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Abstract
The popular convolutional neural networks (CNN) require data augmentation to achieve rotation invariance. We propose an 
alternative mechanism, Pre-Rotation Only at Inference stage (PROAI), to make CNN rotation invariant. The overall idea is 
to learn how the human brain observe images. At the training stage, PROAI trains a CNN with a small number using images 
only at one orientation. At the inference stage, PROAI introduces a pre-rotation operation to rotate each test image into its 
all-possible orientations and calculate classification scores using the trained CNN with a small number of parameters. The 
maximum of these classification scores is able to simultaneously estimate both the category and the orientation of each 
test image. The specific benefits of PROAI have been experimented on rotated image recognition tasks. The results shows 
that PROAI improves both the classification and orientation estimation performance while greatly reduced the numbers of 
parameters and the training time. Codes and datasets are publicly available at https://​github.​com/​autom​lrese​arch/​FRPRF.
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1  Introduction

One of the goals of machine learning research is to obtain 
better generalization ability using as fewer parameters as 
possible. Convolutional neural networks (CNN) [1, 2] are 
closer to this goal than fully connected networks because 
they share weights of convolutional filters across different 
image locations. As shown in Fig. 1a, such a weight-sharing 
mechanism provides CNNs with space shift invariance, and 
reduces the number of parameters of CNNs [3]. However, 
such a weight-sharing mechanism does not exist in the rota-
tion dimension and CNNs still lacks rotation invariance 
[4]. As shown in Fig. 1b, when the input image rotates by 
a certain angle, the original weights of the convolutional 
kernels quickly and seriously mismatch with the regions to 
be convoluted, which usually leads to the failure of feature 

extraction and classification in rotated image recognition 
(RIR) tasks.

To recognize arbitrarily rotated images, existing RIR 
researchers commonly train CNN using rotation data 
augmentation [5–11]. There are three implementation 
approaches for rotation data augmentation. The most 
straightforward yet widely used implementation approach 
of rotation data augmentation [12] is randomly rotating 
each training image, so that the CNN output as identical 
classification scores as possible for an image and its rotated 
versions. Such an straightforward approach does not need 
to adjust the architectures of CNNs, but its performance 
is heavily dependent on the diversity of the orientations 
among training images. This is to say, CNNs must learn 
as many orientations as possible to achieve high RIR per-
formance. However, providing CNNs with training images 
at all-possible orientations is hard work. To improve RIR 
performance, the second implementation approach of rota-
tion data augmentation is to build multiple rotation chan-
nels, which actively rotated the features extracted by CNN 
[4, 13, 14]. For example, Laptev et al. [8] uniformly rotated 
the input image by 24 angles in [−180◦, 180◦] , then applied 
'maximum pooling' to features extracted in these 24 images. 
These 24 images are called image rotation channels, which 
can produce more robust rotation-invariant features than a 

 *	 Guoping Zhang 
	 Guoping_Zhang999@163.com

1	 Central China Normal University, Wuhan, China
2	 Naval University of Engineering, Wuhan, China
3	 National University of Defense Technology, Changsha, China
4	 Yancheng Institute of Technology, Yancheng, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00490-z&domain=pdf
https://github.com/automlresearch/FRPRF


	 International Journal of Computational Intelligence Systems           (2024) 17:94    94   Page 2 of 18

single image channel. But because building multiple image 
channels are usually computationally unfriendly, multiple 
rotation channels have also been built by rotating feature 
maps [14–18] or convolution kernels [4, 6, 7, 19]. The two 
approaches above take advantage of CNN's powerful func-
tion-fitting ability to ‘memorize’ images at all orientations 
so that the trained CNN can directly recognize images at 
any orientations. Different from these two approaches, other 
effective RIR methods are based on ‘derotation’ [20]. For 
example, Spatial Transformer Network (STN) [21], has been 
proposed to reduce the Number of training images. STN 
uses a spatial transformer layer to align rotated images to 
several canonical orientations, so the CNN only needs to 
learn several orientations. However, it should be noted that 
the training of the spatial transformer layer still relies on 
images at different orientations. This is to say STN still uses 
rotation data augmentation.

Although the rotation data augmentation has been widely 
used in RIR tasks, it has at least two disadvantages. First, 
CNN has to learn images at as many orientations as pos-
sible, which significantly increases the Number of training 
samples. More training samples require more parameters of 
CNN to achieve good generalization, and also increase the 
training time of CNN. Second, the outputs of CNN trained 

with rotation data augmentation are independent or insensi-
tive to the rotation of input images. This means that rotation 
data augmentation makes CNN lose orientation information. 
As a result, if the orientation need to be predicted, then CNN 
has to build extra orientation regression tasks [22, 23]. The 
abovementioned two disadvantages don’t conform to how 
the human brain works because the human brain doesn’t 
need to memorize images at all orientations. Psychologi-
cal studies [24–26] have suggested that there is a "mental 
rotation" process when we recognize objects in less similar 
orientations in the human brain. “Mental rotation” refers to 
that an arbitrarily orientated mental imagery is rotated to 
multiple orientations and recognized multiple times until 
the mental imagery attains its normal orientation. Benefited 
from “mental rotation”, human brain is able to recognize 
arbitrarily oriented images by learning and memorize images 
at one orientation. This inspires us to develop a similar RIR 
mechanism for CNN to improve the RIR performance while 
decreasing the Number of training samples, which is named 
Pre-Rotation Only at Inference stage (PROAI).

From the humans “mental rotation” process we can see 
that rotation invariance can be achieved by share the rec-
ognition ability across different rotations. This is also the 
core recognition principle of PROAI to achieve rotation 

Fig. 1   Differences between the invariances of feature extraction of CNN for translated and rotated images
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invariance, i.e., to share CNN weights across the rotation 
dimension of images. At the training stage, PROAI trains 
CNN with images only at one orientation, so the CNN can 
achieve high generalization using only a small number of 
parameters. Also, this CNN is supposed to correctly clas-
sify images only at the orientation. At the inference stage, 
PROAI generalize the recognition ability of the CNN to any 
other orientations through a pre-rotation operation. The pre-
rotation operation rotates each test image into its all-possible 
orientations to generate multiple rotated versions, which are 
then fed into the CNN with a small number of parameters to 
calculate classification scores. The maximum of these clas-
sification scores is applied to simultaneously estimate both 
the category and the orientation of each test image.

