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Abstract
Manual investigation of damages incurred to infrastructure is a challenging process, in that it is not only labour-intensive 
and expensive but also inefficient and error-prone. To automate the process, a method that is based on computer vision for 
automatically detecting cracks from 2D images is a viable option. Amongst the different methods of deep learning that are 
commonly used, the convolutional neural network (CNNs) is one that provides the opportunity for end-to-end mapping/
learning of image features instead of using the manual suboptimal image feature extraction. Specifically, CNNs do not require 
human supervision and are more suitable to be used for indoor and outdoor applications requiring image feature extraction 
and are less influenced by internal and external noise. Additionally, the CNN’s are also computationally efficient since they 
are based on special convolution layers and pooling operations that enable the full execution of CNN frameworks on several 
hardware devices. Keeping this in mind, we propose a deep CNN framework that is based on 10 different convolution layers 
along with a cycle GAN (Generative Adversarial Network) for predicting the crack segmentation pixel by pixel in an end-
to-end manner. The methods proposed here include the Deeply Supervised Nets (DSN) and Fully Convolutional Networks 
(FCN). The use of DSN enables integrated feature supervision for each stage of convolution. Furthermore, the model has 
been designed intricately for learning and aggregating multi-level and multiscale features while moving from the lower to 
higher convolutional layers through training. Hence, the architecture in use here is unique from the ones in practice which 
just use the final convolution layer. In addition, to further refine the predicted results, we have used a guided filter and CRFs 
(Conditional Random Fields) based methods. The verification step for the proposed framework was carried out with a set of 
537 images. The deep hierarchical CNN framework of 10 convolutional layers and the Guided filtering achieved high-tech 
and advanced performance on the acquired dataset, showing higher F-score, Recall and Precision values of 0.870, 0.861, 
and 0.881 respectively, as compared to the traditional methods such as SegNet, Crack-BN, and Crack-GF.

Keywords  Damage detection · Crack detection · Flood disaster · Machine learning · Convolutional neural networks · Cycle 
generative adversarial network (CycleGAN) · Unmanned aerial vehicles

1  Introduction

Civil infrastructure including bridges, roads and tunnels 
remain vulnerable to deterioration due to the occurrence 
of disasters, along with cyclical loading and harsh envi-
ronmental factors [1]. Timely detection and simultaneous 
maintenance of civil infrastructure is an indispensable way 
to ensure human safety and reduction in the costs associ-
ated with infrastructural damages [2, 3]. As reported in 
the literature, structural deficiency along with aging and 
respective failure, have been associated with the damages 
which ultimately lead to the collapse of the majority of 
bridges (~ 46%) [4]. Effective detection and maintenance of 
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the infrastructural health that is exposed to various types 
of damages in the form of corrosion and cracks are thus 
important [5].

One alarming and frequently occurring infrastructural 
damage is the appearance of cracks. Generally, cracks initi-
ate on the surfaces of the concrete structures mainly due to 
stress, fatigue, cyclic loading, poor construction, deteriora-
tion/corrosion, moisture, temperature effects, shrinkage and 
the use of incongruous construction materials and strategies 
[6–8]. Various structures including bridges, tunnels, railway 
tracks, roads, buildings, pavements, aircraft, and automo-
biles are prone to cracks [9]. Cracks are the earliest signs 
of degradation that can lead to serious damage if allowed to 
penetrate or left unmaintained or unrectified [9, 10].

Broadly, cracks can be described in terms of their occur-
rences time, width, component used for construction and 
overall activeness. Classical methods including SIFT, ORB, 
SURF etc. require extensive manual supervision and do not 
allow automated crack detection. Deep learning can reduce 
this overhead to identify the cracks, thus permitting the auto-
matic labelling of whether the crack is active or dormant 
[11].

Once cracks have developed in a structure, they can either 
remain dormant or be active. The difference between the two 
types of progressions of cracks is that the dormant cracks 
stay unchanged throughout time period. The dormant cracks 
include a minor crack, thin crack, line-like crack, complex 
crack, and sealed crack. On the other hand, the active cracks 
progress with changes which include deepening of the width, 
increase in the length or spreading of the crack in more 
directions. Due to the direction and type of changes, the 
active cracks include reflection cracks, transverse cracks, 
and miscellaneous cracks [8]. Cracks in concrete structures 
can be described (and lead to) as the partial or complete 
segregation of concrete into separate parts upon fracture or 
breakage [12]. Therefore, an essential measure to sustain the 
structural safety and health of the engineered structures is 
the early detection of cracks through the utilisation of effec-
tive methods. The manual inspection of cracks is a tedious 
process that demands extra effort and time. It is also prone 
to subjective assessment of deterioration and inadequate 
observations by crack inspectors [13, 14].

