
Vol:.(1234567890)

International Journal of Networked and Distributed Computing (2023) 11:112–123
https://doi.org/10.1007/s44227-023-00014-9

1 3

RESEARCH ARTICLE

ProvSec: Open Cybersecurity System Provenance Analysis Benchmark
Dataset with Labels

Madhukar Shrestha1 · Yonghyun Kim1 · Jeehyun Oh1 · Junghwan (John) Rhee1  · Yung Ryn Choe2 · Fei Zuo1 ·
Myungah Park1 · Gang Qian1

Received: 20 June 2023 / Accepted: 7 November 2023 / Published online: 15 November 2023
© The Author(s) 2023

Abstract
System provenance forensic analysis has been studied by a large body of research work. This area needs fine granularity data
such as system calls along with event fields to track the dependencies of events. While prior work on security datasets has
been proposed, we found a useful dataset of realistic attacks and details that are needed for high-quality provenance tracking
is lacking. We created a new dataset of eleven vulnerable cases for system forensic analysis. It includes the full details of
system calls including syscall parameters. Realistic attack scenarios with real software vulnerabilities and exploits are used.
For each case, we created two sets of benign and adversary scenarios which are manually labeled for supervised machine-
learning analysis. In addition, we present an algorithm to improve the data quality in the system provenance forensic analysis.
We demonstrate the details of the dataset events and dependency analysis of our dataset cases.

Keywords  Provenance · Dataset · Attack · Backtracking

1  Introduction

Cybersecurity incidents on our nation’s government and
commerce are soaring. In 2021 alone, critical infrastructures
[1], companies [2], schools [3, 4], and municipal agencies
[5] suffered major ransomware attacks and data breaches.
The cybersecurity company Kaseya estimated that ran-
somware compromised up to 1500 businesses during this
time [6]. Industry statistics show that more than a thousand
annual data breach cases have occurred since 2016 [7] and
federal agencies experience more than 30,000 cyber inci-
dents annually [8].

System forensic analysis also known as system prove-
nance analysis [9–25] is an effective technique to track the
dependencies across system events in a cyber incident, there-
fore, assessing the scope of damage and understanding the
attack route of an intrusion. Previous approaches in security
datasets have been proposed for research and educational
purposes [26–28]. However, they lack the following char-
acteristics to be used for provenance analysis research and
education.

•	 High-quality dependencies across events.—To conduct
provenance analysis, such datasets should have depend-
ency information intact, so that the causality of events

 *	 Junghwan (John) Rhee
	 jrhee2@uco.edu

	 Madhukar Shrestha
	 mshrestha21@uco.edu

	 Yonghyun Kim
	 ykim26@uco.edu

	 Jeehyun Oh
	 joh8@uco.edu

	 Yung Ryn Choe
	 yrchoe@sandia.gov

	 Fei Zuo
	 fzuo@uco.edu

	 Myungah Park
	 mpark5@uco.edu

	 Gang Qian
	 gqian@uco.edu

1	 Computer Science Department, University of Central
Oklahoma, 100 University North Drive, Edmond,
OK 73034, USA

2	 Sandia National Laboratories, P.O. Box 969 MS 9105,
Livermore, CA 94551, USA

http://orcid.org/0000-0002-4043-9371
http://crossmark.crossref.org/dialog/?doi=10.1007/s44227-023-00014-9&domain=pdf

113International Journal of Networked and Distributed Computing (2023) 11:112–123	

1 3

can be systematically reasoned. Operating system calls
with required parameters are an example that qualifies
for this purpose.

•	 Realistic threat behavior.—The datasets should be based
on a realistic scenario and real vulnerability exploits to
reflect the characteristics and complexity of real software
exploit attacks.

•	 Explicit data labeling to assist machine-learning tasks.—
The dataset should be labeled to be useful for validation
purposes. Also, machine-learning tasks with supervi-
sion require accurate labels. We prepared clearly labeled
dataset where each scenario case is provided with two
recorded runtime instances; a benign scenario without an
attack, and an adversary scenario with an attack occur-
ring. This structure can simplify manual examination
and data pre-processing for machine-learning-based
approaches.

This paper proposes a new dataset for system provenance
analysis called ProvSec1 to meet this need and provide an
improved solution for past work’s shortcomings. We use
cyber attacks simulated in a cloud-based virtual environment
to provide detailed high-quality digital forensic artifacts.

This paper is organized in the following way. Section 2
presents the design of the dataset. Its evaluation is pre-
sented in Sect. 3. Section 4 presents the details of the data-
set shared. Section 5 discusses the information regarding
data sharing and analysis. Section 6 presents related work.
Finally, Sect. 7 concludes this paper.

2 � Design of ProvSec

To meet the aforementioned qualities demanded, we pro-
pose ProvSec, a cybersecurity provenance analysis dataset
(Fig. 1) comprising the following.

2.1 � Cloud Incidents

Virtual machines simulating the hosts of cyber attacks will
provide realistic and safe sandbox environments for cyber-
security experiments while preventing any unintended dam-
ages such as mistaken security operations during course
modules. Also, virtualization technology is useful for inte-
grating the management of virtual environments and data
transfer, so that forensic data are collected, labeled, and
managed with convenience.

2.2 � Provenance Data

In practical incident response research and education,
obtaining high-quality data is critical to successfully expose
attack sequences from piles of evidence. This is one impor-
tant implementation goal. In real incidents, investigators
may end up with an incomplete attack scenario due to
various reasons such as an organization’s unprepared cyber
infrastructure against potential incidents (e.g., lack of moni-
toring software and loss of logs).

ProvSec records and safely preserves system foren-
sic event history and artifacts, so that we can analyze and
recover the details of attack and defense system activities.
This architecture will offer cyber analysts/investigators real-
istic environments, data navigation interfaces, and quality
forensic data. They will access these historical data through
well-defined interfaces and available functions for manual
and automated investigation.

