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Abstract
Personalized recommendation based on multi-arm bandit (MAB) algorithms has shown to lead to high utility and efficiency 
as it can dynamically adapt the recommendation strategy based on feedback. However, unfairness could incur in personalized 
recommendation. In this paper, we study how to achieve user-side fairness in personalized recommendation. We formulate our 
fair personalized recommendation as a modified contextual bandit and focus on achieving fairness on the individual whom 
is being recommended an item as opposed to achieving fairness on the items that are being recommended. We introduce 
and define a metric that captures the fairness in terms of rewards received for both the privileged and protected groups. We 
develop a fair contextual bandit algorithm, Fair-LinUCB, that improves upon the traditional LinUCB algorithm to achieve 
group-level fairness of users. Our algorithm detects and monitors unfairness while it learns to recommend personalized vid-
eos to students to achieve high efficiency. We provide a theoretical regret analysis and show that our algorithm has a slightly 
higher regret bound than LinUCB. We conduct numerous experimental evaluations to compare the performances of our fair 
contextual bandit to that of LinUCB and show that our approach achieves group-level fairness while maintaining a high utility.

Keywords  Contextual bandit · Fairness · Online recommendation · Personalized recommendation

Abbreviation
MAB	� Multi-arm Bandit
UCB	� Upper confidence bound
LinUCB	� Upper confidence bound bandit with linear 

payoff function
Fair-LinUCB	� Fair upper confidence bound bandit with 

linear payoff function

1  Introduction

Personalized recommendation based on multi-arm bandit 
(MAB) algorithms has become a popular topic of research 
and shown to lead to high utility and efficiency [2] as it 
dynamically adapts the recommendation strategy based on 
feedback. However, it is also known that such personaliza-
tion could incur biases or even discrimination that can influ-
ence decisions and opinions [12, 13]. Recently researchers 
have started taking fairness and discrimination into consid-
eration in the design of MAB based personalized recom-
mendation algorithms [4, 30, 44]. However, they focused 
on the fairness of the recommended items (e.g., services 
provided by small or large companies) instead of the custom-
ers who received those items. For example, [30] focused on 
individual fairness, i.e., “treating similar individuals sim-
ilarly,” and considered the individual as an arm with the 
aim of ensuring the probability of selecting an arm is equal 
to the probability with which the arm has the best quality 
realization. [4] aimed to achieve group fairness over items 
by ensuring the probability distribution from which items 
are sampled satisfies certain fairness constraints at all time 
steps. In this paper, we aim to develop novel algorithms to 
ensure fair and ethical treatment of customers with different 
profile attributes (e.g., gender, race, education, disability, 
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and economic conditions) in a contextual bandit based per-
sonalized recommendation.

Consider the personalized educational video recom-
mendation in Table 1c as an illustrative example. Table 1a 
shows two students, Alice and Bob, having the same profiles 
except for the gender. Table 1b shows potential videos and 
Table 1c shows recommendations by a personalized recom-
mendation algorithm. Focusing on the fairness of the video 
would ensure that videos featuring female speakers have 
similar chances of being recommended as those featuring 
male speakers. However, one group of students could benefit 
more from the recommended videos than the other group, 
therefore yielding to an unequal improvement of the learn-
ing performances. In our work, rather than focusing on the 
fairness of the item being recommended, i.e., the video, we 
focus on the user-side fairness in terms of the reward, i.e., 
the improvement of student’s learning performance after 
watching the recommended video. We want to ensure that 
both male students and female students who share similar 
profiles will receive a similar reward regardless of the video 
being recommended, such that they both benefit from the 
video recommendations and improve their learning perfor-
mance equally.

We study how to achieve the user-side fairness in the 
classic contextual bandit algorithm. The contextual bandit 
framework [26], which is used to sequentially recommend 
items to a customer based on her contextual information, 
is able to fit user preferences, address the cold-start prob-
lem by balancing the exploration and exploitation trade-off 
in recommendation systems, and simultaneously adapt the 
recommendation strategy based on feedback to maximize 
the customer’s learning performance. However, such a per-
sonalized recommendation system could induce an unfair 
treatment of certain customers which could lead to discrimi-
nation. We develop a novel fairness aware contextual bandit 
algorithm such that customers will be treated fairly in per-
sonalized learning.

We train our fair contextual bandit algorithm to detect 
discrimination, that is, whether or not a group of customers 
is being privileged in terms of reward received. Our fair con-
textual bandit algorithm then measures to what degree each 
of the items (arms in bandits) contributes to the discrimina-
tion. Furthermore, in order to counter the discrimination, if 
any, we introduce a fairness penalty factor. The goal of this 
penalty factor is to maintain a balance between fairness and 
utility, by ensuring that the arm picking strategy will not 
incur discrimination whilst achieving good utility. Finally, 
we compare our algorithm against the traditional LinUCB 
both theoretically and empirically and we show that our 
approach not only achieves group-level fairness in terms of 
reward, but also yields comparable effectiveness.

Overall, our contributions are twofold. First, we develop 
a fairness aware contextual bandit algorithm that achieves 

user-side fairness in terms of reward and is robust against 
factors that would otherwise increase or incur discrimina-
tion. Secondly, we provide a theoretical regret analysis to 
show that our algorithm has a regret bound higher than 
LinUCB up to only an additive constant.

2 � Related Work

2.1 � Bandits Based Recommendation

Many bandits based algorithms have been developed to sug-
gest recommendations for products and services. Contextual 
bandit [26] is an extension of the classic multi-armed bandit 
(MAB) algorithm [24]. The MAB chooses an action from 
a fixed set of choices to maximize the expected gain where 
each choice’s properties are only partially known at the time 
of choice and the gain of a choice will be observed only after 
the action is taken. In other words, the MAB simultaneously 
attempts to acquire new information (exploration) and opti-
mize decisions based on existing knowledge (exploitation). 
Compared to the traditional content-based recommendation 
approaches, the MAB is able to fit dynamic-changed user 
preferences over time and address the cold-start problem by 
balancing the exploration and exploitation trade-off in the 
recommendation system. However, the MAB does not use 
any information about the state of the environment. The con-
textual bandit model extends the MAB model by making the 
recommendation conditional on the state of the environment. 
Other variations include stochastic [1], Bayesian [14], adver-
sarial [35], and non-stationary [16] bandits. In this paper, we 
focus on the contextual bandit model because it is posed to 
help identify which items work for whom. The contextual 
information is the customer’s features and the features of 
the items under exploration, and the reward is derived from 
purchase record or customer feedback.