The advancements and breakthroughs that have been 
achieved in computer vision and image processing tech-
niques, enable the replacement of the manual crack detection 
methods with more effective automated inspection proce-
dures [15]. The application of various computer vision-
based techniques to efficiently deal with image segmentation 
[10, 16, 17], colour tracking [18], curvilinear structures [19] 
and crack detection [20–22], have been extensively reported 
in the literature.

Notably, the detection and localization of cracks are 
very complex, as numerous visual patterns are associated 

with cracks and it is quite complicated to achieve a single 
method that can be applied to different cracks [10]. Using 
the crack detection methods or the traditional image process-
ing techniques alone is not sufficient to deal with different 
scenes and for distinguishing cracks under different scenar-
ios (i.e., lighting spots, shadows and edges). The literature 
indicates that deep learning based methods can be used for 
effectively overcome the limitations of traditional computer 
vision methods in terms of extraction and learning of high-
quality features [12]. Therefore, the effective amalgamation 
of computer vision techniques with machine/deep learning 
approaches is highly necessitated to ensure the efficient and 
automatic detection and localization of cracks [23, 24].

The increased use of machine learning approaches such 
as neural networks instead of the traditional vision-based 
approaches has encouraged the exploration of other similar 
methods for crack detection in concrete. More recently, deep 
learning methods have been in focus for crack detection, 
particularly the Convolutional Neural Networks (CNNs) 
have gained considerable importance and applicability due 
to their high performance on many sophisticated computer 
vision tasks [25, 26] including image classification, image 
segmentation, and object detection [9, 10, 27, 28]. Tradi-
tional crack detection systems have a major limitation in 
that the applied method is highly specific to a particular situ-
ation or scene [11, 12]. In addition, various methods such 
as FoSA, FFA and CrackTree work considerably well for 
thinner cracks but fail when applied to wider cracks [13]. 
Moreover, detection of features fails at variable instances 
thus leading to a non-generalised extraction of features [13].

The use of CNN brings along various powerful hierar-
chical features, automatic feature learning, grid-like image 
topology, differentiation of multiple classes and improved 
detection of cracks without the requirement of additional 
image processing techniques [17]. The deep learning models 
also provide an improvement in the detection and classifica-
tion performance by using the stacked convolutional layers 
for the exploitation of image features in different resolu-
tions [29]. The pooling process and the presence of a set of 
sparsely connected neurons within the CNN require fewer 
computations as compared to ANN [29]. CNNs are designed 
to deal with visual data and capabilities including visual 
object recognition, object detection and image classification. 
CNN's one of the most efficient methods used for image 
recognition [12]. CNNs are more valuable than ANNs when 
it comes to visually processing information, with the latter 
being more inclined towards processing tabular and textual 
data. Also, CNNs are faster than ANNs when it comes to 
dealing with and sorting huge data sets.

Recent application of CNNs in literature includes the 
automatic detection of concrete cracks in roads, tunnels, 
and Gas turbines [13]. However, unlike other cases where 
the material surface is more homogeneous, the detection 
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of concrete surface defects (occurring on inhomogeneous 
surfaces) should be carefully configured in terms of deep 
architecture. This requires the use of an extensive data set 
and taking into consideration variable conditions leading 
to surface imperfection such as stress, cyclic loading, poor 
construction, deterioration/corrosion, moisture, temperature 
effects, shrinkage, and utilization of incongruous construc-
tion materials) that are essential for dealing with several 
real-world problems [22].

In this study, we propose a robust CNN-based classifier 
for detecting cracks in the concrete surface of bridges based 
on 10 convolution layers, and CycleGAN has been used to 
improve detection accuracy and avoid data augmentation. 
This method does not succumb to factors such as light-
ing, noise due to lighting, blur, casting, and shadow-based 
noise and provides wider adaptability. Unlike the traditional 
approaches, our proposed approach does not require the use 
of feature extraction and calculation rather it is capable of 
automatic learning of image features.

The paper is organized as follows. Section 2 presents the 
methodology, with brief overview of the case study, data col-
lection and pre-processing of the images and the proposed 
methodology for the crack detection. In Sect. 3 the experi-
mental analysis is elaborated, the performance metrices used 
for evaluating the techniques followed by the results and dis-
cussions. Section 4 summarises the key results of the study, 
performance of the suggested framework based on deep 
hierarchical CNN architecture along with Cycle GAN for 
predicting crack segmentation, and limitation of the study.

2 � Materials and Method

In the current study, we propose the development of a robust 
CNN based architecture that includes a cycle generative 
adversarial network (Cycle-GAN) for detecting cracks on 
infrastructures such as bridges. Over the past years, Cycle-
GAN has gained considerable progress in terms of utilisa-
tion in deep learning methods [30]. Therefore, due to the 
broader application of Cycle-GANs the detection of cracks 
on civil infrastructures can be dealt with effectively using 
image-to-image translation. Cycle-GAN provides network 
training without the requirement of ground truth labelling. 
Due to its capability of translating crack images to an image 
set that displays a pattern similar to the ground truth like 
images [18].