Another important design issue of ProvSec is deciding
which data to collect. Traditionally, provenance analysis
research relies on operating system calls, which we also
chose for the data format. A system call is a lower level inter-
face invoked by software to use the services of the operating
system kernel. Critical services for resources and privileges
(e.g., memory, file, network, and processes) are performed
via system calls. Therefore, this interface is important to
monitor to understand attack activities and determine their
causalities (e.g., a network intrusion → login → data copy).

Each event is stored as a json object with 14 fields shown
in Table 1. We selected and adopted several fields available
in sysdig event tracer for our dataset format. datetime is the
event time relative to the start of the execution of the case.

Fig. 1   Architecture of ProvSec
dataset

1  ProvSec is an acronym of Open System Provenance Analysis Secu-
rity Dataset.

114	 International Journal of Networked and Distributed Computing (2023) 11:112–123

1 3

type is the system call name. We provide the names and
program IDs of the current process and the parent process.
prog_args field is useful to show the program parameters.
File events have a file as an object whose name is described
in the fd_name field and the type is shown in the fd_type
field. The network events have the IP addresses and ports for
the client and server sides, which are respectively described
in the fd_cip, fd_cport fields (client side) and in fd_sip, fd_
sport fields (server side). Each system call can be generated
as one or two events (e.g., the start event of a system call
and the end event of the system call) depending on system
call types. Then, the order field shows the order (e.g., 0, 1).

2.3 � Provenance Analysis with Graph Improvements

These events are analyzed by event dependence analysis
[17] known as a backtracking algorithm. We made several
improvements in the original backtracking algorithm as
shown in Algorithm 1 to improve multiple practical issues.
Note this algorithm is general to any provenance data mak-
ing it applicable to related work.

2.3.1 � Improvement #1: Incomplete Capture of All Processes

In the original backtracking system [17], the data recorder is
integrated with the hypervisor. Therefore, it tracks all pro-
cesses starting from the very first one. However, we use a
data recorder (sysdig) on top of a COTS operating system
(ubuntu) which initiates recording after the machine has
finished the booting sequence and loading daemons. This
deployment issue causes the data recorder to miss the crea-
tion of certain processes.

While this issue can be partially alleviated by starting the
recording software as early as possible in the booting stage,

there is always a chance that some process starts could be
missed from the recording, while their behavior is recorded.
We handled this issue for practical usage by including such
programs into the graph using artificial process creation
when their behavior is observed for the first time. As shown
in the lines 2–15 of Algorithm 1, when their first behavior
is processed, the algorithm creates an artificial fork (process
creation) event.

2.3.2 � Improvement #2: Limited Data Fields from a Data
Recorder

We found some recording fields from our data monitoring
software; sysdig are missing as such data may not be avail-
able at the time when the data are retrieved and stored inside
the OS kernel.

To improve data quality, we added logic to supplement
such missing information as much as possible by extracting
it from the event’s metadata and other recorded history. This
part is shown in the lines 16–18 of Algorithm 1.

2.3.3 � Improvement #3: Anonymization

There are some names of processes or resources that might
be sensitive to be identified. We applied an anonymization
process to replace such names with artificial names. Lines
29–35 show this process. Generally, the anonymization of
events is a complicated process. However, this is not the case
for our approach, because we use a fixed list of event fields
that can be properly examined and anonymized.

2.4 � Attack Cases

We created several scenarios of cyber attacks where their
data are generated by setting up virtual machines, software,

Table 1   ProvSec event format Field name Description Example value

Datetime Time relative to the start time 49544039877
Type System call name execve
proc_name Process name ps
proc_pname Parent process name cloud-soft-01
proc_args Process argument -e -o pid,ppid,state,command
proc_pid Process ID 9747
proc_ppid Parent process ID 3247
fd_cip Client IP < IP

1
>

fd_cport Client port 3425
fd_name File descriptor name /lib/x86_64-linux-gnu/libc.so.6
fd_sip Server IP < IP

2
>

fd_sport Server port 80
fd_type File descriptor type ipv4
Order Event order 1

115International Journal of Networked and Distributed Computing (2023) 11:112–123	

1 3

and triggering attack actions along with manual labeling of
behavior.

•	 Case 01—Nginx integer overflow vulnerability: This case
represents an integer overflow vulnerability that exists
in Nginx software whose versions are between 0.5.6 and
1.13.2. This vulnerability is caused by insufficient bound
checking (CVE-2017-7529).

•	 Case 02—Path traversal and file disclosure vulnerability
in Apache HTTP Server : Apache 2.4.49 has a vulnerabil-
ity that allows a path traversal attack to map URLs to files
outside the expected document root (CVE-2021-41773).
We used this vulnerability to execute several UNIX com-
mands.

•	 Case 03—Python PIL/pillow remote shell command
execution via ghostscript: Ghostscript whose version is

before 9.24 has a vulnerability that allows the exploita-
tion of a remote shell command. We create a file /tmp/
test.txt remotely in the target server as a demonstration
(CVE-2018-16509)

•	 Case 04—PHP IMAP remote command execution vul-
nerability: The PHP IMAP extension is used to send and
receive emails. imap_open call internally uses ssh and
an attacker can inject a parameter for a remote command
execution. We conducted an attack to execute the com-
mand echo ’1234567890’>/tmp/test0001 (CVE-2018-
19518)

•	 Case 05—Apache Log4j2 lookup feature JNDI injection
with a reverse shell: Apache Log4j, a Java-based logging
utility, has a vulnerability CVE-2021-44228 in its sup-
port for JNDI (Java Naming and Directory Interface). We
used this vulnerability to initiate a reverse shell.

