
Vol:.(1234567890)

International Journal of Networked and Distributed Computing (2023) 11:112–123
https://doi.org/10.1007/s44227-023-00014-9

1 3

RESEARCH ARTICLE

ProvSec: Open Cybersecurity System Provenance Analysis Benchmark 
Dataset with Labels

Madhukar Shrestha1 · Yonghyun Kim1 · Jeehyun Oh1 · Junghwan (John) Rhee1   · Yung Ryn Choe2 · Fei Zuo1 · 
Myungah Park1 · Gang Qian1

Received: 20 June 2023 / Accepted: 7 November 2023 / Published online: 15 November 2023 
© The Author(s) 2023

Abstract
System provenance forensic analysis has been studied by a large body of research work. This area needs fine granularity data 
such as system calls along with event fields to track the dependencies of events. While prior work on security datasets has 
been proposed, we found a useful dataset of realistic attacks and details that are needed for high-quality provenance tracking 
is lacking. We created a new dataset of eleven vulnerable cases for system forensic analysis. It includes the full details of 
system calls including syscall parameters. Realistic attack scenarios with real software vulnerabilities and exploits are used. 
For each case, we created two sets of benign and adversary scenarios which are manually labeled for supervised machine-
learning analysis. In addition, we present an algorithm to improve the data quality in the system provenance forensic analysis. 
We demonstrate the details of the dataset events and dependency analysis of our dataset cases.
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1  Introduction

Cybersecurity incidents on our nation’s government and 
commerce are soaring. In 2021 alone, critical infrastructures 
[1], companies [2], schools [3, 4], and municipal agencies 
[5] suffered major ransomware attacks and data breaches. 
The cybersecurity company Kaseya estimated that ran-
somware compromised up to 1500 businesses during this 
time [6]. Industry statistics show that more than a thousand 
annual data breach cases have occurred since 2016 [7] and 
federal agencies experience more than 30,000 cyber inci-
dents annually [8].

System forensic analysis also known as system prove-
nance analysis [9–25] is an effective technique to track the 
dependencies across system events in a cyber incident, there-
fore, assessing the scope of damage and understanding the 
attack route of an intrusion. Previous approaches in security 
datasets have been proposed for research and educational 
purposes [26–28]. However, they lack the following char-
acteristics to be used for provenance analysis research and 
education.

•	 High-quality dependencies across events.—To conduct 
provenance analysis, such datasets should have depend-
ency information intact, so that the causality of events 
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can be systematically reasoned. Operating system calls 
with required parameters are an example that qualifies 
for this purpose.

•	 Realistic threat behavior.—The datasets should be based 
on a realistic scenario and real vulnerability exploits to 
reflect the characteristics and complexity of real software 
exploit attacks.

•	 Explicit data labeling to assist machine-learning tasks.—
The dataset should be labeled to be useful for validation 
purposes. Also, machine-learning tasks with supervi-
sion require accurate labels. We prepared clearly labeled 
dataset where each scenario case is provided with two 
recorded runtime instances; a benign scenario without an 
attack, and an adversary scenario with an attack occur-
ring. This structure can simplify manual examination 
and data pre-processing for machine-learning-based 
approaches.

This paper proposes a new dataset for system provenance 
analysis called ProvSec1 to meet this need and provide an 
improved solution for past work’s shortcomings. We use 
cyber attacks simulated in a cloud-based virtual environment 
to provide detailed high-quality digital forensic artifacts.

This paper is organized in the following way. Section 2 
presents the design of the dataset. Its evaluation is pre-
sented in Sect. 3. Section 4 presents the details of the data-
set shared. Section 5 discusses the information regarding 
data sharing and analysis. Section 6 presents related work. 
Finally, Sect. 7 concludes this paper.

2 � Design of ProvSec

To meet the aforementioned qualities demanded, we pro-
pose ProvSec, a cybersecurity provenance analysis dataset 
(Fig. 1) comprising the following.

2.1 � Cloud Incidents

Virtual machines simulating the hosts of cyber attacks will 
provide realistic and safe sandbox environments for cyber-
security experiments while preventing any unintended dam-
ages such as mistaken security operations during course 
modules. Also, virtualization technology is useful for inte-
grating the management of virtual environments and data 
transfer, so that forensic data are collected, labeled, and 
managed with convenience.