The proposed approach will assist in the robust, efficient, 
and cost-effective inspection of infrastructural health and 
the maintenance of infrastructural damages. Additionally, 
the proposed Deep Neural Network Framework for automat-
ing the crack detection process also provides an advantage 
of eased scaling to any edge device (i.e., coral dev, jetson 
nano). In this study, the proposed CNNs based architecture 

was applied to the data set obtained from the Bolte Bridge 
in Melbourne, Australia.

3 � Case Study

For the case study, the Bolte Bridge in Melbourne, Australia 
(Fig. 1a) was selected. Bolte Bridge is a large twin cantilever 
road bridge carrying a total of 8 lanes of traffic. It is present 
on the west side of central business district (CBD), span-
ning over the Yarra River and Victoria Harbour (Fig. 1b). 
The total length of the bridge is 490 m and comprises four 
spans, two sides of which are 72, long and the main measure 
173 m. The data was collected by VERIS which is a leading 
company for providing spatial data services to their clients 
(Fig. 2a). VERIS provides an integrated approach for the 
project life cycle starting from the planning phase to the final 
delivery phase. It uses innovative technologies to conduct 
surveys and damage assessments of the infrastructures such 
as railways, bridges, roads, buildings etc. Aerial imagery of 
the Bolte Bridge was carried out using UAVs (unmanned 
aerial vehicles). A DJI M200 UAV was used for surveying 
the region (Fig. 2b). A machine learning-based algorithm 
was developed for crack detection. Images would typically 
be obtained from drones in cases where access is limited 
(e.g., due to the span of the bridge, presence of traffic or 
cases of floods), by automatically identifying cracks and 
vulnerabilities in the bridge infrastructure.

4 � Data Collection and Pre‑processing 
of Images

The crack detection procedure was initiated by the collec-
tion of 2D images that form the needed dataset. The model 
training and testing were performed on a single machine 
Intel Core i9-10900KF (10 × 3.70 GHz, 20 MB L3 cache, 
125 W) with GPU (GeForce RTX 2080 Ti). The quantitative 
and qualitative results were observed and compared with 
state-of-the-art methods.

The images of the bridge were obtained using a UAV 
(Unmanned Aerial Vehicle) carrying a digital camera 
onboard (Fig. 2b). Besides that, images from public dataset 
CRACK9001were gathered for training and testing purpose. 
A total of 2097 images were captured, with dimensions of 
4864 × 3648. Images processed by deep learning are aug-
mented through cropping, colour modification, geometric 
transformation, noise injection, and flipping. The images 
included in the dataset had three main types of cracks that 
can be classified into simple cracks, hairline cracks and arti-
ficial marking cracks as shown in Fig. 3. Simple cracks usu-
ally result from infrastructure settling onto its foundation 
however, in comparison, the hairline cracks are very small 
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and shallow that mainly emerge due to plastic shrinkages 
about 0.003 inches in width [31].

After finalizing the dataset, the collected crack images 
were preprocessed to remove any noise or undesirable back-
ground, following this step, an image brightness adjustment 
was carried out. Cropping was performed on the images 
to remove any unwanted background such as grass, water, 
sky, building, trees etc. Particularly, for the crack images, 
the data set was divided into two types of levels including 
the crack and structures without cracks (non-crack) levels 
respectively. The overall percentages of the pixels for all 
images (with or without crack) are shown in Table 1 which 
indicates that a lower percentage of the crack regions are 
included in the complete dataset.

A total of 2.93% significant crack pixels, 1.41% weak 
crack pixels and 95.93% non-crack pixels were included in 
the complete data set respectively. For both sets, training 
and test set, a total of 96.32% and 94.69% non-crack pixels 

were included, as shown in Table 1. Additionally, a total 
of 3.24% and 4.15% of crack pixels for training and test-
ing were used in the current study (Table 1). Generally, a 
crack width in the range of 1 to 5 pixels is considered a 
weak crack whereas significant cracks are those which have 
more than 5-pixel width. It was observed that the thin cracks 
and surface cracks had different properties in comparison to 
wider cracks. Therefore, the application of traditional post-
processing methods (with length constraint, curvature and 
geometric features) is necessary to obtain the complete and 
continuous thin cracks [32], which is a limitation of the deep 
convolutional networks.

For the crack images in the current study, the height and 
width distributions are presented according to two levels 
mainly crack and non-crack respectively. Figure 4 illus-
trates the cracks in terms of spatial representation such that 
the width and height of crack pixels are gathered through 
Pytorch and WANDB [33]. Along with crack images, the 

Fig. 1   a The Bolte Bridge, Mel-
bourne, Victoria. b Geographi-
cal location of the Bolte Bridge
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dataset also included pothole and water straining images for 
training and testing purpose.

