
advertising, where accurate emotional analysis is essential.

Keywords  Multimodal · Music emotion classification · Emotion analysis · Music structure analysis · Deep learning · Music 
feature extraction

1  Introduction

Music holds a profound significance in human culture 
and life, exerting a profound influence on a global scale. 
Spanning from classical melodies to contemporary pop 
beats, and from traditional folk tunes to cutting-edge 
electronic compositions, music embodies a vast spec-
trum of styles, serving as a powerful medium for inspi-
ration and emotional expression [1]. Beyond its artistic 

essence, music serves as a multifaceted tool for entertain-
ment, social cohesion, cultural preservation, and psycho-
logical well-being. In recent decades, propelled by the 
rapid advancements in multimedia technology, music has 
become increasingly accessible, integrating seamlessly 
into people's daily lives, serving as a source of leisure and 
a means of emotional regulation [2]. Central to the essence 
of music is its capacity to evoke and convey emotions, 
serving as a conduit for profound emotional experiences. 
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Whether evoking feelings of joy, melancholy, anticipa-
tion, or tranquility, music possesses the remarkable abil-
ity to elicit emotional resonance within listeners, offering 
a medium for emotional exploration and catharsis. Con-
sequently, the study of emotions in music has emerged 
as a pivotal area of research within the realms of music 
psychology and computer science.

However, despite significant advancements, emotion clas-
sification tasks in music analysis still confront several chal-
lenges. Traditional methods often rely solely on audio data 
for classification, overlooking the rich potential offered by 
other multimodal sources such as lyrics, music videos, and 
social media comments [3]. Moreover, existing classification 
models may struggle to effectively capture the complexity of 
emotional expressions and nuances inherent in music, given 
the multidimensional nature of emotions, which extend 
beyond simple binary distinctions like pleasure or sadness.

In response to these challenges, multimodal approaches 
offer a promising avenue for enhancing emotion classifica-
tion tasks in music analysis. By harnessing insights from 
diverse multimodal data sources, including audio, text, 
images, and videos, researchers can cultivate a more holistic 
understanding of the emotional landscapes embedded within 
music [4]. Multimodal music emotion classification not only 
enhances classification accuracy but also enables a nuanced 
portrayal of the intricate emotional tapestry woven within 
musical compositions. This advancement holds transforma-
tive potential, empowering music recommendation systems 
to tailor experiences to the emotional needs of listeners, 
while also fostering applications in domains such as health-
care, psychology, and advertising.

In traditional research on music emotion classification, 
researchers extensively utilize various audio feature extrac-
tion techniques to obtain information from audio signals for 
use in emotion classification. Common traditional audio fea-
ture extraction techniques include MFCC and Spectral Cen-
troid. MFCC, in particular, is a classical method for audio 
feature extraction widely used in music and speech process-
ing [5]. It simulates the way human ears perceive sound to 
extract spectral information from audio signals. Spectral 
Centroid represents the central position of the spectrum and 
is used to describe the pitch attributes of the audio [6]. This 
feature is often employed in music emotion classification to 
aid in distinguishing pitch variations under different emo-
tional states. In addition to traditional audio feature extrac-
tion techniques, some advanced deep-learning models have 
garnered significant attention. For example, CNNs, are not 
only used in image processing but also extensively applied 
in audio processing [7]. They can effectively capture local 
features in audio signals, making CNNs highly valuable in 
music emotion classification. In addition, RNNs, which are 
recurrent neural networks specialized in handling time-series 
data, are helpful in capturing time-related features in audio 

signals, particularly when describing emotional changes in 
music.

Furthermore, the use of pretrained deep learning models, 
such as BERT or GPT, has led to significant improvements 
in music emotion classification [8]. This is because these 
models have undergone extensive training in processing text 
data, possessing strong semantic understanding and repre-
sentation learning capabilities that contribute to a better 
understanding of emotional information in music [9]. How-
ever, these approaches do not take into account the often-
existing consistency of emotions between lyrics and melody. 
In addition, music possesses natural structural information, 
and these approaches have not considered the inherent struc-
ture of music (such as verse-chorus), which is highly effec-
tive and necessary for music emotion analysis [10].