2.2 � Provenance Data

In practical incident response research and education, 
obtaining high-quality data is critical to successfully expose 
attack sequences from piles of evidence. This is one impor-
tant implementation goal. In real incidents, investigators 
may end up with an incomplete attack scenario due to 
various reasons such as an organization’s unprepared cyber 
infrastructure against potential incidents (e.g., lack of moni-
toring software and loss of logs).

ProvSec records and safely preserves system foren-
sic event history and artifacts, so that we can analyze and 
recover the details of attack and defense system activities. 
This architecture will offer cyber analysts/investigators real-
istic environments, data navigation interfaces, and quality 
forensic data. They will access these historical data through 
well-defined interfaces and available functions for manual 
and automated investigation.

Another important design issue of ProvSec is deciding 
which data to collect. Traditionally, provenance analysis 
research relies on operating system calls, which we also 
chose for the data format. A system call is a lower level inter-
face invoked by software to use the services of the operating 
system kernel. Critical services for resources and privileges 
(e.g., memory, file, network, and processes) are performed 
via system calls. Therefore, this interface is important to 
monitor to understand attack activities and determine their 
causalities (e.g., a network intrusion → login → data copy).

Each event is stored as a json object with 14 fields shown 
in Table 1. We selected and adopted several fields available 
in sysdig event tracer for our dataset format. datetime is the 
event time relative to the start of the execution of the case. 

Fig. 1   Architecture of ProvSec 
dataset

1  ProvSec is an acronym of Open System Provenance Analysis Secu-
rity Dataset.
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type is the system call name. We provide the names and 
program IDs of the current process and the parent process. 
prog_args field is useful to show the program parameters. 
File events have a file as an object whose name is described 
in the fd_name field and the type is shown in the fd_type 
field. The network events have the IP addresses and ports for 
the client and server sides, which are respectively described 
in the fd_cip, fd_cport fields (client side) and in fd_sip, fd_
sport fields (server side). Each system call can be generated 
as one or two events (e.g., the start event of a system call 
and the end event of the system call) depending on system 
call types. Then, the order field shows the order (e.g., 0, 1).

2.3 � Provenance Analysis with Graph Improvements

These events are analyzed by event dependence analysis 
[17] known as a backtracking algorithm. We made several 
improvements in the original backtracking algorithm as 
shown in Algorithm 1 to improve multiple practical issues. 
Note this algorithm is general to any provenance data mak-
ing it applicable to related work.

2.3.1 � Improvement #1: Incomplete Capture of All Processes

In the original backtracking system [17], the data recorder is 
integrated with the hypervisor. Therefore, it tracks all pro-
cesses starting from the very first one. However, we use a 
data recorder (sysdig) on top of a COTS operating system 
(ubuntu) which initiates recording after the machine has 
finished the booting sequence and loading daemons. This 
deployment issue causes the data recorder to miss the crea-
tion of certain processes.

While this issue can be partially alleviated by starting the 
recording software as early as possible in the booting stage, 

there is always a chance that some process starts could be 
missed from the recording, while their behavior is recorded. 
We handled this issue for practical usage by including such 
programs into the graph using artificial process creation 
when their behavior is observed for the first time. As shown 
in the lines 2–15 of Algorithm 1, when their first behavior 
is processed, the algorithm creates an artificial fork (process 
creation) event.

2.3.2 � Improvement #2: Limited Data Fields from a Data 
Recorder

We found some recording fields from our data monitoring 
software; sysdig are missing as such data may not be avail-
able at the time when the data are retrieved and stored inside 
the OS kernel.

To improve data quality, we added logic to supplement 
such missing information as much as possible by extracting 
it from the event’s metadata and other recorded history. This 
part is shown in the lines 16–18 of Algorithm 1.

2.3.3 � Improvement #3: Anonymization

There are some names of processes or resources that might 
be sensitive to be identified. We applied an anonymization 
process to replace such names with artificial names. Lines 
29–35 show this process. Generally, the anonymization of 
events is a complicated process. However, this is not the case 
for our approach, because we use a fixed list of event fields 
that can be properly examined and anonymized.