Algorithm 1   Enhanced back-
tracking algorithm

116	 International Journal of Networked and Distributed Computing (2023) 11:112–123

1 3

•	 Case 06—Apache Tomcat AJP Arbitrary File Read/
Include Vulnerability: Apache Tomcat has a vulnerabil-
ity CVE-2020-1938 known as Ghostcat that allows an
attacker a file read. We used this vulnerability to read a
sensitive password file, /etc/passwd, as a demonstration
of an arbitrary file read.

•	 Case 07—Redis Lua Sandbox Escape and Remote Code
Execution: Redis, an open-source in-memory data struc-
ture store, has a vulnerability CVE-2022-0543 to allow
an escape of Lua sandbox and an execution of an arbi-
trary remote command. We used this vulnerability to run
UNIX commands and dump the password file.

•	 Case 08—Consul service APIs’ misconfiguration leading
to Remote Code Execution (RCE) and reverse shell: Con-
sul is an open-source software to discover and configure
services. It has a vulnerability that allows remote code
execution. We created a remote shell followed by several
attack commands.

•	 Case 09—Path traversal and file disclosure vulnerability
in Apache HTTP Server: This attack case is regarding
CVE-2021-42013 which is a vulnerability caused by an
incomplete fix of CVE-2021-41773. After the fix, the
Apache server still allows path traversals and execution
of remote commands.

•	 Case 10—Django QuerySet.order_by SQL Injection Vul-
nerability: Django has a vulnerability that allows SQL
injection (CVE-2021-35042). We used this vulnerability
to collect information from the machine as an error mes-
sage.

•	 Case 11—Escape from a Docker container: Vulnerabil-
ity on docker: Docker has a vulnerability for an attacker
to escape a container and run commands (CVE-2019-
5736). We used this vulnerability to create a backdoor
and execute several UNIX commands.

2.5 � Dependency Graph Reduction

We identified a detection point of each dataset case and con-
ducted dependency analysis to reduce the graph size. The
examples of several dataset cases are presented in the evalu-
ation section. They show a significant reduction in the sizes
and complexity of graphs.

3 � Evaluation

This section presents the evaluation of ProvSec datasets.
We created a total of 11 attack scenarios using widely used
software and vulnerabilities.

We created the ProvSec dataset using docker containers
and sysdig on top of Ubuntu 20.04. We have prepared a total
of eleven real attack scenarios for this dataset. The details
for these cases are illustrated in Figs. 2, 4, and 6, which

respectively show the full attack behavior of C02, C03, and
C05 scenarios.

We have three different types of behavior: process, file,
and network, which are shown in different colors. In each
figure, the red nodes and edges represent processes and pro-
cess creation events, such as execve, fork, and clone system
calls. Blue nodes and edges represent files and file activities.
Their examples include open, close, read, and write system
calls and their variants. The green nodes and edges represent
network addresses and network activities, such as connect
and accept system calls.

3.1 � Graph Complexity

Table 2 shows the details of 11 incident cases. The graph
complexity of each case is presented in Table 3. |N| repre-
sents the total number of nodes and |E| represents the total
number of edges. This table also shows the complexity of
backtrack graphs which are simplified by applying a depend-
ency analysis on the detection points. Their nodes and edges
are shown in |N

bt
| and |E

bt
| columns and their reduction rates

compared to the full graphs are respectively shown in |Nbt
|

|N|

and |Ebt
|

|E|
 . The nodes are simplified to 0.5–17.9% of the origi-

nal graphs. The edge complexity got lower to 0.015–9.5%.

3.2 � Simplified Backtracking Graphs

In this section, we explain three cases of attack graphs and
their simplified attack behavior as examples.

Case 02: Apache Path Traversal and File Conflict of
interest: Fig. 3 shows the simplified behavior of the origi-
nal graph, Fig. 2 which demonstrates a path traversal and
file disclosure vulnerability attack targeted on Apache http
server. The simplified graph of Fig. 3 shows that the shell
(sh) and ls processes were invoked from the httpd process
exposing the paths of the server.

Case 03: Python PIL/Pillow RCE via Ghostscript: Fig. 5
highlights the core attack of the original graph, Fig. 4 by
removing irrelevant nodes and edges of the C03 scenario.
The intrusion was detected by the touch command which
was triggered by shell processes (sh whose process IDs are
87004 and 87005). We can confirm that these processes were
created by the Ghostscript (gs) processes whose process IDs
are 87003 and 87004 which came from the python process
(python). This graph indicates the root cause of an vulner-
ability exploit of Ghostscript in the Python program.

Case 05: Apache log4j lookup with JNDI injection: Fig. 6
illustrates a complex behavior of the Apache Log4j inci-
dent. This attack is initiated via the JNDI injection and a
reverse shell demonstrated in its backtrack graph, Fig. 7. In
this graph, we can observe a shell process (sh) of its process
ID, 9743, was forked from a java process (PID 9712). Note

117International Journal of Networked and Distributed Computing (2023) 11:112–123	

1 3

this shell process was initially a java process and then turns
into a shell using a execve system call. This shell process
conducts two attack behavior copying (cp) and modifying
(touch) a sensitive file (FiscalYearEndReport.xlsx). This
simplified graph demonstrates what accesses have occurred
on the sensitive file as a summary of attack behavior.

4 � Data Characteristics

Table 4 shows the characteristics of the dataset events that we
share. For 11 attack cases, we have two samples of record-
ings: one for a benign workload without any attack and the
other for an adversary workload with attack behavior. For each
recording, the number of events (#E), the number of distinct

process names (#P), the number of distinct IP addresses (#I),
and the number of different system call types (#T) are pre-
sented. The data recorder, sysdig, that we use generates one
or two events per system call. Therefore, the total number of
system calls will be less than #E. The total number of events
of a benign case or an adversary case is different because of
different workloads. In all eleven data cases, our dataset has
341.7K events in the benign cases and 987.7K events in the
abnormal cases.