Compared with existing RIR methods, PROAI has made 
the following two contributions: (1) Architectures and weights 
of the entire CNN are shared across the rotation dimension 
for the first time, which allows CNN no longer need to learn 
rotated images at arbitrary orientations in RIR tasks, reduc-
ing both the Number of free parameters of CNN and training 
time. (2) PROAI builds an orientation-related learning task for 

CNN, enabling CNN to estimate images' orientations without 
adding extra orientation regression tasks.

2 � Pre‑rotation Only at Inference‑Stage 
(PROAI)

The workflow of PROAI illustrated in Fig. 2 is divided into 
two stages, i.e., the training stage and the inference stage. 
At the training stage, a CNN, which have a small number of 
parameters, is trained by images only at one orientation. As 
a result, this CNN is able to recognize images only at one 
orientation. At the inference stage, a multi-channel weight-
sharing mechanism generalizes this recognition ability to 
images at any other orientations, so images at any other ori-
entations can also be recognized.

2.1 � Training Procedure of PROAI

2.1.1 � Training Procedure

Figure 3 shows rotated images from MNIST [27] and Fash-
ion MNIST [28] datasets. As it is shown, the angle between 

Fig. 2   Illustration of using PROAI to recognize rotated images
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the top of the image object and the positive direction of the 
y-axis is defined to be the rotation orientation of the image. 
In this paper, the orientations of images are denoted as � 
( � ∈ [−180◦,+180◦] ), and the arbitrarily rotated image of 
the object with category i can be expressed as x�

i
(i ∈ Z) . 

Specifically, � = 0 (the positive direction of the y-axis) 
refers to the normal orientation, and x0

i
 refers to the images 

with category i at normal orientation.
Based on the abovementioned definition of normal orien-

tation, the training loss of PROAI is defined in Eq. (1). We 
design the following modified cross-entropy loss function 
for PROAI. Owing to the fact that PROAI only uses x0

i
 to 

train CNN, the cross entropy loss function L[f (⋅), i] is calcu-
lated through Eq. (1)

where f (⋅) represents the output of a CNN, i is the category 
labels of an image x0

i
 . C is the Number of sample categories 

in the training dataset, and c ∈ [1,C] . y is a one-hot vector 
for the category i , yc is the c th element of y , and fc(x0i ) is the 
c th element of f (⋅).

One CNN trained with images only at one orientation is 
supposed to output higher classification scores for images 
at the orientation than images at other orientations. There-
fore, PROAI makes CNN output the maximum classification 
scores only at normal orientation. In other words, PROAI 
makes CNN output peak value at the normal orientation. 
Such property is formulated by:

where i , j are category labels of image objects, r�(⋅) repre-
sents rotating an image by an angle of � , x�

i
= r�(x0

i
).

(1)L[f (x0
i
), i] = −

C∑

c=1

yc ⋅ log[fc(x
0
i
)]

(2)

{
max[f (x

�

j
)] ≤ max[f (r�(x

�

i
))], � =� holds when j = i

max[f (x
�

i
)] ≤ max[f (x0

i
)], � =� holds when � = 0

2.1.2 � Comparison with the Training Procedures of Existing 
RIR Methods

Figure 4 compares of PROAI with existing RIR methods 
from three aspects: training images, network architectures, 
and annotation.

In terms of training images, PROAI trains CNNs using 
images only at normal orientation, while existing methods 
have tried to make CNN 'memorize' images at as many ori-
entations as possible (see Fig. 4 or Fig. 3). Take the imple-
mentation approach of Rotation Data Augmentation (RDA) 
integrated from Pytorch1 as an example, each training image 
will be rotated to a random orientation in each epoch of 
training. That is to say, each training image will be trans-
formed into a new version in each training epoch. Noting 
the Number of total training epochs as Nepoch , then data aug-
mentation requires Nepoch times more training images than 
PROAI.

In terms of network architecture, PROAI requires CNN 
with smaller parameters than existing RIR methods. This 
is because PROAI is required to learn images only at one 
orientation, and the variation of the training image dataset of 
PROAI is apparently smaller than that of RDA methods [29]. 
To achieve better RDA performance, existing RIR methods 
must improve CNNs’ parameters using more complex net-
work architectures. For example, Transformation-Invariant 
Pooling (TIPooling) obtains the final rotation invariant fea-
tures by pooling the features extracted from multiple image 
rotation channels [8]; Oriented Response Networks (ORN) 
and RotEqNet [6] create multiple rotation channels by rotat-
ing convolutional filters to extract rotation invariant features 
[7]; STN trains a complex spatial transformation layer to 

Fig. 3   Illustration of rotation 
orientations of images (red 
arrows are assumed to be the 
top of objects)

1  https://​github.​com/​pytor​ch/​vision/​blob/​main/​torch​vision/​trans​
forms/​trans​forms.​py, RandomRotation Module.

https://github.com/pytorch/vision/blob/main/torchvision/transforms/transforms.py
https://github.com/pytorch/vision/blob/main/torchvision/transforms/transforms.py
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align images to a similar orientation before using CNN to 
recognize images [21].

In terms of annotation, PROAI only have to annotate cat-
egory labels for training images, no matter in classification 
or orientation estimation tasks. As a contrast, existing RIR 
methods have to annotate both category or angle labels for 
classification or orientation estimation tasks.

The differences in the training procedures shown in Fig. 4 
result in different CNN classification scores for rotated 
images. Take rotated handwritten digit recognition task as 
an example, the output classification scores of CNN to a 

digit “4” in different orientations are shown in Fig. 5. In 
Fig. 5a, the CNN trained with images only at normal ori-
entation outputs higher classification scores on the correct 
category label '4' for images that are oriented close to the 
normal orientation and outputs lower classification scores 
on wrong category labels or other orientations. The output 
in Fig. 5a satisfies Eq. (1). For comparison, as shown in 
Fig. 5b, rotation data augmentation makes the CNN insensi-
tive to changes of orientation, resulting in similar responses 
for different orientations on the correct category label ‘4’, 
i.e., f (x0

i
) ≈ f (x

�

i
).