2.2 � Fairness‑Aware Machine Learning

Fairness aware machine learning is receiving increased 
attention. Discrimination is unfair treatment towards indi-
viduals based on the group to which they are perceived to 
belong. In machine learning, training data may have histori-
cally biased decisions against the protected group; models 
trained on such data may make discriminatory predictions 
against the protected group. The fair learning research com-
munity has developed extensive fair machine learning algo-
rithms based on a variety of fairness metrics, e.g., equality of 
opportunity and equalized odds [17, 41], direct and indirect 
discrimination [6, 42, 43], counterfactual fairness [25, 33, 
37], and path-specific counterfactual fairness [38].

Recently researchers have started taking fairness and dis-
crimination into consideration in the design of MAB based 
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personalized recommendation algorithms [3, 4, 11, 21–23, 
30, 44]. Among them, [23] was the first paper of studying 
fairness in classic and contextual bandits. It defined fair-
ness with respect to one-step rewards introduced a notion of 
meritocratic fairness, i.e., the algorithm should never place 
higher selection probability on a less qualified arm (e.g., job 
applicant) than on a more qualified arm. This was inspired 
by equal treatment, i.e., similar people should be treated 
similarly. The following works along this direction include 
[22] for infinite and contextual bandits, [21] for reinforce-
ment learning, [30] for the simple stochastic bandit setting 
with calibration based fairness. In [28], the authors studied 
fairness in the setting that multiple arms can be simultane-
ously played and an arm could sometimes be sleeping. [15] 
used an unknown Mahalanobis similarity metric from some 
weak feedback that identifies fairness violations through an 
oracle rather than adopting a quantitative fairness metric 
over individuals. The fairness constraint requires that the 
difference between the probabilities that any two actions are 
taken is bounded by the distance between their contexts. All 
the above papers require some fairness constraint on arms at 
every round of the learning process, which is different from 
our user-side fairness setting. How to achieve fairness in 
other related contexts have also been studied, e.g., sequential 
decision making [18], online stochastic classification [34], 
offline contextual bandits [31], and collaborative filtering 
based recommendation systems [10, 39].

Our work is mainly motivated by the recent research 
works that focused on fairness from the arm perspective. 
Specifically, in [5], fairness is defined as a minimum rate 
that a task or a resource is assigned to a user in their con-
text, which means the probability of each arm being pulled 
should be larger than a threshold for each time. Similarly, 
[32] also aimed to ensure that each arm is pulled at least a 
pre-specified fraction of times throughout all times. Since 
most of the existing fair bandit algorithms require some 
fairness constraint on arms at every round of the learning 
process, it is imperative to develop fairness-aware bandit 
algorithms such that the decisions made by those algorithms 
could achieve user-side fairness.

3 � Preliminary

Throughout this paper, we use bold letters to denote a vector. 
We use ||x||2 to define the L-2 norm of a vector x ∈ ℝ

d . For 
a positive definite matrix A ∈ ℝ

d×d , we define the weighted 
2-norm of x ∈ ℝ

d to be ��x��A =
√
xTAx.

3.1 � LinUCB Algorithm

We use the linear contextual bandit [7] as one baseline 
model for our personalized recommendation. In the linear 
contextual bandit, the reward for each action is an unknown 
linear function of the contexts. Formally, we model the 
personalized recommendation as a contextual multi-armed 
bandit problem, where each user u is a “bandit player”, each 
potential item a ∈ A is an arm and k is the number of item 
candidates. At time t, there is a coming user u. For each 
item a ∈ A , its contextual feature vector xt,a ∈ ℝ

d represents 
the concatenation of the user and the item feature vectors. 
The algorithm takes all contextual feature vectors as input, 
recommends an item at ∈ A and observes the reward rt,at , 
and then updates its item recommendation strategy with the 
new observation (xt,at , at, rt,at ) . During the learning process, 
the algorithm does not observe the reward information for 
unchosen items.

The total reward by round t is defined as 
∑

t rt,at and the 
optimal expected reward as �[

∑
t rt,a∗ ] , where a∗ indicates 

the best item that can achieve the maximum reward at time 
t. We aim to train an algorithm so that the maximum total 
reward can be achieved. Equivalently, the algorithm aims 
to minimize the regret R(T) = �[

∑
t rt,a∗ ] − �[

∑
t rt,at ] . The 

contextual bandit algorithm balances exploration and exploi-
tation to minimize regret since there is always uncertainty 
about the user’s reward given the specific item.

Table 1   Illustrative example

Stu-
dent

Gender Grade GPA ..

Alice female 9th 2.6 ..
Bob male 9th 2.6 ..
.. .. .. .. ..

(a) Students

Video Gender of 
speaker

Rating Length ..