Fig. 2   Dependency graph of C02-path traversal and file disclosure vulnerability in Apache HTTP Server

Fig. 3   Simplified backtrack graph of C02-path traversal and file disclosure vulnerability in Apache HTTP server

118	 International Journal of Networked and Distributed Computing (2023) 11:112–123

1 3

5 � Discussion

5.1 � Data Sharing

We share our dataset with the cybersecurity community in the
following link: https://​uco-​cyber.​github.​io/​resea​rch/#​provs​ec.

5.2 � Processing Time for a Real‑Time System

We used the Python language to write data processing code.
Loading and analyzing the entire 1.3 million events take less

than a minute with our Python implementation. If a compiled
native program written in C or C++ is used, we can speed
up this processing time further significantly. As the next step
of this project, we are processing these events collected from
multiple machines for anomaly detection in a live fashion.
Therefore, we are able to use this type of data in a real-time
environment.

Fig. 4   Dependency graph of C03-python PIL/pillow remote shell command execution via ghostscript

Fig. 5   Simplified backtrack graph of C03-python PIL/Pillow remote shell command execution via ghostscript

Table 2   Details of the incident
cases

Name CVE Description

C01 nginx CVE-2017-7529 Nginx integer overflow vulnerability
C02 apache CVE-2021-41773 Path traversal and file disclosure vulnerability
C03 ghostscript CVE-2018-16509 Python PIL/Pillow RCE via Ghostscript
C04 php CVE-2018-19518 php IMAP RCE vulnerability
C05 log4j CVE-2021-44228 Apache log4j lookup with JNDI injection
C06 tomcat CVE-2020-1938 Apache Tomcat AJP arbitrary file read/include
C07 redis CVE-2022-0543 Redis Lua sandbox escape and RCE
C08 consul N/A Consul service APIs misconfiguration, RCE
C09 apache CVE-2021-42013 Path traversal and file disclosure
C10 django CVE-2021-35042 Django QuerySet.order_by SQL injection
C11 docker CVE-2019-5736 Escape from a Docker container

https://uco-cyber.github.io/research/#provsec

119International Journal of Networked and Distributed Computing (2023) 11:112–123	

1 3

6 � Related Work

In this section, we compare our work with multiple prior
works proposed for security datasets.

Network-oriented dataset: Many existing works focus
on network-oriented data, such as five-tuples or full packet
recordings (e.g., PCAP) [29–34]. While these datasets have
an influence on multiple research works, they lack the infor-
mation necessary to conduct dependency analysis of operat-
ing system events for system provenance analysis.

Software vulnerability dataset: Other dataset work
[35–38] is regarding software vulnerability including useful
features, such as source code information, CWE (Common
Weakness Enumeration), CVE (Common Vulnerability Enu-
meration), code metrics, etc. The datasets of this category
have full details at the code level. However, they do not pro-
vide the runtime data on how they use operating system
services and their parameters which are necessary to conduct
system provenance analysis.

Provenance dataset: Multiple cybersecurity datasets
have been introduced for the details of system behavior
which enables provenance analysis. ISOT-CID dataset [26]
includes data of multiple formats including network traf-
fic, system logs, performance data (e.g., CPU utilization),
and system calls. While these data are quite close to what
we provide, the system call data are incomplete and not
structured. They lack full details and the records are in a
non-standard format similar to the strace output. Therefore,
it takes manual effort to parse, curate, and extract useful
information from the records. ProvMark [39] is a bench-
marking system regarding provenance expressiveness, which
evaluates three types of provenance recorders: OPUS [40],
CamFlow[41], and SPADE [42], [43].

DARPA released Operationally Transparent Cyber
(OpTC) data that was used to evaluate the DARPA Trans-
parent Computing (TC) program [27]. These data have been
used in multiple papers for analyzing APT attacks. While

this dataset has a large volume of rich data, it lacks proper
explanation, so that the details of attacks are understood by
researchers. In this regard, Anjun et al. analyzed and pub-
lished the details of OpTC dataset [28] explaining the details
of characteristics. However, still, this paper describes overall
statistics such as the types of actions and objects.

Compared to these approaches, ProvSec has several
advantages that can help researchers conduct research with
provenance data especially for machine-learning tasks. Our
dataset has full details of system calls and parameters that
are organized in the json format and enable the construction
of operating system dependencies and system provenance
analysis. We utilized real vulnerabilities and proof-of-con-
cept (PoC) code to simulate attack scenarios inside docker
environments which are recorded in the operating system
kernel.

As a most useful characteristic, we provide manual labe-
ling of the attacks that are helpful to identify the root causes
of attacks and the full details of attack behavior which will
help experiments that need ground truth validation or super-
vised machine-learning experiments. Each scenario data
case is organized into two separate runtime instances and
corresponding recording files, (1) one benign case and (2)
an adversary case which is recorded without and with attack
behavior. This clear labeling structure can significantly facil-
itate the data pre-processing for machine-learning tasks.