Drawing from these insights, we introduce the MMD-
MII (Multilayered Music Decomposition and Multimodal 
Integration Interaction) model, a cutting-edge multimodal 
framework designed to enhance music emotion recognition 
and analysis. Our model incorporates the inherent struc-
tural elements of music, specifically focusing on the verse 
and chorus sections, while facilitating interaction between 
modalities during processing. Upon input, music undergoes 
cross-processing, enabling seamless interaction between 
audio and lyrics to maintain emotional coherence. In addi-
tion, we establish a hierarchical framework based on the 
theory of music's verse and chorus, conducting separate 
analysis on the chorus section to extract precise emotional 
representations. The overarching objective of the MMD-MII 
model is to integrate audio, lyrics, and other multimodal data 
sources at multiple levels, while considering the intrinsic 
structure of music to significantly elevate music emotion 
recognition and analysis performance. Through interac-
tive processing and hierarchical analysis, our model offers 
unparalleled accuracy in capturing emotional information 
in music, effectively catering to the diverse emotional needs 
of audiences. Furthermore, the MMD-MII model holds 
immense potential for transformative applications in fields 
such as music recommendation, advertising, and psychol-
ogy, promising to reshape the landscape of multimodal emo-
tion analysis in music research.

The article primarily makes three contributions:

•	 This article first introduces a hierarchical music analysis 
framework for analyzing the structure of music. Then, 
it constructs a novel multimodal interaction framework, 
extracting the current emotion vector at each time step, 
and further fusing and updating these emotion vectors to 
ensure emotional consistency among various modalities.

•	 The MMD-MII model not only integrates multimodal 
data but also places a specific focus on the intrinsic 
structure of music, including aspects like the verse and 
chorus. Through the hierarchical framework, we can 
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more accurately extract and analyze emotions in differ-
ent parts of the music, facilitating a deeper understand-
ing of emotional expression in music.

•	 The MMD-MII model introduces emotion vectors and 
designs emotion LSTM cell units to effectively cap-
ture emotional information in music, especially when 
dealing with datasets featuring four different emotion 
labels. This provides a more accurate and in-depth 
approach to emotion analysis.

In the rest of this paper, we present recent related work 
in Sect. 2. Section 3 introduces our proposed methods. 
Section 4 showcases the experimental part. Section 5 con-
tains the conclusion.

2 � Related Work

2.1 � Research on Lyric Text Processing

In the research of music emotion classification, lyric 
text processing is a crucial step that helps models better 
understand emotional information within music. Within 
this research domain, various deep learning models have 
emerged for processing lyric text, aimed at enhancing 
the performance of music emotion classification. These 
models include BERT, GPT-3.5, XLNet, RoBERTa, and 
DistilBERT.

BERT (Bidirectional Encoder Representations from 
Transformers) is a bidirectional pretrained model that, 
through deep learning, can delve deeper into the understand-
ing of emotional content within the lyric text [11]. GPT-3.5, 
with its enormous parameter count, excels in text generation 
and comprehension, offering robust support for lyric emo-
tion analysis and lyric generation [12]. XLNet employs a 
different pretraining approach, aiding in capturing a more 
comprehensive view of dependencies in text and providing 
additional angles for emotional understanding [13]. RoB-
ERTa represents an enhancement of BERT, achieved through 
a larger dataset and extended training duration, resulting in 
improved performance and more precise emotional repre-
sentations [14]. Furthermore, DistilBERT is a lightweight 
version of BERT, offering computational efficiency while 
still performing well in lyric text processing [14].

These deep learning models provide a diverse set of tools 
for lyric text processing, enabling the automatic extraction of 
emotional features from lyrics without manual intervention. 
Researchers can choose an appropriate model based on the 
task requirements and computational resources to enhance 
the accuracy and performance of music emotion classifi-
cation. These models play a pivotal role in the emotional 
analysis of lyric text.