For the current study, the crack pixels frequency was 
predicted, and the bounding boxes or labels were identi-
fied through spatial location analysis and the use of data 

distribution. The axis presented in Fig. 5 provides the rep-
resentation of size distribution and it is shown that spatial or 
frequency distribution for our crack pixels is neither skewed 
nor projected in one place. Rather, crack pixels display 
Gaussian or well-distributed pixel data as shown in Fig. 5 

Fig. 2   a Field sampling day. b 
Specification of DJI M200

Fig. 3   The crack types used in the dataset include a simple crack, b hairline crack and c artificial marking crack
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which is indicative of the fact that the pixel distribution in 
the selected crack dataset is devoid of biases.

Many portions of the dataset consist of drive view images 
roughly 54% from road damage detection challenge 2020.

The total dataset for this study includes 10,000 cracks. 
The health of the dataset is explained through plots. The 
location is shown through a Gaussian distribution right 

around the central region where most cracks appear. Deter-
mining the size of the crack is tricky because of the transfor-
mations that can occur in cracks. By looking at a crack, the 
only way to analyse the size of a crack with 100% surety is to 
be orthogonal to the crack. Moreover, the region of a crack 
that is close to the camera is fully visible but the ones further 
away from the surface may appear like a thin edge or depict 
other differences due to the camera angles as well as the 
transformations in the crack which might make this difficult 
to detect. The proposed methodology can potentially enable 
crack analysis in terms of structure in a consistent manner. 
This method can generalize to the environmental setting 
but cannot gauge shifts in perspective. The comparison of 
generative and discriminative methods is shown in Table 2.

Figure 5 shows a comparison of generative and Discrimi-
native results of Faster-RCNN and Yolov5-s). The highly 
expressive Deep CNNs entailing numerous parameters 

Table 1   Percentages of the pixels for crack and non-crack images

Pixels Crack pixels (%) Back-
ground 
pixels (%)Significant Weak

Total 2.93 1.41 95.93
Training 3.24 0.44 96.32
Testing 4.15 1.16 94.69

Fig. 4   The height, width, and spatial extent of the crack pixels in our dataset
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have brought considerable advancements in the classifica-
tion and processing of images [29]. However, the image 
features in the CNN’s training set can be a risk as it tends to 
over-fitting because of the non-generalized features in this 
network. Using an insufficient set of samples for training 
can lead to overfitting [29]. Additionally, the collection of 
abundant samples is an exorbitantly costly endeavour, which 
has increased the utility of data augmentation methods (i.e., 
flipping, resizing, random cropping) to enhance image vari-
ation and overcome the issue of over-fitting [34]. In the 
overall training procedure of the proposed approach, label 
generation and crack detection were performed through data 
augmentation are presented in the Table 3.

5 � Proposed Method

The overall workflow of the current research study is pre-
sented in Fig. 6.

5.1 � Per‑pixel Segmentation

The use of the pre-trained model for semantic segmenta-
tion does not work on general images because it is based 
on the association of a class label to each pixel of an image. 
Therefore, we used Crack9001 (A publicly available crack-
detection dataset) for the training of the SegNet which aims 
to perform pixel-wise segmentation of the captured dataset 
(by UAV). The SegNet method displays limited accuracy 
and requires manual supervision therefore, per-pixel annota-
tion was used in the current study.

Fig. 5   Comparison of genera-
tive and discriminative methods

Table 2   Comparing generative and discriminative methods

Characteristics and 
approach

Generative Discriminative

Learns Latent Code Mapping (X → Y)
Inference speed Slow Fast
Generalization Moderate Poor

TABLE 3   Data augmentations details

Augmentations

HSV—hue augmentation (fraction) HSV_H: 0.015
HSV—saturation augmentation (fraction) HSV_S: 0.7
HSV—value augmentation (fraction) HSV_V: 0.4
Rotation (± deg) Degrees: 0.0
Translation (± fraction) Translate: 0.1
Scale (± gain) Scale: 0.5
Shear (± deg) Shear: 0.1
Perspective (± fraction), range 0–0.001 Perspective: 0.2
Flip up–down (probability) FLIPUD: 0.0
Flip left–right (probability) FLIPLR: 0.5
Mosaic (probability) Mosaic: 1.0
Mix-up (probability) Mixup: 0.0
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5.2 � Baseline Design (BN)

It consists of Max Pooling, ReLU Activation, Concatena-
tion, and convolution operation (Fig. 7). It consists of three 
sections i.e., contraction, bottleneck, and expansion. For 
obtaining high precision results in semantic segmentation, 
it is vital to collect finer details while retaining semantic 
information. However, having a limited dataset for train-
ing a deep neural network is a limitation. This can be over-
come by using a pre-trained network and applying it to the 
desired datasets. The extensive data augmentation carried 
out in U-Net is another way to overcome the rainy issues. Its 
key contribution is the creation of shortcut connections. The 
performance of the U-Net can be enhanced by replacing the 
plain unit with the residual unit.