Fig. 4   Comparison of the training stages of PROAI and existing RIR methods

Fig. 5   The output of CNNs trained by PROAI and RDA to images at different orientations



	 International Journal of Computational Intelligence Systems           (2024) 17:94    94   Page 6 of 18

2.2 � Inference Procedure of PROAI

2.2.1 � Inference Procedure

The inference procedure of PROAI illustrated in Fig. 2 is 
composed of three steps.

(1) Pre-rotate a test image into multiple orientations.
Given a test image at an orientation of � , x� ∈ ℝ

H×W×d 
( H , W  , d are the height, width, and number of color chan-
nels of the test image). It is firstly rotated by N angles that 
are uniformly distributed in [−Φ,+Φ] . The angle interval 
for rotation is ΔΦ , ΔΦ=2Φ∕N . The rotated images of the 
test image are denoted as,

w h e r e  ∀n = −
(

N

2
− 1

)
,−

(
N

2
− 2

)
, ..., 0, ...,

N

2
− 1,

N

2
 , 

0◦ ≤ Φ ≤ 180◦.
(2) Calculate the classification score matrix of multiple 

forward channels.
Applying a cluster of CNN sharing the same architec-

ture and weights with the CNN trained with images only 
at normal orientation to independently conduct forward 
calculation in each channel, the classification score vector 
f⃗n of the n th channel can be obtained as,

where, fm is the classification confidence that belongs to the 
m th class image,m ∈ [0, ...,M − 1] , where M denotes the 
number of all possible categories. For the M-class classifica-
tion problem, fn is a vector with length of M. All these clas-
sification score vectors are arranged to form a classification 

(3)x�n = r±Δ�n (x�)

(4)Δ�n= ± n ⋅ ΔΦ, �n = � ± n ⋅ ΔΦ

(5)f⃗n = f (x𝜑n ) = [f0, ..., fm, ..., fM−1]

score matrix F =
[
f⃗ T
−(N∕ 2−1)

, ... , f⃗ T
0
, ... , f⃗ T

N∕ 2

]
 , where 

F ∈ ℝ
N×M.

(3) Estimating category and orientation by finding the 
maximum classification score matrix.

According to Eq. (1), the CNN trained with images only 
at normal orientation outputs higher classification scores for 
images oriented close to the normal orientation and out-
puts lower classification scores for images oriented far away 
from the normal orientation (see Fig. 5a). Therefore, both 
the category ĉ and the orientation 𝜃̂ of the test image can be 
estimated from the coordinate of the maximum F , i.e.,

where,

2.2.2 � Comparison with the Inference Procedures of Existing 
RIR Methods

Figure 6 compares PROAI with existing RIR methods from 
three aspects, i.e., preprocessing of test images, network 
architectures, and outputs.

In terms of the preprocessing of test images, PROAI 
pre-rotates each test image into multiple orientations to 
build image rotation channels, while RDA, ORN, and STN 
directly classify rotated images using a single channel.

In terms of the network architectures, PROAI builds a 
cluster of copies of the CNN trained with normal images, 
while existing methods use the same CNN architecture with 
training stages. It should be noted that although TIPooling, 

(7)ĉ = k, 𝜃̂ = −j ⋅ ΔΦ

(8)

(j, k) = argmax
(n,m)

{soft max[FN×M(n,m)]} = argmax
(n,m)

[FN×M(n,m)]

Fig. 6   Comparison of the inference stages of PROAI and existing RIR methods
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and ORN also use multiple forward channels in the infer-
ence stage, PROAI is essentially different from them. This 
is because the weights of CNNs in existing methods are 
learned from all-possible orientations, while and weights of 
the CNN in PROAI are trained with normal images first and 
then shared across the rotation channels.

In terms of the outputs, PROAI simultaneously outputs 
the category and orientation for each test image, while the 
existing methods only predict what they have learned at the 
training stage.

3 � Results and Discussions

MNIST and Fashion MNIST have been commonly used to 
evaluate RIR performances [6, 8, 21]; hence they are applied 
to evaluate the performance of PROAI. The performance 
evaluation of PROAI is divided into training and inference 
stages. At the training stage, the parameters and training 
time of PROAI are compared with existing RIR methods. 
At the inference stage, the classification accuracy of PROAI 
is firstly compared with existing RIR methods. Then the 
orientation estimation precision of PROAI is compared with 
a CNN angle regressor. The CNN angle regressor is tailor-
designed and trained in a supervised orientation regression 
task because existing RIR methods have not reported orien-
tation estimation precision yet. Comparing the classification 
accuracies achieved by PROAI with existing RIR methods, 
which can demonstrate that PROAI can achieve higher clas-
sification accuracies in RIR tasks. And PROAI can achieve 
higher orientation estimation performance in RIR tasks.

In addition to quantitively evaluating PROAI on MNIST 
and Fashion MNIST, PROAI has also been applied to the 
rotated face recognition task of FDDB dataset [30], and the 
underwater rotated target recognition task of SCTD dataset 
[31].

3.1 � Preparation of Dataset and Design of CNN 
Architecture

3.1.1 � Preparation of RIR Dataset

Two RIR datasets, Rotated MNIST and Rotated Fashion 
MNIST, are prepared for RIR experiments in this paper.

Firstly, Rotated MNIST is generated by randomly rotating 
the images in MNIST within a certain angle range. Different 
angle ranges have been used by existing researches, which 
typically include [0◦, 0◦] , [−90◦, 90◦] , [−180◦, 180◦] . 
Correspondingly, Rotated datasets generated by these three 
angle ranges are denoted as rot0, rot180, and rot360. If 
assuming that the images in the original MNIST are normal 
oriented, then rot0 can be taken as the training dataset for 
PROAI. As a result, PROAI only require rot0 to train CNNs 

at the training stage, while existing RIR methods have to 
use rot180, rot360 to train CNNs. At the inference stage, 
rot180, and rot360 of the test dataset were applied to com-
pare the classification accuracies of PROAI with existing 
RIR methods.

In addition to the classification task, PROAI also con-
ducted orientation estimation task on Rotated MNIST. 
Therefore, the rotation angles of images must be labeled to 
form orientation labels. PROAI does not require orientation 
labels of training images, but existing RIR research must 
use them for training supervised orientation regressors. At 
the inference stage, orientation labels of validation or test 
images are applied to evaluate the orientation estimation 
precisions.