3 � Research Based on Audio Feature 
Extraction

In the research of music emotion classification, melodic 
audio processing plays a crucial role in extracting melodic 
information from audio signals to enhance emotion clas-
sification performance. Several novel audio feature extrac-
tion methods have emerged in this research domain [15]. 
For instance, Deep Chroma is a deep learning-based 
audio feature extraction method that focuses on captur-
ing harmony, chords, and melodic information in audio. 
This model employs a combination of Convolutional 
Neural Networks (CNN) and Recurrent Neural Networks 
(RNN) to analyze the temporal features of audio signals 
and extract melodic information from music [16]. Deep 
learning methods like Deep Chroma have the advantage 
of automatic feature learning, aiding in a more accurate 
capture of emotional elements within audio. In addi-
tion, WaveNet, originally designed for audio waveform 
generation, has proven to be valuable in audio analysis. 
WaveNet can model audio signals at high resolutions, cap-
turing fine-grained audio features and melodic variations, 
providing more informative features for music emotion 
classification [17]. Furthermore, transfer learning meth-
ods have gained prominence in audio processing. They 
involve the use of pretrained audio models such as VGGish 
or OpenL3, which offer significant performance improve-
ments in music emotion classification. These models have 
undergone extensive pretraining on large audio datasets 
and can automatically extract audio features, eliminating 
the need for manual feature engineering [18].

These novel audio feature extraction methods offer 
diverse tools for melodic audio processing, enabling 
researchers to better understand and analyze emotional 
elements within music. They allow for a more accurate 
capture of emotional information within audio signals, 
thereby improving the performance of music emotion 
classification. Researchers can select appropriate models 
based on task requirements and dataset characteristics, 
unlocking greater potential in the field of music emotion 
classification [19].

3.1 � The Multimodal Models for Music Emotion 
Classification

In the field of music emotion classification, multimodal 
models have made significant progress in handling dif-
ferent modalities of data, including audio, lyrics, images, 
and more. For example, MuSeNet is designed to fuse audio 
and lyric information to more accurately capture emotions 
in music [20]. MuSeNet employs a deep neural network 



	 International Journal of Computational Intelligence Systems           (2024) 17:99    99   Page 4 of 14

structure capable of processing both audio and text data. 
The model consists of two key components: a multimodal 
encoder and an adaptive module. The multimodal encoder 
is used to extract feature representations from audio and 
lyrics, while the adaptive module dynamically learns the 
weights between different modalities to achieve better per-
formance. MuSeNet’s uniqueness lies in its ability to effec-
tively integrate information from different modalities, thus 
improving the accuracy and performance of music emotion 
classification. Another model, FusionNet, combines audio 
and lyric information [21]. It uses deep convolutional neu-
ral networks (CNN) and recurrent neural networks (RNN) 
structures to process different modal data. This model also 
introduces fusion strategies to gradually combine modality 
information for music emotion classification. In addition, 
MuSeCAR combines audio, lyrics, and emotions to gain 
a more comprehensive understanding of music emotions 
[22]. This model incorporates deep learning and knowl-
edge graph techniques by combining multimodal data with 
an emotional knowledge graph, enabling deeper analysis 
of emotional content. What sets MuSeCAR apart is its 
ability not only to predict emotions but also to explain the 
reasons behind those emotions, providing a more in-depth 
emotional analysis.

These multimodal models provide powerful tools for 
music emotion classification, with the potential to more 
accurately capture emotional elements in music by inte-
grating information from different modalities, thereby 
enhancing the performance of emotion classification. The 
ongoing development and innovation of these models 
will further drive research and applications in the field of 
music emotion classification.

4 � Methodology

We propose the MMD-MII multimodal music emotion 
classification model. Firstly, we utilize VGGish to extract 
audio features and ALBERT to extract lyric features. We 
then introduce the inherent structure of music (verse and 
chorus) into the overall model framework, enabling inter-
actions between modalities during processing. The goal is 
to enhance music emotion recognition and analysis. The 
model diagram is shown in Fig. 1. Once music is input, it 
passes through a module called the “cross-processing” mod-
ule. Within this module, audio and lyrics interact to ensure 
emotional consistency. Simultaneously, we employ a hier-
archical framework based on the theory of music’s verse 
and chorus. When the music reaches the chorus section, we 
process it separately, extracting more accurate emotional 
representations.