2.4 � Attack Cases

We created several scenarios of cyber attacks where their 
data are generated by setting up virtual machines, software, 

Table 1   ProvSec event format Field name Description Example value

Datetime Time relative to the start time 49544039877
Type System call name execve
proc_name Process name ps
proc_pname Parent process name cloud-soft-01
proc_args Process argument -e -o pid,ppid,state,command
proc_pid Process ID 9747
proc_ppid Parent process ID 3247
fd_cip Client IP < IP

1
>

fd_cport Client port 3425
fd_name File descriptor name /lib/x86_64-linux-gnu/libc.so.6
fd_sip Server IP < IP

2
>

fd_sport Server port 80
fd_type File descriptor type ipv4
Order Event order 1
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and triggering attack actions along with manual labeling of 
behavior.

•	 Case 01—Nginx integer overflow vulnerability: This case 
represents an integer overflow vulnerability that exists 
in Nginx software whose versions are between 0.5.6 and 
1.13.2. This vulnerability is caused by insufficient bound 
checking (CVE-2017-7529).

•	 Case 02—Path traversal and file disclosure vulnerability 
in Apache HTTP Server : Apache 2.4.49 has a vulnerabil-
ity that allows a path traversal attack to map URLs to files 
outside the expected document root (CVE-2021-41773). 
We used this vulnerability to execute several UNIX com-
mands.

•	 Case 03—Python PIL/pillow remote shell command 
execution via ghostscript: Ghostscript whose version is 

before 9.24 has a vulnerability that allows the exploita-
tion of a remote shell command. We create a file /tmp/
test.txt remotely in the target server as a demonstration 
(CVE-2018-16509)

•	 Case 04—PHP IMAP remote command execution vul-
nerability: The PHP IMAP extension is used to send and 
receive emails. imap_open call internally uses ssh and 
an attacker can inject a parameter for a remote command 
execution. We conducted an attack to execute the com-
mand echo ’1234567890’>/tmp/test0001 (CVE-2018-
19518)

•	 Case 05—Apache Log4j2 lookup feature JNDI injection 
with a reverse shell: Apache Log4j, a Java-based logging 
utility, has a vulnerability CVE-2021-44228 in its sup-
port for JNDI (Java Naming and Directory Interface). We 
used this vulnerability to initiate a reverse shell.

Algorithm 1   Enhanced back-
tracking algorithm
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•	 Case 06—Apache Tomcat AJP Arbitrary File Read/
Include Vulnerability: Apache Tomcat has a vulnerabil-
ity CVE-2020-1938 known as Ghostcat that allows an 
attacker a file read. We used this vulnerability to read a 
sensitive password file, /etc/passwd, as a demonstration 
of an arbitrary file read.

•	 Case 07—Redis Lua Sandbox Escape and Remote Code 
Execution: Redis, an open-source in-memory data struc-
ture store, has a vulnerability CVE-2022-0543 to allow 
an escape of Lua sandbox and an execution of an arbi-
trary remote command. We used this vulnerability to run 
UNIX commands and dump the password file.

•	 Case 08—Consul service APIs’ misconfiguration leading 
to Remote Code Execution (RCE) and reverse shell: Con-
sul is an open-source software to discover and configure 
services. It has a vulnerability that allows remote code 
execution. We created a remote shell followed by several 
attack commands.

•	 Case 09—Path traversal and file disclosure vulnerability 
in Apache HTTP Server: This attack case is regarding 
CVE-2021-42013 which is a vulnerability caused by an 
incomplete fix of CVE-2021-41773. After the fix, the 
Apache server still allows path traversals and execution 
of remote commands.

•	 Case 10—Django QuerySet.order_by SQL Injection Vul-
nerability: Django has a vulnerability that allows SQL 
injection (CVE-2021-35042). We used this vulnerability 
to collect information from the machine as an error mes-
sage.

•	 Case 11—Escape from a Docker container: Vulnerabil-
ity on docker: Docker has a vulnerability for an attacker 
to escape a container and run commands (CVE-2019-
5736). We used this vulnerability to create a backdoor 
and execute several UNIX commands.

2.5 � Dependency Graph Reduction

We identified a detection point of each dataset case and con-
ducted dependency analysis to reduce the graph size. The 
examples of several dataset cases are presented in the evalu-
ation section. They show a significant reduction in the sizes 
and complexity of graphs.