Secondly, Rotated Fashion MNIST is generated using the 
abovementioned method. The Rotated Fashion MNIST is 
obtained by applying rotational transformation on Fashion 
MNIST, and is much more difficult to recognize than Rotated 
MNIST. For example, the data augmentation method can 
achieve 95% test accuracy on Rotated MNIST, but only 77% 
test accuracy on the Rotated Fashion MNIST. In addition, 
because the image orientation of Fashion MNIST is very 
close to the ideal normal orientation (see Fig. 3), Rotated 
Fashion MNIST can effectively examine whether PROAI is 
able to extend the recognition ability of CNN for images in 
one orientation to other arbitrary orientations.

Both in Rotated MNIST and Rotated Fashion MNIST, 
the numbers of images in training, validation, test sets are 
50,000, 10,000, 10,000, and the image sizes are 28 × 28.

3.1.2 � Design of CNN Architectures

To fairly compare PROAI with existing RIR methods, RDA 
was applied to compare with PROAI. The reason for choos-
ing RDA for comparison is two-folded: (1) RDA is the most 
practical RIR method. (2) Neither RDA nor PROAI needs 
to change the architecture of CNNs. The CNN architecture 
designed for PROAI and RDA is shown in Table 1. The 
designed CNN has a similar architecture with the CNN 
architecture used in the experiments of RIR classification 
[8]. This CNN architecture is composed of classic convolu-
tion and maxpooling layer to extract feature. The extracted 
features are transformed by the ‘ReLU’ activation function. 
To improve the generalization of the architecture, Batch 
Normalization (BN) [32] layers has been added after each 
‘ReLU’ activation layer. At the output of the CNN, the ‘Soft-
max’ activation function is applied to transform the output. 
The output of the CNN is a classification score vector with 
length C (C is the Number of sample categories in the train-
ing dataset).

Since PROAI and RDA require CNNs with different num-
bers of parameters to achieve each best generalization per-
formance. The numbers of parameters of the CNN in Table 1 
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were adjusted by changing four variable architecture hyper-
parameters, which includes the Number of channels for the 
Initial Convolutional layer (N1), the number of neurons for 
the Fully Connected layer (N2), and two multipliers for the 
channel numbers (M1 and M2). N1, N2, M1, M2 were set to 
adapt the requirements of different RIR methods and data-
sets. Specifically, PROAI requires smaller number of param-
eters than RDA, and CNNs designed for Rotated Fashion 
MNIST requires larger number of parameters than Rotated 
MNIST (Because images in Fashion MNIST are more com-
plex than that in MNIST, more convolution filters are used 
than that for MNIST). Architecture hyper-parameters, num-
bers of parameters, and numbers of computations of CNNs, 
which are designed in the following experiments, are listed 
in Table 2. The designed architecture hyper-parameters in 
Table 2 can help PROAI or RDA achieve each high generali-
zation performance. The Numbers of parameters and compu-
tations in Table 2 were calculated by python 'thop' library.2

The reason for choosing such a traditional and simple 
architecture shown in Table 1 is to demonstrate that PROAI 
is not picky for CNN architectures. In addition to this archi-
tecture, one of the most popular CNN architectures ResNet 
[33], and the CNN architectures automatically designed by 
a state-of-the-art Neural Architecture Search (NAS) algo-
rithm [34] are also applied to evaluate the RIR performance 
of PROAI.

3.1.3 � Evaluation Metrics

Two important evaluation metrics of RIR tasks are classifi-
cation accuracy and orientation estimation precision. These 
two metrics are calculated through the following Eqs. (9) 
and (10). The classification accuracy A represents the pro-
portion of the Number of correct classifications to the Num-
ber of all targets, i.e.,

where NI is the Number of images in a dataset, I(⋅) refers to 
the indicator function. The A calculated on the training, vali-
dation, and test datasets are also referred to as the training 
accuracy, validation accuracy, and test accuracy. The higher 
the A is, the more accurate the classification is.

The orientation estimation precision is evaluated using 
the Mean Absolute Error (MAE), which is calculated by,

where �i and 𝜑̂i is the ground-truth value and the estimated 
value of the rotated the i-th image. The lower the MAE value 
is, the more precise the orientation estimation is.

Besides, other practical metrics are also calculated 
to evaluate the performance of training and inference of 
PROAI. At the training stage, the training time and the num-
ber of parameters of CNNs used in PROAI and RDA are 
calculated and compared. Training time represents the total 
time required for all epochs of training, of which the unit is 
second (s). The number of parameters represents the Number 
of learnable parameters for a CNN. In this paper, mega (M) 
is used as the unit of the number of parameters. At the infer-
ence stage, the inference time, classification accuracies, and 
orientation estimation precisions of PROAI are calculated 
and compared with those of RDA. The inference time refers 
to the total time required for inferencing all the images in 
the test set, of which the unit is second (s).

3.2 � Results at the Training Stage

This section evaluates the training time and number of 
parameters of CNNs training by PROAI. As a comparison, 
the results of CNNs trained with RDA are also provided. The 
comparison demonstrates that the training method of PROAI 
can effectively reduce both the training time and the number 
of parameters of CNNs.

(9)A =
1

NI

N∑

n=1

I(yn = ŷn)

(10)MAE =
1

NI

NI∑

i=1

|
|𝜑i − 𝜑̂i

|
|

Table 1   The CNN architecture designed for PROAI and RDA

Layer Parameters and channel size

Input Size: 32 × 32
Convolution Kernel: 3 × 3, channel: N1
ReLU (+ BN layer)
 Max pooling Kernel: 2 × 2, stride: 2
 Feature map1 Size: 16 × 16 × N1
 Convolution Kernel: 3 × 3, channel: M1 × N1

ReLU (+ BN layer)
 Max pooling Kernel: 2 × 2, stride: 2
 Feature map2 Size: 8 × 8 × (M1 × N1)
 Convolution Kernel: 3 × 3, channel: M2 × N1

ReLU (+ BN layer)
 Max pooling Kernel: 2 × 2, stride: 2
 Feature map3 Size: 4 × 4 × (M2 × N1)
 Linear 1 × 1 × N2
 Dropout