4.1 � VGGish Module

VGGish is a widely employed deep learning model in the 
field of audio, specialized for audio feature extraction 
and audio content analysis [23]. Firstly, VGGish adopts a 
convolutional neural network (CNN) architecture, bearing 
some similarities to the VGG models used in the visual 
domain. The core task of this model is to extract high-
level audio features from audio spectrograms, which can 
be utilized for various audio analysis tasks. Secondly, 
VGGish takes short time segments of audio signals as 
input and employs convolution and pooling layers to ana-
lyze these audio features. The model's output is a fixed-
length vector representing a high-level representation of 
the audio segment. These embedding vectors can be used 

Fig. 1   Overall flow chart of the model
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in subsequent tasks such as audio classification, music 
emotion analysis, and environmental sound recognition.

VGGish plays a crucial role in our model by providing 
essential support for the processing and feature extraction 
of audio data. It enables our model to better understand 
and analyze audio content, thus enhancing both its per-
formance and versatility. Figure 2 depicts the flowchart 
of the VGGish Module.

4.2 � ALBERT Module

In our framework, ALBERT is applied to extract features 
from lyrics text, facilitating the model's enhanced compre-
hension and analysis of lyrical content [7]. The subsequent 
points elucidate ALBERT’s pivotal role in extracting lyric 
features:

Initially, ALBERT undergoes pretraining on extensive 
textual datasets, enabling it to acquire comprehensive rep-
resentations of textual information. This pretrained model is 
adept at extracting general text characteristics, encompass-
ing those pertinent to lyrics text.

Fig. 2   The VGGish structural unit
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Subsequently, upon inputting lyrics text into the ALBERT 
model, it undergoes conversion into text embedding vectors. 
These vectors encapsulate the semantic essence and struc-
tural composition of the lyrics, constituting high-dimen-
sional feature representations that frequently encapsulate 
rich semantic information.

Furthermore, ALBERT exhibits context awareness, 
possessing the capacity to discern intricate relationships 
between words and contextual cues. This contextual com-
prehension holds paramount importance for processing lyr-
ics text, given its propensity for harboring nuanced implicit 
meanings and emotional nuances.

Moreover, in our model, ALBERT's capabilities extend 
beyond mere semantic analysis. It actively integrates con-
textual information and emotional nuances from lyrics text, 
thereby enriching the model's understanding of the lyrical 
content's emotional depth and complexity.

Conclusively, ALBERT serves as a fundamental com-
ponent in our framework for extracting features from lyrics 
text, thereby amplifying the model's proficiency in compre-
hending and analyzing the emotional dimensions of music 
lyrics.

ALBERT is a deep learning model used for extracting 
features from lyrics text. Through pretraining, it can convert 
lyrics text into meaningful high-dimensional feature repre-
sentations, which contribute to a better understanding and 
analysis of the emotional content in music lyrics. This pro-
vides strong support for music emotion classification tasks. 

Figure 3 displays the network structure of the ALBERT 
model.

4.3 � Cross Processing Module

The Cross Processing Module is a module designed for han-
dling multimodal information. It is configured to facilitate 
interaction between lyrics and melody, and its output is an 
emotion feature vector. This emotion feature vector is jointly 
constrained by the melody and lyrics modules. Furthermore, 
this emotion feature vector is subsequently input into the 
next set of lyric–melody pairs to ensure emotional consist-
ency between melody and lyrics. The specific structure is 
depicted in Fig. 4. This module is primarily utilized for pro-
cessing lyric–melody pairs, enabling interaction between the 
two modalities.

Fig. 3   The basic ALBERT network structure

Fig. 4   The Cross Processing Module network structure
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In Fig. 4, we can see that at any given moment, the input 
to the Emotion–LSTM includes not only the lyric–melody 
pair but also a vector referred to as the “emotion vector.” 
This vector is determined after the previous interaction 
between the lyric and melody (with the first emotion vector 
originating from random initialization). When the current 
lyric–melody pair enters the paired Emotion-LSTM, they 
each produce an emotion vector. These emotion vectors gen-
erated from both modalities then interact to create a new 
emotion vector, fusing information from both channels. This 
approach ensures that the two modalities under this vec-
tor maintain a consistent emotional state with respect to the 
previous moment's lyric–melody pair and prevents emotions 
between the two channels from being independent.