5.3 � Training

5.3.1 � Loss Function

Boundary loss for road boundaries (highly unbalanced 
segmentation) is being used. The loss function aims to get 
smoother outputs at the boundaries and enhance model out-
put for two close parallel roads. The integrals are used over 
the boundary between the regions by boundary loss, instead 
of applying the unbalanced integrals over the regions. The 
boundary loss function was used in combination with BCE-
Dice Loss. Learning Rate, Epoch loss and Epoch IoU Score 
Plots are shown in Fig. 8.

The model was initially trained for the first 10 epochs 
with a combination of boundary loss and BCE-dice loss 
(Fig. 8) and further fine-tuned for another 30 epochs (Fig. 8). 
The cyclic learning rate was used with a cycle size of 5 
epochs and a learning rate decay of 0.8 (20%) after each 
cycle. To ensure that only the best weights were used dur-
ing inference, an early stopping criterion was applied. It 
was observed that when network was evaluated on unseen 
datasets a loss in performance was observed. While better 
performance was achieved when evaluated for synthetically 
modified dataset.

The existing methods for crack detection face many limi-
tations, which mainly include the availability of limited data-
sets. Changing the dataset in such cases leads to difficulties 
in crack detection. Examples include CrackTree, FFA, and 
FoSA methods which are reliable for thin cracks but tend to 
fail in terms of detecting wider cracks. These applications 
stand to benefit from the hierarchical features and powerful 
abilities of CNN. The use of CNN is suitable for the goal of 
learning a non-linear model for image analysis. A Condi-
tional Random Field (CRF) has been used previously [16] 
for refining low-resolution images as a post-processing step. 
On the other hand, using a Fully Convolutional Network 
(FCN) results in up sampling of the feature maps but the 
output of such a method is not very accurate. Hence, using 
an approach that combines the parameters included in CNN, 
CRF and FCN was considered more desirable.

In this architecture, there are no fully connected layers, 
the side-output layers are inserted after the convolutional 

Fig. 6   A holistic view of the framework proposed in the study
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layers, deep supervision is applied at each side-output layer 
and then all of them are concatenated to form a final fused 
output (Figs. 9, 10 and 11). In this way, the final output layer 
acquires multi-scale and multi-level features as the plane 
size of the input of side-output layers becomes smaller and 
the receptive field size becomes larger. The fused prediction 
is refined by guided filtering with the first side-output layer 
(Fig. 11). 

Predictions made at the processing stages can preserve 
the boundaries of cracks but are also sensitive to noises 
such as dark spots and dirt. On the other hand, better 

anti-noise capabilities are shown by the predictions of 
deeper convolutional stages. However, a failure in the 
preservation of segmentation boundaries is also associated 
with predictions of deeper convolutional stages. Therefore, 
it is commendable to carry out a linear combination of all 
the combinations carried out at different stages. We added 
some modules for refinements such as phase shift and con-
volutional layers [10]. The binary mask is generated ini-
tially which is followed by the setting of the guidance map 
with a side-output (conv1_2). The final refined prediction 
significantly preserves the crack boundaries also leading to 
noise removal in the low-level prediction. Additionally, for 
training, we have also used the cycle-consistent generative 
adversarial networks (Cycle-GAN) that can reduce human 
intervention for manual label generation. The guided filter 
achieves the final refined prediction by well preserving the 
crack regions and removing the noises in the low-level pre-
diction. Compared to the CRF method, such a technique is 
faster and more efficient.

5.4 � Model Training Using Cycle‑GAN

In recent years, Generative adversarial networks (GAN) 
have been employed in deep learning methods successfully 
as it offers a novel strategy for the training of different 
models [34]. Originally for GAN, a fully connected lay-
ered generator configuration is used that allows the images 
to be generated from random noises. However, lately, the 
cycle-consistent adversarial networks (Cycle-GAN) were 
proposed by Zhu, Park [35] which allowed effective train-
ing without the need for the using data pairing step. There-
fore, based on the applicability of Cycle-GANs we develop 
crack detection in concrete structures as a translation prob-
lem in the image-to-image translation approach. Notably, 
the Cycle-GANs can effectively train the networks without 
the requirement of manually labelled Ground Truths, as 
they enable images with similar outlooks to be translated 
[36].

For the Cycle-GAN based training of the network, two 
separate data sets are required (Fig. 12). These include the 
crack image set (M) with images {mi}, and the structure 
library (K) with {ki} images respectively. The network 
topology is based on two image-to-image translation GANs 
(i.e., Forward and Reverse GANs) as presented in Fig. 12. 
The forward and reverse GANs perform image translations 
from MtoK(F ∶ M → K) and KtoM(F ∶ K → M) respec-
tively. The system contains two discriminators mainly Dm 
andDk . Here, Dm is used for distinguishing between the {mi} 
and {R(Ki)} with Ladvr (reverse adversarial loss) whereas, to 
overcome the data imbalance and differences in domains, 
Dk is used that distinguishes between {ki} and the translated 
images{F(mi)} . The objective function is presented in Eq. 1:

Fig. 7   Proposed deep residual UNET architecture
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Fig. 8   Learning rate, epoch loss and epoch IoU score plots (red and orange line implies validation and training data)

Fig. 9   The multi-layer CNN 
architecture used for damage 
detection
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Here, � controls the weight between the two losses 
(adversarial and the cycle-consistent loss), and L1fc and L1rc 
represent the two-cycle consistent losses with L1-distance 
formulas in the forward and reverse GAN respectively [30].