Linear, softmax 1 × 1 × C

2  https://​github.​com/​autom​lrese​arch/​pytor​ch-​OpCou​nter/.

https://github.com/automlresearch/pytorch-OpCounter/
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3.2.1 � Training Time

PROAI trains and validate CNN on the rot0 datasets of 
Rotated MNIST and Rotated Fashion MNIST. The CNN 
architectures designed in Table  2 are trained on these 
two datasets. Specifically, the CNNs with small numbers 
of parameters, CNN(small)@M and CNN(small)@F are 
applied to be trained on Rotated MNIST and Rotated Fash-
ion MNIST, respectively. The cross-entropy loss function 
in Eq. (1) and the Stochastic Gradient Descent (SGD) algo-
rithm are used to optimize the parameter of the two CNNs. 
For the training on these two datasets: the momentums of 
SGD are 0.9, the batch sizes of training images are 64, and 
the training epochs are 360.

As a comparison, RDA is applied to train and validate 
CNN on the rot180 or rot360 datasets of Rotated MNIST 
and Rotated Fashion MNIST. The CNNs with large num-
bers of parameters, CNN(large)@M and CNN(large)@F are 
applied to be trained on Rotated MNIST and Rotated Fash-
ion MNIST, respectively. Other training hyperparameters are 
set to be the same as that of PROAI.

The curves for cross-entropy loss in relation to training 
epochs are shown in Fig. 7. The cross-entropy loss curves of 
RDA are the results of training CNNs on rot360. As shown 
in Fig. 7a and b, both the training and validation losses of 
PROAI decrease and converge more quickly than RDA. 
Also, the loss curves of PROAI are reduced to significantly 
lower values than that of RDA. These results demonstrate 
that PROAI is of a faster training convergence. Figure 7c and 
d can also confirm this argument.

To quantitively evaluate how faster the training of 
PROAI is. The CNN(small)@M is trained by PROAI and 
the CNN(large)@M is trained by RDA on Rotated MNIST 
for many times. For each time of training, the overall train-
ing epochs is increased in [3, 480]. After each time of 
training, the classification accuracies on training and vali-
dation datasets are calculated using Eq. (9). Meanwhile, 
the overall training time is recorded. As a result, the train-
ing and validation accuracies in relation to training time 
can be drawn as Fig. 8. As it is shown, PROAI cost signifi-
cantly shorter training time while achieve higher validation 

accuracies. In addition, PROAI and RDA cost 84 and 390 
epochs to achieve each best generalization performance. 
Under this condition, the training time of PROAI ( tPROAI ) 
is only 10.3% of that of RDA ( tDA).

3.2.2 � Numbers of Parameters

PROAI trains CNN on rot0 dataset, so it requires CNN 
with smaller numbers of parameters than RDA does. This 
is the reason that we have designed CNNs with small num-
ber of parameters CNN(small)@M and CNN(small)@F 
for PROAI, and CNN(large)@M and CNN(large)@F for 
RDA.

To validate that PROAI requires smaller numbers of 
parameters of CNN than RDA. RDA and PROAI are used 
to train both CNNs with larger and small numbers of param-
eters. The trained CNN is then applied to infer the images in 
the validation dataset. Meanwhile, the validation accuracies 
are calculated through Eq. (9). By observing the difference 
in validation accuracies, the preferences for the number of 
parameters of different methods can be concluded.

We train CNN(small)@M and CNN(large)@M on rotated 
MNIST using PROAI and RDA, and we can calculate the 
validation accuracies shown in Table 3. As can be seen, 
when training CNNs with PROAI, the CNN with a smaller 
number of parameters, i.e., CNN(small)@M, achieves 
higher validation accuracy. In contrast, when training CNNs 
with RDA, the CNN with a larger number of parameters, 
i.e., CNN(large)@M, achieves higher validation accuracy. 
These two results imply that PROAI requires smaller num-
bers of parameters of CNN than RDA. That is also to say 
that PROAI can reduce the number of parameters of CNNs. 
For Rotated MNIST dataset, the number of parameters of 
CNN(small)@M is only 2.92% of that of CNN(large)@M.

Moreover, we also train CNN(small)@F and 
CNN(large)@F on Rotated Fashion MNIST using PROAI 
and RDA, and we can calculate the validation accuracies 
shown in Table 4. As can be seen from the validation accu-
racies, PROAI makes the CNN with a smaller number of 
parameters achieve high validation accuracy, and RDA 

Table 2   Architecture hyper-parameters, numbers of parameters, calculations of CNNs in the experiments

Train and val datasets CNN name Architecture hypermeters Numbers of parameters Numbers of computa-
tions

N1 M1 M2 N2 Params (M) Params (%) MACs MACs (%)

Rotated MNIST CNN (large)@M 40 2 4 5120 13.32 100.00 28.49 100.00
MNIST CNN (small)@M 40 1.5 2 256 0.39 2.92 9.18 32.22
Rotated Fashion MNIST CNN (large)@F 60 2 4 5120 20.04 100.00 53.77 100.00
Fashion MNIST CNN (small)@F 60 1.5 2 256 1.31 6.54 19.99 37.28
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makes the CNN with larger number of parameters achieve 
higher validation accuracy. These results also imply that 
PROAI can reduce the number of parameters of CNNs.

3.2.3 � Discussions

Both the results in Tables 3 and 4 show that PROAI can 
reduce the number of parameters of CNN in RIR tasks. 
This is in agreement with the fact that the training set of 
PROAI contains images only at one orientation while the 
training set of RDA method contains images at all possible 
orientations. The variation of images within the training 
set of PROAI is smaller, so the optimal number of parame-
ters is lower. The advantages of the reductions of the num-
ber of parameters is threefold: (1) the CNN requires less 

storage space to save weight and less memory footprint to 
run. (2) The number of calculations of CNN is reduced. 
With the same network architecture and image size, the 
CNN with a lower number of parameters is usually less 
computationally intensive. As a result, the computation 
required by the CNN of PROAI is lower than that of the 
CNN of the data augmentation method. As shown in the 
“Numbers of Calculations” column in Table 2, the number 
of calculations of the CNN are reduced to 32.22% and 
37.28% of that of the RDA method on the two datasets. 
(3) The CNN weights converge faster during training. As 
shown in Fig. 7, PROAI achieves the highest generaliza-
tion using 84 training epochs, while the data augmentation 
method requires 390 epochs.