4.4 � Emotion–LSTM model

The Emotion–LSTM model represents an enhancement of 
the traditional LSTM architecture, with a particular focus 
on the incorporation of emotion vectors as inputs. This 
study aims to investigate the precise allocation of emo-
tional weighting within the context of lyrical content and 
melody [7]. To accomplish this, a novel two-polarity emo-
tion vector is introduced, designed to partition emotions 
into distinct categories. The upper segment of the vector 
corresponds to positive emotions, signifying heightened 
states of joy and euphoria. The middle portion is dedi-
cated to neutral emotions, while the lower section encap-
sulates increasingly melancholic and negative emotions. 

The Emotion–LSTM cell unit, delineated in Fig. 5, serves 
as the cornerstone of this framework, providing a detailed 
overview of its inner workings. The incorporation of the 
emotion vector empowers the model to adeptly capture 
and comprehend the intricate emotional nuances conveyed 
through music. Notably, the dataset used in this research 
comprises four distinct emotional classes. It encompasses 
not only the polar emotional states of sadness and happi-
ness but also embraces two additional nuanced emotional 
categories: tranquility and healing.

As depicted in Fig. 5, the Cum–Sum process involves 
the integration of both the historical emotion vector and the 
current input emotion vector, akin to a single interaction 
between past and present emotions. The historical emotion 
vector primarily aims to retain intense emotional informa-
tion, while the current emotion vector focuses on refreshing 
relatively weaker emotions. The resultant emotion vector 
undergoes continuous iteration alongside the historical emo-
tion vector. This iterative process facilitates the determina-
tion of which emotional levels within the song should be 
retained and which previously utilized emotions necessitate 
updating. The hierarchical emotion vector maintains its 
connection with the cell state “C” and the hidden state “h” 
within the Long Short-Term Memory (LSTM) framework, 
exerting a guiding influence on updates to the cell state “C” 
and the hidden state “h.” The specific operations will be 
elucidated and elaborated upon through subsequent math-
ematical formulations.

Input gate:

Fig. 5   The Emotion–LSTM network structure
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Forget gate:

Output gate

Candidate cell state:

Emotion forget gate (negative emotion part):

Emotion forget gate (positive emotion part):

Emotion forget gate:

Emotion input gate (negative emotion part):

Emotion input gate (positive emotion part):

Emotion input gate:

Emotion interaction state:

Update memory unit:

In this context, ‘t’ represents the current time step, ‘t − 1’ 
represents the previous historical time step, ‘ ft ’ represents 
the elements input at the current time step ‘t’ (which can 
be audio or text), and ‘ Et ’ represents the emotion vector 
for the current time step. The emotion vector for audio is 
determined and updated jointly by ‘h’ and ‘c’ within the 
emotion LSTM, to model emotional intensity. The emotion 
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vector for lyrics can be mapped using a neural network or 
an emotional dictionary and is determined after embedding. 
All ‘b’ terms are bias terms, and ‘σ’ represents the sigmoid 
activation function. Similar to a standard LSTM, there are 
input gates, output gates, and forget gates, as denoted by the 
formulas, which represent the three main gates in the LSTM. 
The candidate cell state ‘ Ct ’ contains hierarchical informa-
tion, and unlike a standard LSTM, it undergoes hierarchical 
updates based on the emotion vector, with updates to the cell 
state ‘ Ct ’ following new rules.

5 � Experiment

5.1 � Datasets

The experimental section of this study involves two signifi-
cant music datasets: the DEAM Dataset (Dynamic Emo-
tional Analysis of Music) and the FMA Dataset (Free Music 
Archive). These two datasets have widespread applications 
in the fields of music emotion analysis and music research, 
providing valuable resources and materials for our research.

The DEAM Dataset is a multimodal music dataset 
designed to assist researchers in delving deeper into the 
relationship between music and emotions [24]. It comprises 
a substantial amount of music audio, emotional annota-
tions, and associated metadata. The emotional annotation 
segment of this dataset meticulously records the emotional 
states within the audio, allowing researchers to analyze and 
understand the subtle variations in emotional expression 
within music compositions. The multimodal nature of the 
DEAM Dataset, encompassing both audio and emotional 
annotations, offers profound insights into the realm of music 
emotion analysis.