Provenance analysis: Provenance analysis has been stud-
ied by a large body of work in recent years [9–25]. Recent
survey papers [24, 25] summarize multiple approaches con-
ducted in the provenance tracking and dependency analysis
according to their categorizations. Multiple attack detection
approaches [23, 44–47] have been proposed to detect APT
campaign effectively. Due to a large volume of data, several
ideas for data reduction have been explored, such as execu-
tion partitioning, garbage collection, and approximations of
behavior patterns [18, 48–53]. Regarding the mechanisms
of collecting provenance data, several approaches used

Table 3   Details of the incident
provenance graphs

Original graph Reduced graph Reduction rate

|N| |E| |N
bt
| |E

bt
| |N

bt
|

|N|

|E
bt
|

|E|

C01 124 2758 4 3 3.2% 0.11%
C02 99 1044 8 8 8.1% 0.77%
C03 56 105 10 10 17.9% 9.5%
C04 212 1454 11 13 5.2% 0.89%
C05 601 6177 9 10 1.5% 0.16%
C06 143 898 7 8 4.9% 0.89%
C07 80 202 10 10 12.5% 5.0%
C08 1203 34173 6 5 0.5% 0.015%
C09 117 1383 8 8 6.8% 0.59%
C10 176 1704 5 5 2.8% 0.29%
C11 1764 47183 295 729 16.7% 1.55%

120	 International Journal of Networked and Distributed Computing (2023) 11:112–123

1 3

Fig. 6   Dependency Graph of
C05-Apache Log4j2 lookup
feature JNDI injection with a
reverse shell

121International Journal of Networked and Distributed Computing (2023) 11:112–123	

1 3

OS-level data collectors with program instrumentation [18,
19]. A kernel-based framework [21] and hardware-based
technique [22] are also proposed. As another trend, machine-
learning-based solutions [10, 44, 54] are increasingly being
used to improve detection. All such approaches can benefit
from the provenance dataset with high-quality labeling. Our
work can contribute to such approaches as additional evalu-
ation data.

7 � Conclusion

In this paper, we introduce a new dataset for security prov-
enance analysis along with a detailed description, analysis,
and clearly provided labels with two separate execution
traces of a benign scenario and an adversary scenario. This
dataset is differentiated from prior work with detailed data
for causal dependencies across events, the usage of real vul-
nerabilities and PoC exploits, and manual labeling which
particularly would be helpful for validation and supervised
machine-learning tasks. We performed an enhanced causal-
ity dependence analysis with our improved algorithm and
demonstrated how the dependency analysis can simplify the
analysis of each attack scenario with our dataset cases. We
made our dataset public, so that the research and education
communities advancing provenance analysis can benefit
from this dataset.

Acknowledgements  Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary of Hon-
eywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. This
article describes objective technical results and analysis. Any subjec-
tive views or opinions that might be expressed in the article do not
necessarily represent the views of the U.S. Department of Energy or
the United States Government. This work was supported through con-
tract #70RSAT21KPM000105 with the U.S. Department of Homeland
Security Science and Technology Directorate. Junghwan Rhee is the
corresponding author of this work.

Data availability  The supplementary data underlying this article are
available at https://​uco-​cyber.​github.​io/​resea​rch/#​provs​ec.

Declarations 

Conflict of Interest  The authors declare they have no conflicts of finan-
cial, non-financial, proprietary, or competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Fig. 7   Backtrack Graph of C05-Apache Log4j2 lookup feature JNDI injection with a reverse shell

Table 4   Data characteristics

#E total number of events, #P total number of distinct process names, #I total number of distinct IP
addresses, #T total number of distinct system call types

Name Benign Adversary

#E #P #I #T #E #P #I #T

C01 Nginx 10268 25 7 47 7095 17 7 26
C02 Apache 3469 16 4 24 3204 18 3 26
C03 Ghostscript 5240 17 2 26 3065 15 2 25
C04 Php 4337 19 4 36 5380 21 8 39
C05 Log4j 13257 30 4 45 808501 36 10 54
C06 Tomcat 167430 25 2 28 7848 30 5 33
C07 Redis 20617 26 3 37 7538 21 4 23
C08 Consul 72254 43 28 50 100785 62 31 61
C09 Apache 2934 15 4 23 3886 18 2 26
C10 Django 13392 16 7 27 15676 17 6 27
C11 Docker 28539 39 5 62 24742 33 5 60

https://uco-cyber.github.io/research/#provsec
http://creativecommons.org/licenses/by/4.0/

122	 International Journal of Networked and Distributed Computing (2023) 11:112–123

1 3

References

	 1.	 Bloomberg (2021) Colonial pipeline paid hackers nearly 5
million in ransom, https://​www.​bloom​berg.​com/​news/​artic​les/​
2021-​05-​13/​colon​ial-​pipel​ine-​paid-​hacke​rs-​nearly-​5-​milli​on-​in-​
ransom/. Accessed 11 Nov 2023

	 2.	 Reuters (2021) Toshibas european business hit by cyberattack,
https://​www.​reute​rs.​com/​busin​ess/​autos-​trans​porta​tion/​toshi​
bas-​europ​ean-​busin​ess-​hit-​by-​cyber​attack-​source-​2021-​05-​14/.
Accessed 11 Nov 2023

	 3.	 Schools BP (2021) Cybersecurity attack on the buffalo public
schools, https://​www.​buffa​losch​ools.​org/​cms/​lib/​NY019​13551/​
Centr​icity/​Domain/​8/​Cyber​secur​ity%​20Upd​ate%​203-​15-​21.​pdf.
Accessed: 03 Dec 2023

	 4.	 Magazine S (2021) Now ransomware is inundating public
school systems, https://​www.​secur​ityma​gazine.​com/​artic​les/​
95164-​now-​ranso​mware-​is-​inund​ating-​public-​school-​syste​ms.
Accessed: 11 Nov 2023

	 5.	 Oklahoma N (2021) Tulsa system shutdown alters backside
operations ransomware attack still being investigated, https://​
www.​kjrh.​com/​news/​local-​news/​tulsa-​system-​shutd​own-​alters-​
backs​ide-​opera​tions-​ranso​mware-​attack-​still-​being-​inves​tigat​ed.
Accessed 11 Nov 2023