2501 Female 4.3 4 min ..
0964 Male 4.3 6 min ..
.. .. .. .. ..

(b) Videos

Student Video Reward
Alice 2501 0.60
Bob 0964 0.80
.. .. ...
(c) Recommendations
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We adopt the idea of upper confidence bound (UCB) 
for our personalized recommendation. Algorithm 1 shows 
the LinUCB algorithm as introduced by [29]. It assumes 
the expected reward is linear in its d-dimensional features 
xt,a with some unknown coefficient vector �∗

a
 . Formally, for 

all t, we have the expected reward at time t with arm a as 
�[rt,a|xt,a] = �

∗T
a
xt,a . Here the dot product of �∗

a
 and xt,a could 

also be succinctly expressed as ⟨�∗
a
, xt,a⟩ . At each round t, we 

observe the realized reward rt,a = ⟨�∗
a
, xt,a⟩ + �t where �t is 

the noise term.
Basically, LinUCB applies ridge regression technique to 

estimate the true coefficients. Let Da ∈ ℝ
ma×d denote the 

context of the historical observations when arm a is selected 
and ra ∈ ℝ

ma denote the relative rewards. The regularised 
least-square estimator for �a could be expressed as:

where � is the penalty factor of the ridge regression. The 
solution to Eq. 1 is:

[29] derived a confidence interval that contains the true 
expected reward with probability at least 1 − �:

(1)𝜽̂a = argmin
𝜽∈ℝd

�
ma�
i=1

(ri,a − ⟨𝜽,Da(i, ∶)⟩)2 + ���𝜽��2
2

�

(2)𝜽̂a = (DT
a
Da + �Id)

−1DT
a
ra

for any 𝛿 > 0 , where � = 1 +
√
ln(2∕�)∕2 . Following the 

rule of optimism in the face of uncertainty for linear bandits 
(OFUL), this confidence bound leads to a reasonable arm-
selection strategy: at each round t, pick an arm by

where Aa = DT
a
Da + �Id . The parameter � could be tuned to 

a suitable value in order to improve the algorithm’s perfor-
mance. Line 13 and 14 in Algorithm 1 provide an iterative 
way to update the arm-related matrices Aa and ba . In the 
remaining content we will denote the weighted 2-norm √
x
T
t,aA

−1
a
xt,a as ||xt,a||A−1

a
 for the sake of simplicity.

3.2 � Regret Bound of LinUCB

Existing research works (e.g., [1, 36]) on deriving the 
regret bound of LinUCB are based on the following four 
assumptions: 

1.	 The true coefficient �∗ is shared by all arms.
2.	 The error term �t follows 1-sub-Gaussian distribution for 

each time point.
3.	 T {�t}ni=1 is a non-decreasing sequence with �1 ≥ 1.
4.	 T ||xt,a||2 < L , ||�∗||2 < M for all time points and arms.

|||�̂
T

a
xt,a − �[rt,a|xt,a]||| ≤ 𝛼

√
x
T
t,a(D

T
a
Da + 𝜆Id)xt,a

(3)at = argmaxa∈At

(
𝜽̂
T

a
xt,a + �

√
x
T
t,aA

−1
a
xt,a

)
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For assumption 1, since there is only one unified � , we 
change the notation of Da , ra to Dt and rt to denote the his-
torical observations up to time t for all arms. The matrix Aa 
will be denoted as At accordingly. For assumption 3, follow-
ing [1] and [36], we modify � in Algorithm 1 to be a time 
dependent sequence to get a suitable confidence set for �∗ 
at each round, but use a fixed and tuned � in the experiment 
part to make the online computation more efficient.

To derive the regret bound, the first step is to construct a 
confidence set Ct ∈ ℝ

d for the true coefficient. At each round 
t, a natural choice is to make Ct centered at 𝜽̂t−1 . [1] shows 
that the confidence ellipsoid could be a suitable choice for 
constructing the confidence region, which is defined as 
follows:

The key point is how to obtain an appropriate �t at each 
round to make Ct contain the true parameter �∗ with high 
probability and be as small as possible simultaneously. 
[1] takes the advantages of the martingale techniques and 
derives a confidence bound in terms of the weighted 2-norm 
shown in Lemma 1.

Lemma 1  (Theorem 2 in [1]) Suppose the noise term is 
1-sub-Gaussian distributed, let � ∈ (0, 1) , with probability 
at least 1 − � , it holds that for all t ∈ ℕ

+,

The RHS of Eq. 4 gives an appropriate selection of �t 
for the confidence ellipsoid. Under the fact that �∗ ∈ Ct and 
the optimistic arm selection rule of LinUCB we could fur-
ther bound the regret at each round with high probability 
by rt = ⟨𝜽∗, xt,a⟩ − ⟨𝜽̂, xt,a⟩ ≤ 2�t��xt,a��A−1

t
 . Summing up 

the regret at each round, the following corollary gives a 
Õ(dlog(T)) cumulative regret bound up to time T.

Corollary 1  (Corollary 19.3 in [27]) Under the assump-
tions above, the expected regret of LinUCB with � = 1∕T  
is bounded by

Ct = {𝜽 ∈ ℝ
d ∶ ||𝜽 − 𝜽̂t−1||At−1

< 𝛼t}

(4)
��𝜽∗ − 𝜽̂t��At

≤

√
���𝜽∗��2 +

�
2log(�At�1∕2��Id�−1∕2�−1)

where C is a suitably large constant.

4 � Methods

We focus on how to achieve user-side fairness in contextual 
bandit based recommendation and present our fair contextual 
bandit algorithm, called Fair-LinUCB and derive its regret 
bound.

4.1 � Problem Formulation

We define a sensitive attribute S ∈ xt,a with domain values 
{s+, s−} where s+ ( s− ) is the value of the privileged (pro-
tected) group. Let Ts denote a time index subset such that the 
users being treated at time points in Ts all hold the same 
sensitive attribute value s. We introduce the group-level 
cumulative mean reward as r̄s = 1

�Ts�
∑

t∈Ts
rt,a . Specifically, 

r̄s
+ denotes the cumulative mean reward of the individuals 

with sensitive attribute S = s+ , and r̄s− denotes the cumula-
tive mean reward of all individuals having the sensitive 
attribute S = s−.

We define the group fairness in contextual bandits as 
�[r̄s

+

] = �[r̄s
−

] , more specifically, the expected mean 
reward of the protected group and that of the unprotected 
group should be equal. A recommendation algorithm incurs 
group-level unfairness in regards to a sensitive attribute S 
if |�[r̄s+] − �[r̄s

−

]| > 𝜏 where � ∈ ℝ
+ reflects the tolerance 

degree of unfairness.