The FMA Dataset is a widely used music dataset, featur-
ing a vast collection of audio tracks and related metadata 
[25]. It offers music of various genres and styles, spanning 
a wide range from classical to popular music. The accessi-
bility and open nature of the FMA Dataset make it an ideal 
choice for music classification, music recommendation, and 
music research. Researchers can access audio materials from 
the FMA Dataset for experimentation and analysis to sup-
port their music research projects.

5.2 � Experimental Environment

My experimental setup consists of: Processor, Intel i7-13650 
CPU; Graphics Card, NVIDIA GTX 4090; Memory, 32 GB. 
The software environment is as follows: General-purpose 
computing architecture CUDA 11.6; GPU acceleration 
library, CUDNN 9.0; Deep learning framework Pytorch.

The tool we employed for vocal separation is the open-
source program Spleeter. Strictly speaking, Spleeter is 
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also a form of pretrained model written in TensorFlow and 
achieves its functionality through the utilization of U-Net 
architecture. In addition, we use the open-source computer 
program FFmpeg for sentence alignment between lyrics and 
melody. FFmpeg is an open-source computer program devel-
oped for Linux, used for recording, converting digital audio 
and video, and transforming them into streams. FFmpeg also 
serves as an audio or video encoder.

5.3 � Evaluation Metrics

This experiment used accuracy rate, precision rate (P), recall 
rate (R), and F1 score to evaluate the model’s performance.

Accuracy (accuracy rate): accuracy measures the overall 
correctness of the model’s predictions. It is the ratio of cor-
rectly predicted samples to the total number of samples in 
the dataset.

Recall (sensitivity or true positive rate): Recall calculates 
the proportion of positive samples that are correctly identi-
fied by the model. It measures the ability of the model to find 
all the positive samples.

Precision (precision rate): Precision calculates the propor-
tion of positive predictions made by the model that is cor-
rect. It measures the model’s ability to avoid false positives.

Accuracy =
Number of correct predictions

Total number of samples

Recall =
True Positives

True Positives + False Negatives

F-Score (F1-Score): F-Score is the harmonic mean 
of precision and recall. It is useful when both precision 
and recall are important, and you want to balance their 
contribution.

5.4 � Experimental Details

In the DEAM dataset, we selected a subset of songs with rel-
atively high play counts, assuming that these songs exhibit 
a higher degree of emotional consistency with the provided 
emotion labels. We chose four emotion labels: happiness, 
sadness, healing, and calm, and collected approximately 
6000 songs. After further filtering based on factors such as 
song length, audio quality, and language, we retained around 
4280 songs as our candidate dataset. In the case of the FMA 
dataset, we collected approximately 5320 songs and even-
tually narrowed it down to 4605 songs for our candidate 
dataset after applying similar selection criteria. In Table 1, 
the specific partitioning of the dataset is presented.

The vast majority of songs follow a natural structure 
known as the verse–chorus structure. The verse–chorus 
structure typically involves dividing a song into two primary 
sections: one section known as the “Verse,” which serves 
to establish the song’s background, and the other section 
referred to as the “Chorus,” which is responsible for empha-
sizing and expressing the emotions of the song. We have 

Precision =
True Positives

True Positives + False Positives

F1 = 2 ×
Precision × Recall

Precision + Recall

Table 1   The size of the dataset 
in each emotion category

DEAM dataset FMA dataset

Happy Sad Calm Healing Happy Sad Calm Healing

Training set 800 1007 999 1200 950 780 880 1000
Test set 202 189 350 253 230 205 302 258

Table 2   The performance of the music emotion recognition task using our proposed framework and different baseline methods

Methods Multimodal? DEAM dataset FMA dataset

Accuracy % Precision % Recall % F1 % Accuracy % Precision % Recall % F1 %

Ding et al. [26] × 46.78 46.24 45.12 46.02 46.54 45.98 46.04 46.26
Kim et al. [27] × 45.11 46.64 44.31 46.42 56.85 46.21 46.35 46.72
Catharin et al.[28] √ 47.52 47.96 47.62 47.21 47.35 46.89 46.97 46.91
Pandeya et al. [29] √ 47.91 48.54 47.42 47.46 47.46 47.21 47.31 47.36
Zhao et al. [30] √ 48.23 48.75 47.97 47.97 47.85 47.88 47.25 47.62
Chen et al. [31] √ 47.14 47.55 46.52 46.35 47.55 47.21 47.47 46.52
Medina et al. [32] √ 46.24 47.52 46.32 47.52 47.23 45.22 46.52 47.11
Ours √ 49.68 50.06 50.17 49.84 49.54 49.42 49.55 49.89
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conducted detailed annotations of the verses and choruses 
in the music dataset.