	 6.	 CNN, Kaseya ransomware attack businesses affected. (2021).
https://​www.​cnn.​com/​2021/​07/​06/​tech/​kaseya-​ranso​mware-​
attack-​busin​esses-​affec​ted/​index.​html. Accessed 11 Nov 2023

	 7.	 Statista, Annual number of data breaches and exposed records in
the united states from 2005 to 2020,” https://​www.​stati​sta.​com/​
stati​stics/​273550/​data-​breac​hes-​recor​ded-​in-​the-​united-​states-​
by-​number-​of-​breac​hes-​and-​recor​ds-​expos​ed/. Accessed 11 Nov
2023

	 8.	 Statista, Number of cyber security incident reports by federal
agencies in the united states from fy 2006 to 2018. https://​www.​
stati​sta.​com/​stati​stics/​677015/​number-​cyber-​incid​ent-​repor​ted-​
usa-​gov/. Accessed 11 Nov 2023.

	 9.	 Liu Y, Zhang M, Li D, Jee K, Li Z, Wu Z, Rhee J, Mittal P
(2018) Towards a timely causality analysis for enterprise secu-
rity. in NDSS

	10.	 Wang Q, Hassan WU, Li D, Jee K, Yu X, Zou K, Rhee J, Chen
Z, Cheng W, Gunter CA et al (2020) You are what you do: Hunt-
ing stealthy malware via data provenance analysis. in NDSS

	11.	 Xu Z, Wu Z, Li Z, Jee K, Rhee J, Xiao X, Xu F, Wang H,
Jiang G (2016) High fidelity data reduction for big data security
dependency analyses, in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security

	12.	 Tang Y, Li D, Li Z, Zhang M, Jee K, Xiao X, Wu Z, Rhee J, Xu
F, Li Q (2018) Nodemerge: Template based efficient data reduc-
tion for big-data causality analysis, in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security

	13.	 Hassan WU, Li D, Jee K, Yu X, Zou K, Wang D, Chen Z, Li
Z, Rhee J, Gui J et al (2020) This is why we can’t cache nice
things: Lightning-fast threat hunting using suspicion-based
hierarchical storage, in Annual Computer Security Applications
Conference

	14.	 Ma S, Lee KH, Kim CH, Rhee J, Zhang X, Xu D (2015) Accu-
rate, low cost and instrumentation-free security audit log-
ging for windows,” in Proceedings of the 31st Annual Com-
puter Security Applications Conference, ser. ACSAC 2015.
New York, NY, USA: Association for Computing Machinery.
[Online]. Available: https://​doi.​org/​10.​1145/​28180​00.​28180​39

	15.	 Sun Y, Jee K, Sivakorn S, Li Z, Lumezanu C, Korts-Parn L, Wu
Z, Rhee J, Kim CH, Chiang M et al (2020) Detecting malware
injection with program-dns behavior, in 2020 IEEE European
Symposium on Security and Privacy (EuroS &P). IEEE

	16.	 Zipperle M, Gottwalt F, Chang E, Dillon T (2022) Provenance-
based intrusion detection systems: A survey, ACM Computing
Surveys, vol. 55, no. 7

	17.	 King ST, Chen PM (2003) Backtracking intrusions,” in Proceed-
ings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: Association for
Computing Machinery, p. 223-236. [Online]. Available: https://​
doi.​org/​10.​1145/​945445.​945467

	18.	 Lee KH, Zhang X, Xu D (2013) High accuracy attack provenance
via binary-based execution partition, in 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013. The Internet Society.
[Online]. Available: https://​www.​ndss-​sympo​sium.​org/​ndss2​013/​
high-​accur​acy-​attack-​prove​nance-​binary-​based-​execu​tion-​parti​
tion

	19.	 Ma S, Zhang X, Xu D (2016) Protracer: Towards practical prov-
enance tracing by alternating between logging and tainting, in
Network and Distributed System Security Symposium (NDSS)

	20.	 Liu Y, Zhang M, Li D, Jee K, Li Z, Wu Z, Rhee JJ, Mittal P (2018)
Towards a timely causality analysis for enterprise security, in Net-
work and Distributed System Security Symposium (NDSS)

	21.	 Bates A, Tian D, Butler KRB, Moyer T (2015) Trustworthy
whole-system provenance for the linux kernel, in 24th USENIX
Security Symposium. USENIX Association, p. 319-334

	22.	 Zeng J, Zhang C, Liang Z (2022) Palantír: Optimizing attack
provenance with hardware-enhanced system observability, in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, p. 3135-3149

	23.	 Hassan W, Guo S, Li D, Chen Z, Jee K, Li Z, Bates A (2019)
Nodoze: Combatting threat alert fatigue with automated prov-
enance triage, in Network and Distributed System Security Sym-
posium (NDSS)

	24.	 Pan B, Stakhanova N, Ray S (2023) Data provenance in security
and privacy,” ACM Comput. Surv., vol. 55, no. 14s, jul. [Online].
Available: https://​doi.​org/​10.​1145/​35932​94

	25.	 Inam M, Chen Y, Goyal A, Liu J, Mink J, Michael N, Gaur S,
Bates A, Hassan W (2023) Sok: History is a vast early warning
system: Auditing the provenance of system intrusions, in 2023
IEEE Symposium on Security and Privacy (SP), 2620–2638

	26.	 Aldribi A, Traore I, Moa B (2018) Data Sources and Datasets
for Cloud Intrusion Detection Modeling and Evaluation. Cham:
Springer International Publishing, pp. 333–366. [Online]. Avail-
able: https://​doi.​org/​10.​1007/​978-3-​319-​73676-1_​13

	27.	 DARPA, Operationally transparent cyber (optc) data release.
https://​github.​com/​FiveD​irect​ions/​OpTC-​ data, (2021)