4.2 � Fair‑LinUCB algorithm

We describe our fair LinUCB algorithm and show its pseudo 
code in Algorithm 2. The key difference from the tradi-
tional LinUCB is the strategy of choosing an arm during 
recommendation (shown in Line 12 of Algorithm 2). In the 
remainder of this section, we explain how this new strategy 
achieves user-side group-level fairness.

(5)RT ≤ Cd
√
Tlog(TL)
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Given a sensitive attribute S with domain values 
{s+, s−} , the goal of our fair contextual bandit is to mini-
mize the cumulative mean reward difference between the 
protected group and the privileged group while preserv-
ing its efficiency. Note that Fair-LinUCB can be extended 
to the general setting of multiple sensitive attributes 
Sj ∈ S = {S1, S2, ..., Sl} where S ⊂ xt,a and each Sj can have 
multiple domain values. In order to measure the unfairness 
at the group-level, our Fair-LinUCB algorithm will keep 
track of both cumulative mean rewards along the time, 
e.g., r̄s+ and r̄s− . We capture the orientation of the bias (i.e., 
towards which group the bias is leaning) through the sign of 
the cumulative mean reward difference. By doing so, Fair-
LinUCB is able to know which group is being discriminated 
and which group is being privileged.

When running context bandits for recommendation, 
each arm may generate a reward discrepancy and therefore 
contribute to the unfairness to some degree. Fair-LinUCB 
captures the reward discrepancy at the arm level by keeping 
track of the cumulative mean reward generated by each arm 
a for both groups s+ and s− . Specifically, let r̄s+

a
 denote the 

average of the rewards generated by arm a for the group s+ , 
and let r̄s−

a
 denote the average of the rewards generated by 

arm a for the group s− . The bias of an arm is thus the dif-
ference of both averages: Δa = (r̄s

+

a
− r̄s

−

a
) . Finally, by com-

bining the direction of the bias and the amount of the bias 

induced by each arm a, we define the fairness penalty term 
as Fa = −sign(r̄s

+

− r̄s
−

) ⋅ Δa , and exert onto the UCB value 
in our fair contextual bandit algorithm. Note that the less an 
arm contributes to the bias, the smaller the penalty.

As a result, if an arm has a high UCB but incurs bias, its 
adjusted UCB value will decrease and it will be less likely to 
be picked by the algorithm. In contrast, if an arm has a small 
UCB but is fair, its adjusted UCB value will increase, and 
it will be more likely to be picked by the algorithm, thereby 
reducing the potential unfairness in recommendation. Dif-
ferent from the traditional LinUCB that picks the arm to 
solely maximize the UCB, our Fair-LinUCB accounts for 
the fairness of the arm and picks the arm that maximizes the 
summation of the UCB and the fairness. Formally, we show 
the modified arm selection criteria in Eq. 6.

We adopt a linear mapping function L with input parameters 
� and Fa to transform the fairness penalty term proportion-
ally to the size of its confidence interval. Specifically,

(6)pt,a ← 𝜽̂
T

a
xt,a + �||xt,a||A−1

a
+ L(� ,Fa)

(7)L(� ,Fa) =
�t||xt,am ||A−1

t

2
(Fa + 1)�

(8)am = argmina∈At
||xt,a||A−1

a
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Assuming that the reward generated is in the range [0, 1], 
the fairness penalty Fa lies in [−1, 1] . When designing the 
coefficient of the linear mapping function, we choose am to 
be the arm with the smallest confidence interval to guarantee 
a unified fairness calibration among all the arms. Under the 
effect of L , the range of the fairness penalty is mapped from 
[−1, 1] to [0, ��t||xt,am ||A−1

t
] , which implies a similar scale 

with the confidence interval. In our empirical evaluations, 
we show how � controls fairness-accuracy trade-off on the 
practical performance of Fair-LinUCB.

Our purposed Fair-LinUCB algorithm studies a contex-
tual linear bandit problem and follows the rule of optimism 
in the face of uncertainty for linear bandits (OFUL) to con-
duct arm selections. For an arm set At with k arms at each 
time step, Fair-LinUCB has a Θ(k) per-step time complexity. 
There are some state-of-the-art research works that try to 
further reduce the computational complexity of linear ban-
dits [40], but it is not the main focus of this paper.

4.3 � Handling a Single Sensitive Attribute 
with Multiple Domain Values

It is possible to extend our algorithm to handle a sensitive 
attribute with multiple domain values. For example, the sen-
sitive attribute of race has multiple domain values such as 
black, white, asian. Consider a sensitive attribute S with 
multiple domain values belonging to either privileged group 
S+ = {s+

i
} or protected group S− = {s−

j
} with finite cardinali-

ties. Similarly to the binary case, we can keep track of the 
cumulative mean reward along the time for all domain val-
ues, e.g., r̄s

+
i

a , r̄
s−
j

a ... . We can then define the bias of an arm by 
taking the difference of the averaged cumulative mean 
reward of all domain value for each group as follows:

We can further define Fa accordingly as follows:

Such changes will handle multiple domain values for the 
sensitive attribute, including the usual case where the pro-
tected group has a single value and the privileged group has 
multiple domain values, as well as the case where the pro-
tected group also has multiple domain values. The remaining 
of the algorithm needs no change.