Fig. 7   Cross-entropy loss in relation to training epochs
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Due to the abovementioned advantages (2) and (3), the 
total training time of PROAI becomes significantly lower 
than that of RDA.

3.3 � Results at the Inference Stage

This section first compares the classification accuracies 
achieved by PROAI with existing RIR methods, which can 
demonstrate that PROAI can achieve higher classification 
accuracies in RIR tasks.

Then this section compares orientation estimation preci-
sions achieved by PROAI with existing RIR methods. But 
because existing RIR methods have not reported orientation 

estimation precisions yet, two tailor-designed CNN angle 
regressors are trained using the orientation labels of rotated 
MNIST and rotated Fashion MNIST. The results of orienta-
tion estimation experiments can demonstrate that PROAI 
can achieve higher orientation estimation performance in 
RIR tasks.

Finally, the inference time of PROAI is quantitively 
evaluated.

3.3.1 � Classification Accuracies

This sub-section compares the classification accuracy 
achieved by PROAI with existing RIR methods. The 

Fig. 8   Classification accuracies 
in relation to training time

Table 3   Validation accuracies 
on Rotated MNIST of CNNs 
trained with PROAI and RDA

Training and validation 
datasets

Methods Params (%) Validation 
accuracies 
(%)

Rotated MNIST
rot360— > rot360

RDA CNN (large)@M 100.00 95.05
CNN (small)@M 2.92 92.59

Rotated MNIST
rot0— > rot0

PROAI CNN (large)@M 100.00 99.47
CNN (small)@M 2.92 99.6

Table 4   Validation accuracies 
on Rotated Fashion MNIST of 
CNNs trained with PROAI and 
RDA

Training and validation 
datasets

Methods Params (%) Validation 
accuracies 
(%)

Rotated MNIST
rot360— > rot360

RDA CNN (large)@M 100.00 78.44
CNN (small)@M 2.92 77.92

Rotated MNIST
rot0— > rot0

PROAI CNN (large)@M 100.00 92.87
CNN (small)@M 2.92 93.07
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classification accuracies in this section are calculated 
by applying Eq. (9) to the validation dataset. The rotated 
MNIST was first applied to calculate the classification 
accuracies of PROAI and RDA. For PROAI, the inference 
procedure proposed in Sect. 2.2.1 was conducted, each test 
image was rotated into 36 orientations to form 36 rotation 
channels, in which the CNN architecture and weights were 
shared with CNN(small)@M trained in Table 3. The clas-
sification accuracies of PROAI and existing RIR methods 
are shown in Table 5.

In the first row of Table 5, the text before the arrow indi-
cates the dataset type used in the training stage. The text 
after the arrow indicates the dataset type used in the infer-
ence stage, the first column gives the numbers of parameters 
of each CNNs (take CNN(large)@M as the reference), and 
the second to fifth columns show the classification accura-
cies of each method on the rot0, rot180, and rot360 test sets, 
respectively. As can be seen, the results in “rot0— > rot180” 
and “rot0— > rot360” columns show that PROAI using 
CNN(small)@ M significantly increases the classification 
accuracy, even though the training data is not augmented. 
For example, in the “rot0— > rot180” and “rot0— > rot360” 
columns, PROAI increase the classification accuracy to 
99.2%. This result is not only higher than the RDA method 
but also greater than the existing state-of-the-art accuracy 
(98.88%) achieved by the rotation-invariant ORN.

The results of CNN(small)@M are in Table  5 has 
revealed that PROAI can use a simple CNN architecture to 
achieve higher RIR performance than RDA. To demonstrate 
PROAI can also generalize to other CNN architectures, we 

also use two new CNN architectures to evaluate the RIR 
performance of PROAI. One of the architectures is one of 
the most popular CNN architectures ResNet [33]; another 
CNN architecture is called DARTSNet, which is automati-
cally designed for MNIST dataset by a state-of-the-art Neu-
ral Architecture Search (NAS) algorithm, Differentiable 
Architecture Search (DARTS) [34]. DARTSNet@6, which 
is composed of 6 levels of computation cells, was applied 
in PROAI, while DARTSNet@12, which is composed of 12 
levels of computation cells, was applied in RDA. The clas-
sification accuracies achieved by PROAI and RDA under 
different CNN architectures are shown in Table 6.

As shown in Table 6, in the first place, DARTSNet@6 
can improve the classification accuracy of PROAI and 
achieve state-of-the-art classification accuracy 99.37%, 
while ResNet18 has decreased the performance of PROAI. 
A possible cause for the drop in accuracy is that the number 
of parameters of ResNet18 is still big for applying PROAI to 
rotated MNIST. This result again proves that, PROAI only 
requires CNN architectures with small numbers of param-
eters. In the second place, for each kind of CNN architec-
ture, PROAI has achieved higher classification accuracies 
than RDA. This reveals again that PROAI increases clas-
sification accuracy. From the above results, two conclusions 
can be drawn: (1) when using the same CNN architectures 
in PROAI and RDA, PROAI can always outperform RDA 
on classification accuracy. (2) Designing appropriate CNN 
architecture can improve the RIR performance of PROAI, 
and the neural architecture search can be applied to design 
the CNN architectures for PROAI.