	28.	 Anjum MM, Iqbal S, Hamelin B (2021) Analyzing the useful-
ness of the darpa optc dataset in cyber threat detection research,
in Proceedings of the 26th ACM Symposium on Access Control
Models and Technologies, ser. SACMAT. ACM, p. 27-32

	29.	 Lippmann R, Fried D, Graf I, Haines J, Kendall K, McClung D,
Weber D, Webster S, Wyschogrod D, Cunningham R, Zissman M
(2000) Evaluating intrusion detection systems: the 1998 darpa off-
line intrusion detection evaluation, in Proceedings DARPA Infor-
mation Survivability Conference and Exposition. DISCEX’00,
vol. 2, pp. 12–26 vol.2

	30.	 Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed
analysis of the kdd cup 99 data set, in 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applica-
tions, 1–6

	31.	 Banadaki YM (2020) Detecting malicious dns over https traffic in
domain name system using machine learning classifiers, Journal
of Computer Sciences and Applications, vol. 8, no. 2, pp. 46–55.
[Online]. Available: http://​pubs.​sciep​ub.​com/​jcsa/8/​2/2

	32.	 Koroniotis N, Moustafa N, Sitnikova E, Turnbull B (2019)
Towards the development of realistic botnet dataset in the internet
of things for network forensic analytics: Bot-iot dataset, Future

https://www.bloomberg.com/news/articles/2021-05-13/colonial-pipeline-paid-hackers-nearly-5-million-in-ransom/
https://www.bloomberg.com/news/articles/2021-05-13/colonial-pipeline-paid-hackers-nearly-5-million-in-ransom/
https://www.bloomberg.com/news/articles/2021-05-13/colonial-pipeline-paid-hackers-nearly-5-million-in-ransom/
https://www.reuters.com/business/autos-transportation/toshibas-european-business-hit-by-cyberattack-source-2021-05-14/%20
https://www.reuters.com/business/autos-transportation/toshibas-european-business-hit-by-cyberattack-source-2021-05-14/%20
https://www.buffaloschools.org/cms/lib/NY01913551/Centricity/Domain/8/Cybersecurity%20Update%203-15-21.pdf
https://www.buffaloschools.org/cms/lib/NY01913551/Centricity/Domain/8/Cybersecurity%20Update%203-15-21.pdf
https://www.securitymagazine.com/articles/95164-now-ransomware-is-inundating-public-school-systems
https://www.securitymagazine.com/articles/95164-now-ransomware-is-inundating-public-school-systems
https://www.kjrh.com/news/local-news/tulsa-system-shutdown-alters-backside-operations-ransomware-attack-still-being-investigated%20
https://www.kjrh.com/news/local-news/tulsa-system-shutdown-alters-backside-operations-ransomware-attack-still-being-investigated%20
https://www.kjrh.com/news/local-news/tulsa-system-shutdown-alters-backside-operations-ransomware-attack-still-being-investigated%20
https://www.cnn.com/2021/07/06/tech/kaseya-ransomware-attack-businesses-affected/index.html
https://www.cnn.com/2021/07/06/tech/kaseya-ransomware-attack-businesses-affected/index.html
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://www.statista.com/statistics/677015/number-cyber-incident-reported-usa-gov/
https://www.statista.com/statistics/677015/number-cyber-incident-reported-usa-gov/
https://www.statista.com/statistics/677015/number-cyber-incident-reported-usa-gov/
https://doi.org/10.1145/2818000.2818039
https://doi.org/10.1145/945445.945467
https://doi.org/10.1145/945445.945467
https://www.ndss-symposium.org/ndss2013/high-accuracy-attack-provenance-binary-based-execution-partition
https://www.ndss-symposium.org/ndss2013/high-accuracy-attack-provenance-binary-based-execution-partition
https://www.ndss-symposium.org/ndss2013/high-accuracy-attack-provenance-binary-based-execution-partition
https://doi.org/10.1145/3593294
https://doi.org/10.1007/978-3-319-73676-1_13
https://github.com/FiveDirections/OpTC-%20data
http://pubs.sciepub.com/jcsa/8/2/2

123International Journal of Networked and Distributed Computing (2023) 11:112–123	

1 3

Generation Computer Systems, vol. 100, pp. 779–796. [Online].
Available: https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S0167​739X1​83276​87. Accessed 11 Nov 2023

	33.	 Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generat-
ing a new intrusion detection dataset and intrusion traffic charac-
terization, in International Conference on Information Systems
Security and Privacy

	34.	 Jonker M, King A, Krupp J, Rossow C, Sperotto A, Dainotti A
(2017) Millions of targets under attack: A macroscopic characteri-
zation of the dos ecosystem, in Proceedings of the 2017 Internet
Measurement Conference, ser. IMC ’17. New York, NY, USA:
Association for Computing Machinery, p. 100-113. [Online].
Available: https://​doi.​org/​10.​1145/​31313​65.​31313​83

	35.	 Gkortzis A, Mitropoulos D, Spinellis D (2018) Vulinoss: A dataset
of security vulnerabilities in open-source systems,” in Proceed-
ings of the 15th International Conference on Mining Software
Repositories, ser. MSR ’18. New York, NY, USA: Association
for Computing Machinery, p. 18-21. [Online]. Available: https://​
doi.​org/​10.​1145/​31963​98.​31964​54

	36.	 Nguyen V (2021) Some software vulnerability real-world data
sets. [Online]. Available: https://​doi.​org/​10.​21227/​1m98-​5h52.
Accessed 11 Nov 2023

	37.	 Kim D, Kim E, Cha SK, Son S, Kim Y (2020) Revisiting binary
code similarity analysis using interpretable feature engineering
and lessons learned, CoRR, vol. abs/2011.10749. [Online]. Avail-
able: https://​arxiv.​org/​abs/​2011.​10749