4.4 � Handling Multiple Sensitive Attributes

Our algorithm can be further extended to multiple sensi-
tive attributes. For example, one could consider both the 

Δa =

⎛⎜⎜⎝

∑
i

∑T

t=1
r̄
s+
i

a ⋅ 1st=s
+
i∑T

t=1
1st∈S

+

−

∑
j

∑T

t=1
r̄
s−
j

a ⋅ 1st=s
−
j∑T

t=1
1st∈S

−

⎞⎟⎟⎠

Fa = −sign(r̄S
+

− r̄S
−

) ⋅ Δa

gender and the race to be sensitive attributes. Suppose we 
have k sensitive attributes, consider the set S which contains 
all possible cross products of the domain values of all k 
sensitive attributes. We then have both subsets S+ ⊆ S and 
S
− ⊆ S ( S+ ∩ S

− = � ) representing the privileged group and 
protected group respectively. Each user therefore belongs 
to one single group. For example, if we have both the gen-
der with domain values {male, female} and the race with 
domain values {black, white, asian} as sensitive attributes, 
our set S will have the following values: {black male, black 
female, white male, white female, asian male, asian female}. 
In this case, the calculation method for the cumulative mean 
reward r̄s

+
i

a , r̄
s−
j

a ... does not change, and both Δa and Fa can be 
computed as in the previous scenario.

4.5 � Regret Analysis

In this section, We prove that our Fair-LinUCB algorithm 
has a Õ(dlog(T)) regret bound under certain assumptions 
with carefully chosen parameters. We adopt the regret analy-
sis framework of linear contextual bandit and introduce a 
mapping function on the fairness penalty term. By applying 
the mapping function L we make our fairness penalty term 
possess the similar scale with the half length of the confi-
dence interval. Thus we can merge the regret generated by 
UCB term and fairness term together and derive our regret 
bound.

Theorem 1  Under the same assumptions shown in Sect. 3.2, 
further assuming � is a moderate small constant with � ≤ Γ , 
there exists � ∈ (0, 1) such that with probability at least 1 − � 
Fair-LinUCB achieves the following regret bound:

Proof  We first introduce three technical lemmas from [1] 
and [27] to help us complete the proof of Theorem 9.

Lemma 2  (Lemma 11 in appendix of [1]) If � ≥ max(1, L2) , 
the weighted L2-norm of feature vector could be bounded 
by: 

∑T

t=1
��xt,a��2A−1

t

≤ 2log
�At�
�d

Lemma 3  (Lemma 10 in appendix of [1] ) The determinant 
|At| could be bounded by: |At| ≤ (� + tL2∕d)d.

Lemma 4  (Theorem 20.5 in [27]) With probability at least 
1 − � , for all the time point t ∈ ℕ

+ the true coefficient �∗ lies 
in the set:

(9)

RT ≤

√
2Tdlog(1 + TL2∕(d�))

× (2 + Γ)(
√
�M +

√
2log(1∕�) + dlog(1 + TL2∕(d�)))
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In Fair-LinUCB, the range of fairness term is [−1, 1] , we 
apply a linear mapping function L(� , x) =

�t||xt,am ||A−1t
2

(x + 1)� 
to map the range of L(� ,Fa) to [0, ��t||xt,am ||A−1

t
] , where 

am = argmina∈At
||xt,a||A−1

a
.

According to the rule, the regret at each time t is bounded 
by:

The second line above is derived based on the theo-
retic result in Lemma 1 and following the selec-
tion rule of the Fair-LinUCB algorithm, specifically, 

xT
t,a∗

𝜽
∗
≤ xT

t,a∗
𝜽̂
t
+ �

t
||x

t,a∗ ||A−1
t

≤ xT
t,a∗

𝜽̂
t
+ �

t
||x

t,a∗ ||A−1
t

+ L(� ,F
a∗
) ≤ xT

t,a
𝜽̂
t
+ �

t
||x

t,a||A−1
t

+ L(� ,F
a
)

 . 

Note that Lemma 1 can be equally applied here because 
the estimator 𝜃̂t is still a valid ridge regression estimator at 
each round.

Summing up the regret at each bound, with probability at 
least 1 − � the cumulative regret up to time T is bounded by:

Since {�t}ni=1 is a non-decreasing sequence, we can enlarge 
each element �t to �T to obtain the inequalities in Eq. 11. By 
applying the inequalities from Lemmas 2 and 3 we could 
further relax the regret bound up to time T to:

Following the result of Lemma 1, by loosing the determinant 
of At according to Lemmas 3, Lemma 4 provides a suitable 
choice for �T up to time T. By plugging in the RHS from 
Eq. 10 we get the regret bound shown in Theorem 1:

(10)
Ct = {𝜽 ∈ ℝ

d ∶ ��𝜽̂t − 𝜽��At
≤

√
�M

+
√
2log(1∕�) + dlog(1 + TL2∕(d�))}

regt = x
T
t,a
𝜽̂t − x

T
t,a
𝜽
∗

≤ x
T
t,a
𝜽̂t + �t||xt,a||A−1

t
+ L(� ,Fa) − x

T
t,a
𝜽
∗

≤ x
T
t,a
𝜽̂t + �t||xt,a||A−1

t
+ L(� ,Fa) − (xT

t,a
𝜽̂
t
− �t||xt,a||A−1

t
)

≤ 2�t||xt,a||A−1
t
+ L(� , 1)

= 2�t||xt,a||A−1
t
+ ��t||xt,am ||A−1

t

≤ 2�t||xt,a||A−1
t
+ ��t||xt,a||A−1

t

≤ (2 + Γ)�t||xt,a||A−1
t

(11)

RT =

T∑
t=1

regt ≤

√√√√
T

T∑
t=1

reg2t ≤ (2 + Γ)�T

√√√√
T

T∑
t=1

||xt,a||2A−1
t

(12)

RT ≤ (2 + Γ)�T

�
2Tlog

�At�
�d

≤ (2 + Γ)�T
√
2Td(log(� + TL2∕d) − log�)

= (2 + Γ)�T
√
2Tdlog(1 + TL2∕(d�))

	�  ◻

Corollary 2  Setting � = 1∕T  , the regret bound in Theorem 1 
could be simplified as RT ≤ C�d

√
Tlog(TL).

Comparing Corollary 2 with Corollary 1 (for LinUCB), 
we can see the regret bound of Fair-LinUCB is worse than 
the original LinUCB only up to an additive constant. This 
perfectly matches the intuition that Fair-LinUCB is able to 
keep aware of the fairness and guarantee there is no reward 
gap between different subgroups or individuals, however, it 
suffers from a relatively higher regret.