5.5 � Main Results

In Table 2, we can see that the use of multimodal methods 
(combining multiple data modalities) generally outperforms 
single-modal methods. The superiority of multimodal meth-
ods lies in their ability to integrate information from differ-
ent data sources, thus enabling a more comprehensive and 
in-depth understanding of emotional expression in music. 
These methods exhibit greater adaptability in the field of 
music emotion analysis, given the complexity and diver-
sity of emotions in music, which encompass aspects such as 
sound, lyrics, and melody. Notably, our multimodal method, 
“Ours,” excels on both the DEAM and FMA datasets. Tak-
ing the DEAM dataset as an example, our method exhibits 
an improvement of nearly 2 percentage points in accuracy 
compared to other methods, with significantly higher preci-
sion, recall, and F1 scores. These substantial performance 
improvements clearly demonstrate the superiority of mul-
timodal methods, and highlight the leading position of our 
multimodal method in the field of music emotion analysis.

This table provides compelling evidence in favor of 
employing multimodal methods for music emotion analysis. 

Multimodal methods not only deliver superior performance 
but also offer researchers and practitioners a deeper and 
more comprehensive insight, aiding in a better understand-
ing of emotional expression in music [33, 34]. This is of 
significant value for research and applications in the field 
of music [34].

5.6 � Ablation Experiment

In Table 3, we conducted a series of ablation experiments, 
specifically focusing on the model's performance on the 
DEAM and FMA datasets. These experiments aimed to 
emphasize the importance of different modules, including 
using only the verse module and using only the chorus mod-
ule, with our multimodal approach serving as the bench-
mark. Clear distinctions can be observed: on the DEAM 
dataset, our multimodal method achieved an accuracy of 
49.68%, while using only the verse module or chorus module 
resulted in accuracies of 46.73% and 47.53%, respectively. 
On the FMA dataset, our multimodal approach achieved 
an accuracy of 49.54%, whereas using only the verse mod-
ule or chorus module yielded accuracies of 46.22% and 
47.52%, respectively. These numerical comparisons clearly 
demonstrate that our multimodal method outperforms sin-
gle-modal models in terms of accuracy, showing a specific 

Table 3   Ablation comparison of different metrics and our model for different music levels in the music emotion recognition task

Model DEAM dataset FMA dataset

Accuracy % Precision % Recall % F1 % Accuracy % Precision % Recall % F1 %

Only The Verse Module 46.73 46.55 45.23 46.33 46.22 45.52 45.66 47.25
Only Chorus Module 47.53 47.23 47.52 47.23 47.52 46.23 46.33 46.23
Ours 49.68 50.06 50.17 49.84 49.54 49.42 49.55 49.89

Fig. 6   Comparison of different indicators of different models
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improvement of approximately 3–4%. We have visualized 
the content of the table in Fig. 6.

In Table 4, we present the results of Emotion–LSTM 
ablation experiments on the DEAM and FMA datasets. 
These results aim to compare the performance of differ-
ent recurrent neural networks, including GRU, BIGRU, 
LSTM, BILSTM, and Emotion–LSTM, across metrics such 
as accuracy, precision, recall, and F1 score. It is clear that 

Emotion–LSTM performs the best overall, indicating that 
the introduction of emotion vectors and their interaction with 
historical and current emotions is highly effective for music 
emotion classification tasks. Specifically, Emotio–LSTM 
exhibits higher accuracy, precision, recall, and F1 score in 
these experiments. This suggests that Emotion–LSTM can 
classify music emotions more accurately while maintaining 
a better balance, avoiding overfitting or underfitting issues.