3 � Evaluation

This section presents the evaluation of ProvSec datasets. 
We created a total of 11 attack scenarios using widely used 
software and vulnerabilities.

We created the ProvSec dataset using docker containers 
and sysdig on top of Ubuntu 20.04. We have prepared a total 
of eleven real attack scenarios for this dataset. The details 
for these cases are illustrated in Figs. 2, 4, and 6, which 

respectively show the full attack behavior of C02, C03, and 
C05 scenarios.

We have three different types of behavior: process, file, 
and network, which are shown in different colors. In each 
figure, the red nodes and edges represent processes and pro-
cess creation events, such as execve, fork, and clone system 
calls. Blue nodes and edges represent files and file activities. 
Their examples include open, close, read, and write system 
calls and their variants. The green nodes and edges represent 
network addresses and network activities, such as connect 
and accept system calls.

3.1 � Graph Complexity

Table 2 shows the details of 11 incident cases. The graph 
complexity of each case is presented in Table 3. |N| repre-
sents the total number of nodes and |E| represents the total 
number of edges. This table also shows the complexity of 
backtrack graphs which are simplified by applying a depend-
ency analysis on the detection points. Their nodes and edges 
are shown in |N

bt
| and |E

bt
| columns and their reduction rates 

compared to the full graphs are respectively shown in |Nbt
|

|N|
 

and |Ebt
|

|E|
 . The nodes are simplified to 0.5–17.9% of the origi-

nal graphs. The edge complexity got lower to 0.015–9.5%.

3.2 � Simplified Backtracking Graphs

In this section, we explain three cases of attack graphs and 
their simplified attack behavior as examples.

Case 02: Apache Path Traversal and File Conflict of 
interest: Fig. 3 shows the simplified behavior of the origi-
nal graph, Fig. 2 which demonstrates a path traversal and 
file disclosure vulnerability attack targeted on Apache http 
server. The simplified graph of Fig. 3 shows that the shell 
(sh) and ls processes were invoked from the httpd process 
exposing the paths of the server.

Case 03: Python PIL/Pillow RCE via Ghostscript: Fig. 5 
highlights the core attack of the original graph, Fig. 4 by 
removing irrelevant nodes and edges of the C03 scenario. 
The intrusion was detected by the touch command which 
was triggered by shell processes (sh whose process IDs are 
87004 and 87005). We can confirm that these processes were 
created by the Ghostscript (gs) processes whose process IDs 
are 87003 and 87004 which came from the python process 
(python). This graph indicates the root cause of an vulner-
ability exploit of Ghostscript in the Python program.

Case 05: Apache log4j lookup with JNDI injection: Fig. 6 
illustrates a complex behavior of the Apache Log4j inci-
dent. This attack is initiated via the JNDI injection and a 
reverse shell demonstrated in its backtrack graph, Fig. 7. In 
this graph, we can observe a shell process (sh) of its process 
ID, 9743, was forked from a java process (PID 9712). Note 
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this shell process was initially a java process and then turns 
into a shell using a execve system call. This shell process 
conducts two attack behavior copying (cp) and modifying 
(touch) a sensitive file (FiscalYearEndReport.xlsx). This 
simplified graph demonstrates what accesses have occurred 
on the sensitive file as a summary of attack behavior.

4 � Data Characteristics

Table 4 shows the characteristics of the dataset events that we 
share. For 11 attack cases, we have two samples of record-
ings: one for a benign workload without any attack and the 
other for an adversary workload with attack behavior. For each 
recording, the number of events (#E), the number of distinct 

process names (#P), the number of distinct IP addresses (#I), 
and the number of different system call types (#T) are pre-
sented. The data recorder, sysdig, that we use generates one 
or two events per system call. Therefore, the total number of 
system calls will be less than #E. The total number of events 
of a benign case or an adversary case is different because of 
different workloads. In all eleven data cases, our dataset has 
341.7K events in the benign cases and 987.7K events in the 
abnormal cases.