5 � Results and Discussion

5.1 � Experiment Setup

5.1.1 � Simulated Dataset

There are presently no publicly available datasets that fits 
our environment. We therefore generate one simulated data-
set for our experiments by combining the following two pub-
licly available datasets.

•	 Adult dataset: The Adult dataset [9] is used to represent 
the students (or bandit players). It is composed of 31,561 
instances: 21,790 males and 10,771 females, each having 
8 categorical variables (work class, education, marital 
status, occupation, relationship, race, sex, native-coun-
try) and 3 continuous variables (age, education number, 
hours per week), yielding an overall of 107 features after 
one-hot encoding.

•	 YouTube dataset: The Statistics and Social Network of 
YouTube Videos1 dataset is used to represent the items 
to be recommended (or arms). It is composed of 1580 
instances each having 6 categorical features (age of 
video, length of video, number of views, rate, ratings, 
number of comments), yielding a total of 25 features 
after one-hot encoding. We add a 26th feature used to 
represent the gender of the speaker in the video which is 
drawn from a Bernoulli distribution with the probability 
of success as 0.5.

The feature contexts xt,a used throughout the experiment 
is the concatenation of both the student feature vector and 
the video feature vector. In our experiments we choose the 

RT ≤

√
2Tdlog(1 + TL2∕(d�))

× (2 + Γ)(
√
�M +

√
2log(1∕�) + dlog(1 + TL2∕(d�)))

1  https://​netsg.​cs.​sfu.​ca/​youtu​bedata/.

https://netsg.cs.sfu.ca/youtubedata/
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sensitive attribute to be the gender of adults, and we there-
fore focus on the unfairness on the group-level for the male 
group and female group. Furthermore, based on the findings 
of [19] and [8] that same-gender teachers positively increase 
the learning outcome of students, we assume that a male 
student prefers a video featuring a male speaker and a female 
student prefers a video featuring a female speaker. Thus, in 
order to maintain the linear assumption of the reward func-
tion, we add an extra binary variable in the feature context 
vector that represents whether or not the gender of the stu-
dent matches the gender of the speaker in the video. Overall, 
xt,a contains a total of 134 features.

For our experiments, we use a subset of 5000 random 
instances from the Adult dataset, which is then split into 
two subsets: one for training and one for testing. The train-
ing subset is composed of 1500 male individuals and 1500 
female individuals whilst the testing subset is composed of 
1000 males and 1000 females. Similarly, a subset of You-
Tube dataset is used as our pool of videos to recommend 
(or arms). The subset contains 30 videos featuring a male 
speaker and 70 videos featuring a female speaker.

5.1.2 � Reward Function

We compare our Fair-LinUCB against the original LinUCB 
using a simple reward function wherein we manually set the 
�
∗ coefficients. The reward r is defined as

where �∗
1
= 0.3 , �∗

2
= 0.4 , �∗

3
= 0.3 and x1 = video rating , 

x2 = education level , x3 = gender match . The remaining 
d − 3 coefficients are set to 0. Hence, only these three fea-
tures matter to generate our true reward. The gender match 
is set to 1 if both the student gender and the gender of the 
video match, and 0 otherwise. The education level is divided 
into 5 subgroups each represented by a value ranging from 
0.0 to 1.0 with a higher education level yielding a higher 
value. In our setup, the education level is used to represent 
the strength of the student. Similarly, the video rating varies 
from 0 to 1.0, and is used to represent the educational quality 
of the video. Evidently, a higher reward is generated when 
the gender of the student matches the gender of the video.

5.1.3 � Evaluation Metrics

Throughout our experiments we measure the effectiveness 
of the algorithms through the average utility loss. Since we 
know the true reward function, we can derive the optimal 
reward at each round t. We can thus define

r = �∗
1
⋅ x1 + �∗

2
⋅ x2 + �∗

3
⋅ x3

utility loss =
1

T

T∑
t=1

(rt,a∗ − rt,a)

where rt,a∗ is the optimal reward at round t by choosing arm 
a∗ and rt,a is the observed reward by the algorithm after pick-
ing arm a.

We measure the fairness of the algorithms through the 
absolute value of the difference between the cumulative 
mean reward ( ̄rt , as introduced in Sect. 4.1) of the male 
group and female group:

Additionally, for all following figures the left hand side plots 
the cumulative mean reward during the training phase whilst 
the right hand side reflects the cumulative mean reward over 
the testing dataset. Due to space limit, all tables report meas-
ures on the testing data solely. Note that the contextual ban-
dit continues to learn throughout both phases.

5.1.4 � Baselines

As existing fair bandits algorithms focus on item-side fair-
ness, we mainly compare our Fair-LinUCB against LinUCB 
in terms of utility-fairness trade-off in our evaluations. We 
also report a comparison with a simple fair LinUCB method 
that suppresses the unfairness by removing the sensitive 
attribute and all its correlated attributes from the context. 
We name this method as Naive in our evaluation.

5.2 � Comparison with Baselines

5.2.1 � Comparison with LinUCB

Our first experiment compares the performances of the tra-
ditional LinUCB against our Fair-LinUCB, using the reward 
function r described in the previous section. Figure 2 plots 
the cumulative mean reward of both the male and female 
groups over time. We can notice that the cumulative mean 
rewards of both groups suffer a discrepancy with LinUCB, 
and the outcome can therefore be considered unfair towards 
the male group. Indeed, as shown on Fig. 2a the cumulative 
mean reward of the female group (0.839) is greater than the 
cumulative mean reward of the male group (0.802), yield-
ing a reward difference of 0.037. The utility loss incurred is 
0.050. In contrast, Fair-LinUCB is able to seal the reward 
discrepancy with a � coefficient set to 3 (Fig. 2b). Our 
algorithm thereby achieves a cumulative mean reward of 
0.819 for both the male group and the female group, which 
yields a reward difference of 0.0, while incurring a utility 
loss of 0.052. Our Fair-LinUCB outperforms the traditional 
LinUCB in terms of reward difference while suffering a 
slight loss of utility. The comparison results are summarized 
in the first two rows of Table 2.