5.4.1 � Adversarial Loss

Real-like images can be generated from noise while using 
generative adversarial networks for training. The GANs 

(1)L =
(

Ladvf + Ladvr
)

+ �
(

L1fc + L1rc
) execute by max–min two-player game and it is, therefore, 

important to alternately optimize the following objectives 
(Eqs. 2 and 3):

Here, D,G, xandy denote the discriminator, generator, 
noise vector input into the generator and real image in the 
training set respectively. G Generates images (Gx) that are 

(2)maxDVD(D,G) = EyP4(y)

[

logD(y)
]

+ ExP4(x)

(3)maxGVG(D,G) = ExP4(x)

Fig. 10   Encode-decoder 
architecture used for damage 
detection

Fig. 11   Deep crack architecture
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like images from Y  and D distinguishes between the real 
samples ‘y’ and the generated sample G(x). Moreover, D 
and G try to maximize Eqs. 2 and 3 respectively, which 
results in adversarial learning.

5.4.2 � Cycle‑Consistency Loss

It is well known that the adversarial loss can help in obtain-
ing structured images, but when used alone it is inadequate 

Fig. 12   Use of cycle-Gan for 
Training
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for translating the crack image patch to the desired structure 
patch or the other way round. Thus, it does not guarantee the 
consistency of the structure pattern between the input and the 
output images. Therefore, the introduction of an extra cycle 
consistency parameter can help in training the CNN and main-
taining the consistency of structure patterns between the input 
and output [31]. For the data set Q , each sample ‘q’ should 
be able to return to the original patch through the network, 
after the processing cycle (q → G(q) → F(G(q)) ∼ q) . Simi-
larly, for each structure image, ‘s’ in the structure set the net-
work should allow the return of n back to the original image 
(s → R(s) → F(R(s)) ∼ s) . These constraints can lead to 
the formulation of cycle-consistency loss defined as follows 
(Eq. 4):

5.5 � Model Parameters

The CNN was developed on sophisticated implementations 
including FCN [26], DSN, HED and SegNet whereas, the 
CRACK9001 library was used for training [13]. Stochastic 
Gradient Descent (SGD) was used for optimizations. The 
aim here was to differentiate between two classes (crack, and 
non-crack) and utilize the loss of function, normalization, and 
side-output layers for the network such that they can provide 
enhanced accuracy and convergence along with eliminating the 
need to use networks based on pre-trained models. The model 
parameters selected for the study were (i) the size of the input 
image was 544 × 384 × 3 (ii) ground truth size 544 × 384 × 1 
(iii) learning Rate 1 × 10 − 4 iv) loss weight associated with 
each side-output layer was 1.0 (v) loss weight associated with 
final fused layer was 1.0 (vi) momentum 0.9 and (vii) weight 
decay was 2 × 10 − 4.

5.6 � Data Augmentation

Data augmentation forms an integral component of deep net-
works. The data set was augmented 10 times for this study. The 
data augmentation was carried out by (1) rotating images to 
12 different angles after each 30°in. [0°, 360°], (2) editing the 
largest rectangle without blank regions in the rotated image, 
and (3) horizontal flipping of images at each angle. However, 
for training the network both raw and augmented images were 
used and due to rotation transformations, resized input images 
(256 × 256) were used.

(4)Lcyc(F,R) = EQp4(q)

6 � Experimental Analysis

The database was analysed using the selected methods 
and performance was evaluated based on the metrics and 
F-score. The results of the proposed architecture were com-
pared with existing methods for the crack detection.

7 � Performance Metrics

The proposed architecture was applied to the collected data-
base and three metrics were used for the evaluation of com-
mon semantic segmentation [22]. We calculated the Global 
accuracy (GC), class average accuracy and the mean inter-
section of the union over all classes. The global accuracy 
estimates the percentage of correctly predicted pixels and is 
calculated in Eq. (5) as follows:

The Class average accuracy (CAC) measures the predic-
tive accuracy over all the classes and is defined as follows 
(Eq. 6):

Whereas the mean intersection of the union (IoU) over all 
classes is calculated using Eq. 7. IoU metric is used for the 
quantification of percent overlap evident between a target 
mask and the predictions made for output results. Briefly, the 
IoU parameter can be used for the measurement or quantifi-
cation of the number of overlapping pixels between a target 
mask and the predictions made for output results [12, 32].