Table 5   Classification accuracy on rotated MNIST

Methods Params (%) Rot0— > Rot180 
(%)

Rot0— > Rot360 
(%)

Rot180— > Rot180 
(%)

Rot360— > Rot360 
(%)

Existing Methods STN [21] 100.40 44.41 – 97.12 98.07
ORN [7] 17.80 83.79 98.58 98.88
TIPooling [8] 108.87 – – – 98.74
DA (CNN(large)@M) 100 58.63 44.79 96.82 94.65

PROAI CNN (small)@M 2.92 99.2 99.2 – –

Table 6   The classification accuracies under different CNN architectures

Methods Params (%) Rot0— > Rot180 
(%)

Rot0— > Rot360 
(%)

Rot180— > Rot180 
(%)

Rot360— > Rot360 
(%)

DA DA (ResNet50) 141.09 62.73 46.13 96.86 95.29
DA (CNN (large)@M) 100 58.63 44.79 96.82 94.65
DA (DARTSNet@12) 19.87 64.05 51.7 98.83 98.6

PROAI ResNet18 87.83 97.4 97.4 – –
CNN (small)@M 2.92 99.2 99.2 – –
DARTSNet@6 9.38 99.37 99.37 – –
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In addition to rotated MNIST, rotated fashion MNIST 
was also applied to calculate the classification accuracies 
of PROAI and RDA. For this dataset, the rotation channel 
N of PROAI was set to 144, the classification accuracy is 
shown in Table 7. As can be seen, the accuracy of PROAI 
is greater than RDA by 9.93%. This result implies that 
PROAI is also effective for Rotated Fashion MNIST, in 
which the image pattern is more complex.

To examine the relationship between the RIR perfor-
mance of PROAI and the Number of pre-rotation chan-
nels, the “rot0- > rot360” classification accuracy curves 
of PROAI were calculated by adjusting the Number of 
pre-rotation channels in [1, 360]. The classification accu-
racy curve with respect to the number of rotation channels 
is shown in Fig. 9. As can be seen, on both datasets, the 
classification accuracies noticeably increase first and then 
stabilize when increasing the Number of rotation channel 
numbers. On rotated MNIST, the highest classification 
accuracy 99.2% is achieved when N is 36, which is 3.9% 
greater than the highest classification accuracy achieved 
by RDA. On Rotated Fashion MNIST, the highest classifi-
cation accuracy is achieved when N is 144, which is 12.7% 
greater than the highest classification accuracy achieved 
by RDA.

Figure 9 also shows that the number of pre-rotation chan-
nels required for PROAI to achieve the best performance is 
different for different RIR datasets, which implies the infer-
ence time is also different. The inference time, the choice of 
N will be discussed in Sects. 3.3.3 and 3.3.4.

3.3.2 � Orientation Estimation Precisions

This sub-section evaluates the orientation estimation pre-
cision achieved by PROAI. The evaluation metric of ori-
entation estimation precision is MAE. By comparing the 
predicted value of orientation and the ground truth, the MAE 
for orientation estimation can be calculated using Eq. (10). 
Because the performance of PROAI is in relation to the 
Number of pre-rotation channels, the MAEs achieved by 
PROAI were calculated in the condition of different num-
bers of pre-rotation channels. The numbers of pre-rotation 
channels are increased from 1 to 360. As a result, the MAE 
curves are plotted with blue and orange lines in Fig. 10.

For comparison, the MAEs achieved by RDA were also 
calculated. But because existing RIR methods have not 
reported the results for orientation estimation task, the 
MAE for orientation estimation of PROAI was compared 
with a tailor-designed CNN angle regressor. This angle 

Table 7   Classification accuracies on rotated fashion MNIST

Methods Params (%) Rot0— > Rot180 (%) Rot0— > Rot360 (%) Rot180— > Rot180 (%) Rot360— > Rot360 
(%)

DA (CNN(large)@F) 100.00 32.07 22.81 79.77 77.0
PROAI (CNN(small)@F) 11.42 89.70 89.70 – –

Fig. 9   Classification accuracies 
with respect to the Number of 
rotation channel
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regressor was designed by adding two output neurons to 
CNN(large)@M and CNN(large)@F, and these two neu-
rons are responsible for regressing the sine and cosine val-
ues of the image rotation angle [22, 23]. Since the super-
vised orientation regressors need to be trained with images 
at any possible rotation angles, they are also taken as 
RDA methods. The blue and orange dash lines in Fig. 10 
indicate the MAEs on Rotated MNIST, Rotated Fashion 
MNIST achieved by supervised orientation regressors.

It can be observed that the MAE curves of PROAI 
noticeably decrease first and then stabilize when increas-
ing the rotation channel numbers. On rotated MNIST, 
the lowest MAE 8.739°is achieved when N is 276, which 
is 6.38°lower than what can be achieved by the super-
vised angle regressor. On Rotated Fashion MNIST, the 
lowest MAE 26.93°is achieved when N is 324, which is 
11.63°lower than the supervised angle regressor.

Figure 10 demonstrates that PROAI can estimate orien-
tation more precisely than the supervised angle regressor. 
Examples of rotated images labeled with the orientations 
estimated by PROAI are shown in Fig. 11.

3.3.3 � Inference Time

This sub-section compares the inference time of PROAI with 
existing RIR methods. The inference time here refers to the 
total time required for inferring all images in test sets. In the 
experiment, parallel computing is adopted for inference, and 
the batch size of a test set is 64; the computer used in the 
inference experiment is equipped with a Core i9 CPU and a 
NVIDIA 3090 GPU.

To observe the relationship between the pre-rotation 
channel numbers and the inference time, the pre-rotation 
channel number gradually increases, and the corresponding 

Fig. 10   Mean absolute error 
of orientation estimation with 
respect to the Number of rota-
tion channels

Fig. 11   Examples of rotated images with the orientations estimated by PROAI
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inference time is recorded. For each Number of pre-rotation 
channels, the inference experiment is conducted 5 times to 
record 5 independent measures of the inference time. These 
five different measures of the inference time are plotted 
using the boxplot. Then, the inference time curve of PROAI 
is shown in Fig. 12. As shown in Fig. 12, the inference time 
of PROAI has a linear relationship with the pre-rotation 
channel number. Also, it can be observed from Fig. 12 that 
the variance of the inference time increases with the pre-
rotation channel number.

Figures 9 and 10 have demonstrated that the classifica-
tion and the orientation estimation performance of PROAI 
increase with the pre-rotation channel number. Figure 12 
has demonstrated the inference time of PROAI increases 
with the pre-rotation channel number. Next, it is valuable to 
study how many pre-rotation channel numbers are required 
by PROAI to outperform the classification and the orienta-
tion estimation performance of RDA. To answer this ques-
tion, the pre-rotation channel number of PROAI is gradu-
ally increased. Then the classification performance and the 
orientation estimation performance are evaluated for each 
pre-rotation channel number. As a result, the curves for clas-
sification accuracies and mean absolute errors of orientation 
estimation are shown in Fig. 13. As a comparison, the results 
of RDA are added.