To evaluate how the inclusion or exclusion of sensitive 
attributes affects the fairness-utility tradeoff, we compare 

reward difference = |r̄s+
t
− r̄s

−

t
|
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LinUCB against Fair-LinUCB with a modified reward 
function:

where �∗
1
= 0.5 and �∗

2
= 0.5 and x1 = video rating , 

x2 = education level The remaining d − 2 coefficients are set 
to 0. r2 is not dependent upon the gender match attribute and 
expects to incur zero or small discrepancy between both groups. 
As depicted on Fig. 1, both LinUCB and Fair-LinUCB show 
a very low cumulative mean reward discrepancy. Specifically, 
LinUCB incurs a utility loss of 0.037 and a reward difference of 
0.006, while Fair-LinUCB incurs 0.034 utility loss and a reward 
difference of 0.008. Furthermore, in this case, although Fair-
LinUCB has additional constraints for the arm picking strategy 
due to the fairness penalty, it does not induce any loss of utility 
when compared to LinUCB.

5.2.2 � Comparison with Naive

Naive method tries to achieve fairness by removing from 
the context the sensitive attribute and the features that 

r2 = �∗
1
⋅ x1 + �∗

2
⋅ x2

are highly correlated with the sensitive attribute. In our 
experiment, we first compute the correlation matrix of 
all the user’s features and then remove the gender feature 
as well as all features that are highly correlated with it. 
Specifically, features that have a correlation coefficient 
greater than 0.3 were removed, which include the follow-
ing: is male, is female, is divorced, is married, is wid-
owed, is a husband, has an administrative clerical job, 
has a salary less than 50 k. We report in the last row of 
Table 2 the utility loss and reward difference of Naive 
with reward function r.

We can see the reward discrepancy between the male and 
female groups from the Naive method is 0.035, thus show-
ing it cannot completely remove discrimination. The utility 
loss from the Naive method is 0.046, which is only slightly 
smaller than LinUCB and Fair-LinUCB. In fact, as shown in 
Table 3, Fair-LinUCB with � = 2 can outperform the Naive 
method in terms of both fairness and utility. In short, remov-
ing the gender information and highly correlated features 
from the context does not necessarily close the gap of the 
reward difference.

In summary, although LinUCB learns to pick the arm 
that maximizes the reward given a particular context, we 
have seen that it could incur discrimination towards a group 
of users in some cases. Fair-LinUCB is capable of detect-
ing when unfairness occurs, and will adapt its arm picking 
strategy accordingly so as to be as fair as possible and reduce 
any reward discrepancy. When a reward discrepancy is not 
detected, our algorithm does not need to adjust the arm pick-
ing strategy and therefore performs as well as the traditional 
LinUCB.

Table 2   Comparison of three algorithms under reward function r 

Utility loss Reward 
differ-
ence

Fair-LinUCB ( � = 3) 0.052 0.000
LinUCB 0.050 0.037
Naive 0.046 0.035

Fig. 1   LinUCB vs Fair-LinUCB 
with reward function r2

Fig. 2   LinUCB vs Fair-LinUCB 
with reward function r 
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5.3 � Impact of 
 on Fairness‑Utility Trade‑off

The � coefficient introduced in Sect. 4.2 controls the weight 
of the fairness penalty that the algorithm will exert onto 
the UCB value. Indeed, as shown in Equation (7), � is used 
to adjust the upper bound of the linear mapping function 
L(� ,Fa) . Thus, when the � coefficient increases, the range 
of the fairness penalty increases proportionally which will 
consequently increase the UCB value in Eq. 6. The � coef-
ficient therefore reflects the significance of the fairness of 
Fair-LinUCB. However, as � becomes larger, the fairness 
penalty becomes out of proportion to the extent of neglect-
ing the importance of the UCB value, thereby decreasing the 
utility of the algorithm.

To evaluate the fairness-utility trade-off of Fair-LinUCB, 
we compare several � values and report the fairness and utility 
loss in Table 3. With a � equal to 0, our algorithm behaves as a 
traditional LinUCB, therefore it incurs discrimination (reward 
difference measured at 0.037), and a utility loss of 0.050 is 
reported. We can observe that when � increases slightly, the 
algorithm improves the reward difference and loss of utility. 
Specifically, a reward difference of 0.016 is achieved for � = 
1 with a utility loss of 0.040, and a reward difference of 0.004 
with a utility loss of 0.035 is achieved with � = 2. Although 
the utility losses are improved, they both remain not fair. In 
our best case scenario, with � = 3, the algorithm is completely 
fair, i.e., reward difference is 0.000, with a utility loss of 0.052. 
Finally, when the � coefficient is too large, the algorithm pri-
oritizes fairness over utility, resulting in a fair algorithm that 
suffers a greater loss of utility. For example, with a � set to 4, 
Fair-LinUCB incurs a utility loss of 0.081.

5.4 � Impact of Arm and User Distributions

In certain cases the distribution of the arms (videos) or the 
users can significantly impact the cumulative mean reward 
of some groups of users, and therefore incur the large reward 
difference. In our experiment, given the reward function r, 
we first explore the impact of the ratio of gender arms, i.e., 
videos by female or male speakers, and then we investigate 
the impact of the order of the data in which the algorithm 
learns. The following results discuss our findings.

5.4.1 � Gender Arm Ratio

We explore the effect of three different arm ratio values: (1) 
70% male and 30% female, (2) 50% male and 50% female, 
and (3) 30% male and 70% female. Table 4 reports the utility 
loss, reward difference, as well as both the cumulative mean 
reward for the male and female groups. As observed with the 
LinUCB performances, the arm ratio induces unfairness on 
some user group. Indeed, when there is a majority of male 
arms, it appears that the male user group will benefit more 
and will have a higher cumulative mean reward. Likewise, 
when the arms have more females than males, the female 
user group will benefit more than the male user group, 
and will therefore have a higher cumulative mean reward. 
Although having a balanced ratio of male and female arms 
minimizes the reward difference, it is not always feasible or 
convenient to adjust the arms distribution in practice.