Table 4   Ablation comparison of different metrics and our model for different music levels in the music emotion recognition task

Model DEAM dataset FMA dataset

Accuracy % Precision % Recall % F1 % Accuracy % Precision % Recall % F1 %

GRU​ 45.73 45.56 45.28 45.33 42.23 42.53 44.66 47.28
BIGRU​ 45.32 45.23 45.68 44.78 44.23 44.23 46.23 42.32
LSTM 47.53 47.23 47.52 47.23 47.52 46.23 46.33 46.23
BILSTM 48.23 47.25 47.66 46.78 47.53 47.23 46.23 46.23
Emotion–LSTM 49.68 50.06 50.17 49.84 49.54 49.42 49.55 49.89

Fig. 7   Comparison of different indicators of different models

Table 5   The effect of the 
number of layers of the cross-
processing module on the 
experimental results

DEAM dataset FMA dataset

Accuracy % Precision % Recall % F1 % Accuracy % Precision % Recall % F1 %

1 layer 46.73 46.55 45.23 46.33 46.22 45.52 45.66 47.25
2 layer 47.53 47.23 47.52 47.23 47.52 46.23 46.33 46.23
`3 layer 49.68 50.06 50.17 49.84 49.54 49.42 49.55 49.89
4 layer 48.53 49.52 48.72 47.23 48.52 47.52 48.72 48.72
5 layer 48.52 48.52 46.32 47.53 48.52 47.36 48.33 48.25
6 layer 47.63 46.33 47.52 47.58 48.72 47.36 48.12 48.79
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Figure 7 provides a visual representation of the table’s 
content, emphasizing the potential of the Emotion–LSTM 
model in the field of music emotion classification. It offers 
an effective approach to emotional analysis and lays a strong 
foundation for future research and applications. The intro-
duction of emotion vectors and their interaction contributes 
to a more comprehensive and accurate understanding of the 
emotional elements present in music.

In Table 5, we also investigated the influence of the num-
ber of layers in the cross-processing module on the experi-
mental results. We analyzed the experimental results on the 
music emotion dataset for cross-processing module layer 
numbers 1, 2, 3, 4, 5, and 6. From the experimental results, 
we can see that the performance does not linearly increase 
with the increase in the number of layers. The effectiveness 
of the model peaks when the number of layers in the cross-
processing module is 3. Beyond 3 layers, both increasing 
and decreasing the number of layers leads to a correspond-
ing decrease in experimental results. This may be due to the 
model's inability to capture the complexity of music emotion 
with too few layers, and the model becoming overly complex 
and prone to overfitting with too many layers. This finding 

emphasizes the importance of carefully selecting the number 
of layers when designing deep learning models to maximize 
their performance. Furthermore, we also observed that the 
model’s performance may have different effects on different 
music emotion tasks under different layer numbers. There-
fore, in practical applications, researchers and practitioners 
need to balance and select the appropriate number of layers 
based on the specific task requirements and dataset char-
acteristics to achieve the best performance and efficiency. 
Figure 8 visualizes the contents of the table.

6 � Conclusion

In this study, we introduced the MMD-MII multimodal 
music emotion classification model, which integrates audio 
and lyric data while considering the inherent structure of 
music, including verses and choruses. Through experiments, 
we verified its effectiveness in capturing emotional infor-
mation within music, showing promise for applications in 
music recommendation, advertising, psychology, and related 
fields.

Fig. 8   Comparison of different indicators of different layer
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However, our model still has limitations. Firstly, its per-
formance may be constrained by the quality and diversity 
of input data. Additionally, despite incorporating music's 
inherent structure, there may be challenges in adapting 
to different music genres. These variations in emotional 
content and composition across genres can impact the 
model's accuracy and generalization. To address these 
challenges, future research will focus on enhancing the 
diversity and quality of training data and exploring tech-
niques for genre-specific adaptation. We aim to improve 
the model's robustness and applicability across a broader 
range of music genres. Furthermore, we plan to expand its 
applications to real-world scenarios, including personal-
ized music recommendations, advertising, and emotional 
therapy. Our research will continue to explore innovative 
methods and technologies to advance multimodal music 
emotion analysis.

In conclusion, the MMD-MII model represents a sig-
nificant advancement in the field of music emotion classifi-
cation. Despite the challenges and room for improvement, 
we believe that this research will provide valuable insights 
and methodologies for future multimodal music emotion 
analysis and related applications, ultimately contributing 
to a better music experience and emotional support for 
both individuals and society as a whole.
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