Figure 13a, b shows the classification accuracies with 
respect to inference time. The classification accuracies of 
PROAI in relation to the inference time are plotted with 
blue stars, and the inference time of RDA in relation to the 

inference time is plotted with an orange circle. As these two 
figures shown, the inference time and classification accuracy 
achieved by single-channel PROAI is lower than the RDA, 
but the classification accuracies become greater when the 
inference time increases. PROAI outperforms RDA when 
the numbers of the pre-rotation channel are 6 and 18. These 
two points are plotted with red squares in the two figures, 
and the corresponding inference time of PROAI is 12.66 s 
and 79.74 s, which are 2.079 and 6.254 times that of RDA.

Figure 13c, d shows the MAEs for orientation estimation 
with respect to inference time. The MAEs for orientation esti-
mation of PROAI in relation to the inference time are plotted 
with blue stars, and the MAE of RDA in relation to the infer-
ence time is plotted with an orange circle. As these two fig-
ures shown, when using a single channel, the inference time 
of PROAI is lower than RDA, while its MAEs for orientation 
estimation are higher than RDA. When increasing the pre-
rotation channels, the MAEs become lower, but the inference 
time increases. When the Number of the pre-rotation chan-
nels increases to 8 and 24, PROAI outperforms RDA meth-
ods on Rotated MNIST and Rotated Fashion MNIST. These 
two points are plotted with red squares in the two figures, 
and the corresponding inference time of PROAI is 16.88 s 
and 106.3 s, which are 2.772 and 8.337 times that of RDA.

3.3.4 � Discussions

Figures 8 and 9 demonstrate that the RIR performance 
increase first and then stabilize when increasing the rotation 

Fig. 12   Inference time of PROAI in relation to pre-rotation channel numbers
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channel numbers. Different datasets require a different num-
ber of rotation channels to achieve each highest RIR perfor-
mance. For the Rotated MNIST dataset, PROAI achieves 
the highest classification accuracy when N is set to 36, but 
for the Rotated Fashion MNIST dataset, PROAI achieves 
the highest classification performance when N is set to 144. 
The reason that the PROAI requires different numbers of 
pre-rotation channels on the two datasets is that the orien-
tations of handwritten digits in MNIST are distributed in 
a certain range, so that the CNN trained directly on this 

dataset can recognize handwritten digits in a certain range 
of orientations rather than only a single orientation. As a 
result, a smaller number of pre-rotation channels is able to 
make PROAI achieve the highest classification accuracy on 
Rotated MNIST. By contrast, since the image orientations 
of Fashion MNIST are more concentrated in a small range, 
the trained CNN can only recognize images within a small 
range of orientations. As a result, it requires more rotation 
channels for PROAI to achieve high classification accuracy 
on Rotated Fashion MNIST. As can be seen from the above 

Fig. 13   Classification accuracies and mean absolute errors of orientation estimation vs inference time
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analysis, whether the image orientation is normal or not, it 
is effective to use PROAI’s weight-sharing mechanism in 
the inference stage to generalize the CNN’s ability to recog-
nize image at one or some orientations to any other arbitrary 
orientation. This implies that PROAI has the function of 
improving the generalization abilities of any trained CNNs. 
Since this inference procedure and its function are similar to 
test-time augmentation, future research on PROAI can focus 
on the explanation of test-time augmentation.

The results in Fig. 11 show that the inference time of 
PROAI is proportional to the number of channels, which 
is dependent on the dataset type, the task type, and the 
expected performance. In other words, PROAI can adjust 
the rotation image recognition performance by adjusting 
the inference time. This recognition performance includes 
rotated classification performance and additional orientation 
estimation performance that are obtained without learning 
orientation labels. To outperform RDA methods, different 
additional inference time is required by PROAI in different 
datasets. Therefore, it is necessary to set a reasonable num-
ber of pre-rotation channels for the best trade-off between 
RIR performance and inference time. In the experiments of 
Sect. 3.3.1, no greater than three times of the inference time 
is sufficient to obtain better RIR performance than RDA. In 
the experiments in Sect. 3.3.2, no greater than nine times 
of the inference time is sufficient to obtain better orienta-
tion estimation performance than RDA. Although PROAI 
requires longer inference time, it should be emphasized that 
the computation of each channel of PROAI is completely 
independent, so parallel computation can be applied to effec-
tively accelerate the inference in practice.

In summary, the experiments in Sects. 3.3.1 and 3.3.2 
demonstrate that PROAI can achieve state-of-the-art perfor-
mance in both the rotated image classification and the orien-
tation estimation task on both Rotated MNIST and Rotated 
Fashion MNIST datasets.

4 � Conclusion

While existing rotated image recognition methods focus on 
making CNN "memorize" as many images as possible dur-
ing the training stage, this paper has proposed a novel rotated 
image recognition mechanism, PROAI, which simulates the 
mental rotation process of the human brain. At the training 
stage, images at only one orientation are learned by CNN. 
At the inference stage, images at any other orientation are 
fed into a cluster of CNNs sharing the same architecture and 
weight to calculate classification scores, of which the maxi-
mum value has been successfully applied to simultaneously 
estimate both the category and the orientation of each test 
image. PROAI has significantly reduced the parameters and 

training time of CNN in RIR tasks and also achieved state-
of-the-art classification accuracies and orientation estima-
tion precisions on several datasets.

The main limitations associated with the PROAI method 
is that the multi-channel inference architecture of PROAI 
costs more computation power, therefore, the inference time 
of PROAI is proportional to the Number of channels. How-
ever, since the computation of each channel of PROAI is 
completely independent, parallel computation can be applied 
to effectively accelerate the inference in practice. In addition, 
it is necessary to process the trade-off between performance 
and inference time to set a reasonable number of pre-rotation 
channels so that we can achieve both high accuracy and high 
inference speed.

PROAI achieves state-of-the-art performance on the 
rotated digits recognition and rotated fashion recognition 
tasks. Since the inference procedure of PROAI is similar to 
test-time augmentation, it holds promise using the method of 
PROAI to explain the test-time augmentation. Also, it would 
be beneficial to generalize PROAI to process other kinds 
of image transformations, such as scale transformation, etc.
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