We ran the same experiment with Fair-LinUCB with � = 
3. As we can see, in all three cases, Fair-LinUCB yields a 
very low reward difference. Indeed, our Fair-LinUCB learns 
which group is being discriminated and adjusts its arm pick-
ing strategy accordingly so as to remove any discrimination, 
it however suffers a higher utility loss than LinUCB. Note 
that a � different than 3 could yield a better utility loss for 
the ratios 7:3 and 1:1.

Thus, as opposed to a traditional LinUCB which only 
learns to maximize the reward given a context, our Fair-
LinUCB learns how to achieve fairness at the same time, 
making it robust against factors that would otherwise induce 
unfairness.

5.4.2 � Order of the Training Data

It is our intuition that the order of the data in which LinUCB 
learns to recommend an item could affect its recommenda-
tion choice or arm pick.

In these experiments, we use the 70% male and 30% 
female arms setting, and we manually change the order of 
the training data. In the first setting, we manually set the 

Table 3   Impact of � on the 
Fairness-Utility Trade-off

Utility Loss Reward 
differ-
ence

� = 0 0.050 0.037
� = 1 0.040 0.016
� = 2 0.035 0.004
� = 3 0.052 0.000
� = 4 0.081 0.000

Table 4   Impact of different arm ratio on the fairness and utility

Arm ratio Utility Loss Reward Male Female
m:f difference cmr cmr

LinUCB
7:3 0.061 0.029 0.824 0.795
1:1 0.053 0.012 0.824 0.812
3:7 0.050 0.037 0.802 0.839
Fair-LinUCB � = 3

7:3 0.087 0.001 0.784 0.783
1:1 0.162 0.000 0.709 0.709
3:7 0.052 0.000 0.819 0.819
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order of the students in the training data by having all 1500 
female students followed by the 1500 males instances. In 
the second setting we order the data by having all 1500 male 
instances first, followed by the 1500 female instances. The 
test data remains shuffled. We then compare LinUCB with 
Fair-LinUCB in order to see the impact on the learning strat-
egy of both algorithms.

We ran the traditional LinUCB and report the cumulative 
mean reward of the male user group and female user group 
over time. As shown in Fig. 3a, b, overall the male group 
gets a higher cumulative mean reward than the female group. 
Particularly, the male group achieves 0.822 against 0.816 
for the female group in Fig. 3a and 0.834 against 0.795 in 
Fig. 3b. However, we notice that the reward discrepancy is 
much higher in the second scenario as compared to the first 
one. From Fig. 3a, it appears that learning to recommend 
videos to all females students prior to recommending videos 
to any male students affects the recommendation process 
positively (i.e., it yields a higher cumulative mean reward for 
the female group). Thus, the order of the training data can 
sometimes affect the recommendation process of LinUCB, 
which can impact the recommendation outcomes and may 
also induce discrimination towards one group.

We ran the same experiments with Fair-LinUCB, using a 
� coefficient of 3, and we report our results in Fig. 3c, d. We 
notice that in both situations our Fair-LinUCB remains very 
fair, that is, we do not observe a cumulative mean reward 
discrepancy between the male and female user group. In 
the former setting, both groups achieve a cumulative mean 
reward of 0.802 against 0.789 in the latter, both yielding 
a cumulative mean reward difference of 0.00. In addition, 
we notice that regardless of the order of the training data 
our Fair-LinUCB performs equivalently in both scenarios. 
However, the gain in fairness also induces a loss of utility. 
Indeed, in the first setting LinUCB achieves 0.052 utility 
loss against 0.070 for Fair-LinUCB. In the second setting, 
LinUCB achieves 0.057 against 0.082 for Fair-LinUCB. 
Thus, our results indicate that Fair-LinUCB is able to close 
the reward discrepancy and is robust against scenarios that 
might otherwise induce unfairness.

6 � Conclusion

Previous research have shown that personalized recommen-
dation can be highly effective at a cost of introducing unfair-
ness. In this paper, we have proposed a fair contextual bandit 

Fig. 3   Impact of the order of the data on the performances
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algorithm for personalized recommendation. While current 
research in fair recommendation mainly focus on how to 
achieve fairness on the items that are being recommended, 
our work differs by focusing on fairness on the individuals 
whom are being recommended an item. Specifically, we aim 
to recommend items to users while ensuring that both the 
protected group and privileged group improve their learning 
performance equally. Our developed Fair-LinUCB improves 
upon the state-of-the-art LinUCB algorithm by automati-
cally detecting unfairness, and adjusting its arm-picking 
strategy such that it maximizes the fairness outcome. We 
further provided a regret analysis of our fair contextual ban-
dit algorithm and demonstrate that the regret bound is only 
worse than LinUCB up to an additive constant. Finally, we 
evaluate the performances of our Fair-LinUCB against that 
of LinUCB by comparing both their effectiveness and degree 
of fairness. Experimental evaluations showed that our Fair-
LinUCB achieves competitive effectiveness while outper-
forming LinUCB in terms of fairness. We further showed 
that our algorithm is robust against numerous factors that 
would otherwise induce or increase discrimination in the 
traditional LinUCB algorithm. In this work we made a linear 
assumption on the reward function. In the future work, we 
plan to extend the user-level fairness to more general cases 
and make it easier to be implemented in multifarious reward 
functions. We plan to develop heuristics to determine the 
appropriate value for the fairness-accuracy trade off parame-
ter � . We also plan to study user-side fairness in the multiple 
choice linear bandits, e.g., recommending multiple videos 
to a student at each round. Finally, we plan to study how to 
achieve individual fairness in bandits algorithms.
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