Fig. 2   Dependency graph of C02-path traversal and file disclosure vulnerability in Apache HTTP Server

Fig. 3   Simplified backtrack graph of C02-path traversal and file disclosure vulnerability in Apache HTTP server
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5 � Discussion

5.1 � Data Sharing

We share our dataset with the cybersecurity community in the 
following link: https://​uco-​cyber.​github.​io/​resea​rch/#​provs​ec.

5.2 � Processing Time for a Real‑Time System

We used the Python language to write data processing code. 
Loading and analyzing the entire 1.3 million events take less 

than a minute with our Python implementation. If a compiled 
native program written in C or C++ is used, we can speed 
up this processing time further significantly. As the next step 
of this project, we are processing these events collected from 
multiple machines for anomaly detection in a live fashion. 
Therefore, we are able to use this type of data in a real-time 
environment.

Fig. 4   Dependency graph of C03-python PIL/pillow remote shell command execution via ghostscript

Fig. 5   Simplified backtrack graph of C03-python PIL/Pillow remote shell command execution via ghostscript

Table 2   Details of the incident 
cases

# Name CVE Description

C01 nginx CVE-2017-7529 Nginx integer overflow vulnerability
C02 apache CVE-2021-41773 Path traversal and file disclosure vulnerability
C03 ghostscript CVE-2018-16509 Python PIL/Pillow RCE via Ghostscript
C04 php CVE-2018-19518 php IMAP RCE vulnerability
C05 log4j CVE-2021-44228 Apache log4j lookup with JNDI injection
C06 tomcat CVE-2020-1938 Apache Tomcat AJP arbitrary file read/include
C07 redis CVE-2022-0543 Redis Lua sandbox escape and RCE
C08 consul N/A Consul service APIs misconfiguration, RCE
C09 apache CVE-2021-42013 Path traversal and file disclosure
C10 django CVE-2021-35042 Django QuerySet.order_by SQL injection
C11 docker CVE-2019-5736 Escape from a Docker container

https://uco-cyber.github.io/research/#provsec
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6 � Related Work

In this section, we compare our work with multiple prior 
works proposed for security datasets.

Network-oriented dataset: Many existing works focus 
on network-oriented data, such as five-tuples or full packet 
recordings (e.g., PCAP) [29–34]. While these datasets have 
an influence on multiple research works, they lack the infor-
mation necessary to conduct dependency analysis of operat-
ing system events for system provenance analysis.

Software vulnerability dataset: Other dataset work 
[35–38] is regarding software vulnerability including useful 
features, such as source code information, CWE (Common 
Weakness Enumeration), CVE (Common Vulnerability Enu-
meration), code metrics, etc. The datasets of this category 
have full details at the code level. However, they do not pro-
vide the runtime data on how they use operating system 
services and their parameters which are necessary to conduct 
system provenance analysis.

Provenance dataset: Multiple cybersecurity datasets 
have been introduced for the details of system behavior 
which enables provenance analysis. ISOT-CID dataset [26] 
includes data of multiple formats including network traf-
fic, system logs, performance data (e.g., CPU utilization), 
and system calls. While these data are quite close to what 
we provide, the system call data are incomplete and not 
structured. They lack full details and the records are in a 
non-standard format similar to the strace output. Therefore, 
it takes manual effort to parse, curate, and extract useful 
information from the records. ProvMark [39] is a bench-
marking system regarding provenance expressiveness, which 
evaluates three types of provenance recorders: OPUS [40], 
CamFlow[41], and SPADE [42], [43].

DARPA released Operationally Transparent Cyber 
(OpTC) data that was used to evaluate the DARPA Trans-
parent Computing (TC) program [27]. These data have been 
used in multiple papers for analyzing APT attacks. While 

this dataset has a large volume of rich data, it lacks proper 
explanation, so that the details of attacks are understood by 
researchers. In this regard, Anjun et al. analyzed and pub-
lished the details of OpTC dataset [28] explaining the details 
of characteristics. However, still, this paper describes overall 
statistics such as the types of actions and objects.

Compared to these approaches, ProvSec has several 
advantages that can help researchers conduct research with 
provenance data especially for machine-learning tasks. Our 
dataset has full details of system calls and parameters that 
are organized in the json format and enable the construction 
of operating system dependencies and system provenance 
analysis. We utilized real vulnerabilities and proof-of-con-
cept (PoC) code to simulate attack scenarios inside docker 
environments which are recorded in the operating system 
kernel.