7.1 � F1‑Score

In addition to the measures, three other metrics including 
Precision (P, Eq. 8), Recall (R, Eq. 9) and F-score (F, Eq. 10) 
were also calculated to evaluate the semantic segmentation. 
The Precision (P) parameter indicates the positive predic-
tions for a positive class whereas the R metric is utilized for 
the quantification of positive predictions for all the positive 
classes included in the collected dataset [12, 32]. Moreover, 
the F-score is a measure that considers the precision and 
recall parameters. The F1-score metric indicates a model’s 
accuracy on a considered data set. Figure 13a, b represents 
the confusion matrix and the obtained results.

(5)GC =
∑

m
nmm

∑

m
tm

(6)CAC = (
1

ncls
)
∑

m
nmm∕tm

(7)IoU =

(

1

ncls

)

∑

m
nmm∕(tm +

∑

p
npm − nmm)
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8 � Results

8.1 � Performance Analysis of Proposed Methods

We compared our method to three other common meth-
ods adopted to corroborate our experiments. The methods 
considered were the (1) Crack-BN, (2) Crack-GF and (3) 
SegNet [23]. Additionally, SegNet is also one of the latest 

(8)ACC =
TP + TN

TP + FP + TN + FN

(9)TPR =
TP

TP + FN

(10)TNR =
TN

FP + TN

(11)PPV =
TP

TP + FP

(12)NPV =
TN

TN + FN

(13)F1 =
2TP

2TP + FN + FP

approaches that are used to perform semantic segmentation. 
Here, fine-tuning of the SegNet network and loss functions 
was carried out on the augmented datasets that were used 
in the current study. Crack-BN is also based on HED [24]; 
before operation activation, additional batch normalization 
layers are added. In Crack-GF, a guided filtering method 
that is highly efficient and rapid as compared to the con-
ditional random fields (CRF) is used [37]. The probability 
maps were also binarized using the variant global thresholds. 
The Precision-Recall curves created through segmentation 
methods used in the present study are presented in Fig. 14. A 
representative data set of images obtained from target struc-
tures and the segmentations utilized are presented in Fig. 15.

The P–R curves generated for the two methods show 
that the GF method has a better performance as can be seen 
by the F-Score value (0.870) in contrast with the baseline 
method exhibiting an F-Score of 0.838 as stated in Fig. 14.

Our proposed architecture shows a significant upgrade 
in the performance, in comparison to the existing methods 
(Crack-BN, Crack-GF, and SegNet) included in the study as 
depicted in Table 4.

Batch normalization can significantly boost the perfor-
mance as it leads to reduced over-fitting for the CNN. More-
over, the dense predictions can be refined through the imple-
mentation of both the guided image filtering and conditional 
random field methods. Results show that guided image fil-
tering appears to be faster and more efficient in comparison 
to other techniques. It is notable from our results that in 
comparison to all other methods our proposed GF pipeline 
displayed the highest-Class Average Accuracy, Mean IOU, 
F-force, Global Accuracy, Recall and Precision values of 

Fig. 13   a The confusion matrix. b crack and no crack images as per 
matrix

Fig. 14   Precision and recall Crack-Det and Crack-Det-GF
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Fig. 15   Cracks categorization matrix distinguish crack pixels based on the pixel width
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0.931, 0.878, 0.870, 0.989, 0.861, and 0.881 respectively 
(Table 4). However, in comparison to all other methods, the 
lowest performance was achieved using SegNet as indicated 
by the statistical parameter values presented in Table 4.

Most importantly the total crack pixels used for e train-
ing and testing were divided into significant and weak crack 
pixels respectively. This categorization was used for distin-
guishing crack pixels based on the pixel width. A crack hav-
ing a score between 1 and 5 for pixel depth was defined as a 
weak crack whereas; a crack exhibiting a pixel width greater 
than 5 was defined as a significant crack pixel as shown in 
Fig. 15 [21].

About metric values, our method generalizes better than 
the respective Crack-BN, Crack-GF and Seg-Net as shown in 
Table 4. Effective data augmentation methods are essential 
for deep models when training data is very limited. Moreo-
ver, using refinement modules like the PS operation and con-
volutional layers for analysing the overlap between the two 
maps shows that the proposed method can provide higher 
generalization and retain a greater amount of information 
on the low-dimensional features (Fig. 12). The results of 
this study show that this model can perform more robustly 
as compared to other methods. Moreover, our method also 
removes the background and irrelevant noise in the dataset 
[12].

9 � Discussion

In this study, a drone was used for capturing images of 
cracks on concrete bridge surfaces (Fig. 2b). A total of 2097 
images were captured. The total data set of images were 
divided into two, the training and test sets containing 1300 
and 237 images respectively. Overall, 78% of the images 
containing a significant crack and 13% of images with a 
weak crack were used. However, 9% of the non-crack images 
were used in the test set only.