	38.	 Marcelli A, Graziano M, Ugarte-Pedrero X, Fratantonio Y, Man-
souri M, Balzarotti D (2022) How machine learning is solving
the binary function similarity problem, in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Asso-
ciation, Aug, pp. 2099–2116. [Online]. Available: https://​www.​
usenix.​org/​confe​rence/​useni​xsecu​rity22/​prese​ntati​on/​marce​lli.
Accessed 11 Nov 2023

	39.	 Chan SC, Gehani A, Cheney J, Sohan R, Irshad H (2017) Expres-
siveness benchmarking for system-level provenance,” in 9th USE-
NIX Workshop on the Theory and Practice of Provenance

	40.	 Balakrishnan N, Bytheway T, Sohan R, Hopper A (2013) {OPUS} :
A lightweight system for observational provenance in user space,
in 5th USENIX Workshop on the Theory and Practice of Prov-
enance (TaPP 13)

	41.	 Pasquier TF-M, Singh J, Eyers D, Bacon J (2015) Camflow: man-
aged data-sharing for cloud services. IEEE Trans Cloud Computi
5(3):472–484

	42.	 Gehani A, Tariq D (2012) Spade: Support for provenance auditing
in distributed environments, in International Middleware Confer-
ence, [Online]. Available: https://​api.​seman​ticsc​holar.​org/​Corpu​
sID:​73466​28. Accessed 11 Nov 2023

	43.	 Zuo F, Rhee J, Kim Y, Oh J, Qian G (2023) A Comprehen-
sive Dataset Towards Hands-on Experience Enhancement in a
Research-Involved Cybersecurity Program. Proceedings of the
24th Annual Conference on Information Technology Education.
https://​doi.​org/​10.​1145/​35850​59.​36114​16

	44.	 Milajerdi SM, Gjomemo R, Eshete B, Sekar R, Venkatakrishnan
V (2019) Holmes: Real-time apt detection through correlation of
suspicious information flows,” in IEEE Symposium on Security
and Privacy (SP), pp. 1137–1152

	45.	 Hossain MN, Milajerdi SM, Wang J, Eshete B, Gjomemo R,
Sekar R, Stoller S, Venkatakrishnan V (2017) SLEUTH: Real-
time attack scenario reconstruction from COTS audit data, in
26th USENIX Security Symposium). USENIX Association, pp.
487–504

	46.	 Hossain MN, Sheikhi S, Sekar R (2020) Combating dependence
explosion in forensic analysis using alternative tag propagation
semantics, in IEEE Symposium on Security and Privacy (SP), pp.
1139–1155

	47.	 Hassan WU, Bates A, Marino D (2020) Tactical provenance
analysis for endpoint detection and response systems, in IEEE
Symposium on Security and Privacy (SP), pp. 1172–1189

	48.	 Lee KH, Zhang X, Xu D (2013) Loggc: Garbage collecting audit
log, in Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, ser. CCS. ACM, p.
1005-1016

	49.	 Xu Z, Wu Z, Li Z, Jee K, Rhee J, Xiao X, Xu F, Wang H, Jiang G
(2016) High fidelity data reduction for big data security depend-
ency analyses, in Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, ser. CCS. ACM,
p. 504-516

	50.	 Tang Y, Li D, Li Z, Zhang M, Jee K, Xiao X, Wu Z, Rhee J, Xu F,
Li Q (2018) Nodemerge: Template based efficient data reduction
for big-data causality analysis, in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS. ACM, p. 1324-1337

	51.	 Hossain MN, Wang J, Sekar R, Stoller SD (2018) Dependence-
Preserving data compaction for scalable forensic analysis,” in
27th USENIX Security Symposium. USENIX Association, pp.
1723–1740

	52.	 Michael N, Mink J, Liu J, Gaur S, Hassan WU, Bates A (2020)
On the forensic validity of approximated audit logs,” in Annual
Computer Security Applications Conference, ser. ACSAC. ACM,
p. 189-202

	53.	 Hassan W, Lemay M, Aguse N, Bates A, Moyer T (2018) Towards
scalable cluster auditing through grammatical inference over prov-
enance graphs, in Network and Distributed System Security Sym-
posium (NDSS), 01

	54.	 Cheng Z, Lv Q, Liang J, Wang Y, Sun D, Pasquier T, Han X
(2024) KAIROS: Practical Intrusion Detection and Investigation
using Whole-system Provenance, in IEEE Symposium on Security
and Privacy (SP)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://doi.org/10.1145/3131365.3131383
https://doi.org/10.1145/3196398.3196454
https://doi.org/10.1145/3196398.3196454
https://doi.org/10.21227/1m98-5h52
https://arxiv.org/abs/2011.10749
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://api.semanticscholar.org/CorpusID:7346628
https://api.semanticscholar.org/CorpusID:7346628
https://doi.org/10.1145/3585059.3611416

	ProvSec: Open Cybersecurity System Provenance Analysis Benchmark Dataset with Labels
	Abstract
	1 Introduction
	2 Design of ProvSec
	2.1 Cloud Incidents
	2.2 Provenance Data
	2.3 Provenance Analysis with Graph Improvements
	2.3.1 Improvement #1: Incomplete Capture of All Processes
	2.3.2 Improvement #2: Limited Data Fields from a Data Recorder
	2.3.3 Improvement #3: Anonymization

	2.4 Attack Cases
	2.5 Dependency Graph Reduction

	3 Evaluation
	3.1 Graph Complexity
	3.2 Simplified Backtracking Graphs

	4 Data Characteristics
	5 Discussion
	5.1 Data Sharing
	5.2 Processing Time for a Real-Time System

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