As a most useful characteristic, we provide manual labe-
ling of the attacks that are helpful to identify the root causes 
of attacks and the full details of attack behavior which will 
help experiments that need ground truth validation or super-
vised machine-learning experiments. Each scenario data 
case is organized into two separate runtime instances and 
corresponding recording files, (1) one benign case and (2) 
an adversary case which is recorded without and with attack 
behavior. This clear labeling structure can significantly facil-
itate the data pre-processing for machine-learning tasks.

Provenance analysis: Provenance analysis has been stud-
ied by a large body of work in recent years [9–25]. Recent 
survey papers [24, 25] summarize multiple approaches con-
ducted in the provenance tracking and dependency analysis 
according to their categorizations. Multiple attack detection 
approaches [23, 44–47] have been proposed to detect APT 
campaign effectively. Due to a large volume of data, several 
ideas for data reduction have been explored, such as execu-
tion partitioning, garbage collection, and approximations of 
behavior patterns [18, 48–53]. Regarding the mechanisms 
of collecting provenance data, several approaches used 

Table 3   Details of the incident 
provenance graphs

Original graph Reduced graph Reduction rate

# |N| |E| |N
bt
| |E

bt
| |N

bt
|

|N|

|E
bt
|

|E|

C01 124 2758 4 3 3.2% 0.11%
C02 99 1044 8 8 8.1% 0.77%
C03 56 105 10 10 17.9% 9.5%
C04 212 1454 11 13 5.2% 0.89%
C05 601 6177 9 10 1.5% 0.16%
C06 143 898 7 8 4.9% 0.89%
C07 80 202 10 10 12.5% 5.0%
C08 1203 34173 6 5 0.5% 0.015%
C09 117 1383 8 8 6.8% 0.59%
C10 176 1704 5 5 2.8% 0.29%
C11 1764 47183 295 729 16.7% 1.55%
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Fig. 6   Dependency Graph of 
C05-Apache Log4j2 lookup 
feature JNDI injection with a 
reverse shell
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OS-level data collectors with program instrumentation [18, 
19]. A kernel-based framework [21] and hardware-based 
technique [22] are also proposed. As another trend, machine-
learning-based solutions [10, 44, 54] are increasingly being 
used to improve detection. All such approaches can benefit 
from the provenance dataset with high-quality labeling. Our 
work can contribute to such approaches as additional evalu-
ation data.

7 � Conclusion

In this paper, we introduce a new dataset for security prov-
enance analysis along with a detailed description, analysis, 
and clearly provided labels with two separate execution 
traces of a benign scenario and an adversary scenario. This 
dataset is differentiated from prior work with detailed data 
for causal dependencies across events, the usage of real vul-
nerabilities and PoC exploits, and manual labeling which 
particularly would be helpful for validation and supervised 
machine-learning tasks. We performed an enhanced causal-
ity dependence analysis with our improved algorithm and 
demonstrated how the dependency analysis can simplify the 
analysis of each attack scenario with our dataset cases. We 
made our dataset public, so that the research and education 
communities advancing provenance analysis can benefit 
from this dataset.
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Table 4   Data characteristics

#E total number of events, #P total number of distinct process names, #I total number of distinct IP 
addresses, #T total number of distinct system call types

# Name Benign Adversary

#E #P #I #T #E #P #I #T

C01 Nginx 10268 25 7 47 7095 17 7 26
C02 Apache 3469 16 4 24 3204 18 3 26
C03 Ghostscript 5240 17 2 26 3065 15 2 25
C04 Php 4337 19 4 36 5380 21 8 39
C05 Log4j 13257 30 4 45 808501 36 10 54
C06 Tomcat 167430 25 2 28 7848 30 5 33
C07 Redis 20617 26 3 37 7538 21 4 23
C08 Consul 72254 43 28 50 100785 62 31 61
C09 Apache 2934 15 4 23 3886 18 2 26
C10 Django 13392 16 7 27 15676 17 6 27
C11 Docker 28539 39 5 62 24742 33 5 60

https://uco-cyber.github.io/research/#provsec
http://creativecommons.org/licenses/by/4.0/
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