We have presented some of the corresponding segmenta-
tion and representative images used in the study in Fig. 15. 
The segmentations were generated by representing the sub-
ject in the binary images. For every image, a pixel-wise seg-
mentation map was utilized which allows coverage of the 
crack regions and the pixel size of images were readjusted 

to 544 × 384. The percentages of the pixels for crack and the 
non-crack images are shown in Table 2. For each image, a 
pixel-wise segmentation map was used, which represents 
the total crack region coverage in the collected image set. 
To include a universal representation of cracks in the current 
study, a diverse range of scenes and scales were considered 
to select the crack images.

In our proposed framework loss of function, side out-
put, and batch normalization were used to distinguish the 
crack and non-crack levels in the current study. However, to 
reduce the overfitting of the proposed CNN, a performance 
boost can be achieved through batch normalization. Model 
parameters including Loss weight of each side-output and 
final fused layer, momentum, decay, and learning rate were 
used for the training of our CNN network. Additionally, to 
reduce training time, a small dataset was used to train our 
CNN model. Most prominently, our network was trained 
using two different approaches including (1) baseline (BN), 
and (2) Guided Filtering (GF). In the baseline approach, 
data augmentation is not performed. However, the baseline 
pipeline is based on the UNET and our modified loss func-
tions for smooth training. In later design, we have also added 
batch normalization layers before each activation operation 
to address domain invariances and co-variance shifts. The 
GF is a version of the baseline with the application of a 
guided filtering module. For every approach, we have used 
an augmented dataset for training.

Overall, in the current study, we assessed the performance 
of the proposed baseline and GF methods. Additionally, the 
performance was also compared with three other methods 
namely, Crack-GF, Crack-BN and SegNet. The perfor-
mance of the studied methods was measured using Mean 
IOU, F-score, P, CAC, GC, and R. For every architecture, 
cross-validation was also performed, and the predictions 
were assessed for each method using evaluation methods 
explained in Table 3.

Our results show that when the training set is augmented 
10 times, the performance improves to a greater extent. 
Hence, the refinement of the proposed post-processing meth-
ods is effective. In comparison to Crack-GF, Crack-BN, and 
SegNet, our proposed architecture shows obvious improve-
ments. It is already reported that the traditional methods 
involve post-processing (i.e. length constraint, curvature and 

Table 4   Comparison between 
the methods

Outputs Global accuracy Class average 
accuracy

Mean IoU Precision Recall F-score

Crack-Det-GF 0.989 0.931 0.878 0.881 0.861 0.870
Crack-Det 0.983 0.899 0.902 0.853 0.825 0.838
Crack-BN 0.980 0.876 0.872 0.845 0.811 0.827
Crack-GF 0.978 0.871 0.862 0.837 0.806 0.810
SegNet 0.967 0.867 0.822 0.768 0.760 0.786
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geometric features etc.). Therefore, it is indispensable for 
obtaining continuous and complete thin cracks. However, the 
convolutional neural networks display this weakness.

10 � Conclusion

The manual investigation of damages incurred to infrastruc-
ture is a challenging endeavour that is time-consuming and 
lacks objectivity and reliability. Therefore, automatic crack 
detection through techniques such as image processing is 
inevitable, but the influence of noise caused by lighting, 
blurring and other factors need to be addressed. Amongst the 
different deep learning approaches CNNs to provide auto-
matic learning of image features instead of image feature 
extraction thus making it less influenced by noises. For this 
reason, we suggest a framework based on deep hierarchi-
cal CNN architecture along with Cycle GAN for predict-
ing crack segmentation for each pixel in an approach that 
is end-to-end.

The proposed method utilizes the extended FCN (Fully 
Convolutional Networks), the DSN (Deeply Supervised 
Nets) and a U-net architecture. The DSN delivers direct and 
integrated feature supervision at each convolutional stage. 
Moreover, the intricately designed model network learns and 
aggregates features as it moves from the low convolutional 
layers to the high-level convolutional layers during the train-
ing procedure. Thus, the used architecture is different from 
the ones used traditionally which mainly rely on using the 
last convolutional layer. Additionally, for the refinement of 
prediction results, we utilized the Phase shift based guided 
filtering. Our proposed deep hierarchical convolutional neu-
ral network (CNN) architecture achieved advanced/high-tech 
performances on the considered dataset showing using a 
GF pipeline displayed the highest-Class Average Accuracy, 
Mean IOU, Global Accuracy, Recall and Precision values of 
0.931, 0.878, 0.989, 0.861, and 0.881 respectively. Several 
limitations exist in the proposed CNNs framework such as 
limitations in terms of pixel-perfect accuracy. Other limita-
tions that might be evident are that it requires many com-
putational resources, because of the generative approach. 
In future, this work can be converted into a knowledge 
distillation architecture (student and teacher) [38]. Where 
a complex network (teacher) is used to learn the underly-
ing mapping and at the same time enforce limitations in the 
complexity of the student model.
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