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Abstract
Coordinating multiple agents to optimize an objective has several real-world applications. In areas such as disaster rescue, 
environment monitoring and the like, mobile agents may be deployed to work as a team to achieve a joint goal. Recently, 
multi-agent problems involving mobile sensor teams have been formalized in the literature as DCOP_MSTs. Under this 
class of problems, DCOP algorithms are applied to enable agents to coordinate the assignment of their physical locations 
as they jointly optimize the team objective. In DCOP_MSTs, the environment is dynamic, and agents may leave or join the 
environment at random times. As a result, a predefined interaction topology or graph may not be useful over the problem 
horizon. Therefore, there is a need to study methods that could facilitate agent-to-agent interaction in such open and dynamic 
environments. Existing methods require reconstructing the entire graph upon detecting changes in the environment or assume 
a predefined interaction graph. In this study, we propose a dynamic multi-agent hierarchy construction algorithm that can be 
used by DCOP_MST algorithms that require a pseudo-tree for execution. We evaluate our proposed method in a simulated 
target detection case study to show the effectiveness of the proposed approach in large agent teams.

Keywords  DCOP · D-DCOP · Multi-agent systems · Multi-agent coordination · DCOP_MST

Abbreviations
DCOP	� Distributed constrained optimization 

problem
DCOP_MST	� Distributed constrained optimization prob-

lem for mobile sensor teams
MST	� Mobile sensor teams
DynDisMHG	� Dynamic distributed multi-agent hierarchy 

generation
D-DCOP	� Dynamic distributed constrained optimi-

zation problem
DDFS	� Distributed depth first search
Mobed	� Multi-agent organization with bounded 

edit distance

HARP	� Hybrid algorithm for reconstructing 
pseudo-trees

DCSP	� Distributed constraint satisfaction problem
CPA	� Current partial assignment
DIGCA​	� Distributed interaction graph construction 

algorithm
CoCoA	� Cooperative constraint approximation
DPOP	� Distributed pseudo-tree optimization 

problem
AMQP	� Advanced message queuing protocol
MAS	� Multi-agent system
UTM	� Unmanned aircraft system traffic 

management
UAV	� Unmanned aerial vehicle

1  Introduction

In many distributed real-world problems, multi-agent meth-
ods offer key advantages over centralized solutions due to 
their ability to scale over time, locality of interactions, lever-
aging expertise of different agents, and the like. To this end, 
multi-agent collaboration has been studied from different 
perspectives in recent years. Some interesting application 
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domains include power systems, mobile sensing [1], dis-
aster management  [2], environment monitoring  [3, 4], 
traffic light management [5], and resource management in 
microgrids [6].

In the Mobile Sensor Team (MST) domain, agents must 
collaboratively select their physical positions to monitor 
specific points of interest (targets). The MST environment 
typically changes over time. Some of these changes may 
be external to the agent, such as changes to target coverage 
requirements, addition or removal of targets over time, and 
weather condition. Likewise, there can be changes inherent 
to agents, such as device malfunctioning and disconnection, 
neighbourhood change due to movement, and adding a new 
agent.

Due to the peculiarity of the MST domain, Zivan et al. 
have formalized this class of problems as DCOP_MSTs [7]. 
Thus, dynamic DCOP algorithms may enable agents to coor-
dinate to select positions in the environment to detect or 
monitor targets. Most DCOP algorithms require the avail-
ability of a multi-agent hierarchy or pseudo-tree (used inter-
changeably in this study) to execute [8]. Such hierarchies 
enable paralleling computations that are at different subtrees 
of the hierarchy. In static DCOP algorithms, pseudo-trees 
are constructed from a predefined interaction graph.1 How-
ever, for DCOP_MST class of problems, predefined interac-
tion structures may not be helpful since the environment is 
open and dynamic. Here, an open environment refers to a 
multi-agent environment where an agent may leave or join 
the environment at arbitrary times. A dynamic environment 
refers to an environment that evolves.

In open and dynamic environments, changes to the neigh-
borhood of an agent affect how the optimization algorithm 
executes. For instance, an agent in an MST problem with 
a limited communication range may experience frequent 
neighbor changes as it keeps changing its position. In such 
a scenario, the agent may be out of range of neighbors in a 
predefined pseudo-tree and must coordinate with new neigh-
bors in the current DCOP [1]. Likewise, the neighbor set of 
an agent changes when an agent it shares a constraint with 
becomes unreachable (e.g. due to power failure). Another 
real-world manifestation of open and dynamic environ-
ments is the Unmanned Aircraft System Traffic Manage-
ment (UTM) [9, 10]. In such civil air spaces, the number 
of Unmanned Aerial Vehicles (UAVs) may vary and these 
UAVs have to address several coordination issues such as 
trajectory de-confliction with different neighbors as the 
environment changes. In [11], a DCOP framework is dis-
cussed for this trajectory de-confliction problem in the UTM 
domain. All these scenarios, and the like, contribute to the 

challenges that affect the coordination of agents when tra-
ditional DCOP algorithms are applied to open and dynamic 
environments.

A basic solution has been to restart the pseudo-tree con-
struction algorithm or interaction graph each time there is 
a change to enable the application of DCOP algorithms [1, 
12, 13]. While guaranteed to re-establish a valid pseudo-tree, 
such an approach causes unaffected parts of the hierarchy to 
execute reconstruction procedures needlessly. Due to possi-
bly significant differences between hierarchies, there is also 
the challenge of reusing information from previous hierar-
chies in the optimization process.

Therefore, there is a need to address how agents interact 
in a dynamic environment to facilitate the application of 
algorithms that require pseudo-trees for execution. In [14], 
this problem is called the Dynamic Distributed Multi-agent 
Hierarchy Generation (DynDisMHG) problem. Existing 
DynDisMHG approaches such as Distributed Depth-First 
Search (DDFS) [15, 16] and the Multi-agent Organization 
with Bounded Edit Distance (Mobed) depend on the avail-
ability of an interaction graph to operate [12, 17, 18]. In 
domains where defining the interaction graph beforehand is 
challenging or impossible, agents must be equipped to gen-
erate and maintain the multi-agent hierarchy dynamically. 
Our focus in this study is to address this gap in the domain.

This study extends our earlier work on the Ad-hoc Dis-
tributed Multi-agent Hierarchy generation problem [19] to 
the MST domain using the DCOP_MST formulation. Spe-
cifically, our main contributions are as follows: 

1.	 We propose a dynamic multi-agent hierarchy construc-
tion algorithm for open and dynamic environments. 
Due to the challenges mentioned above, the proposed 
approach dispenses with the requirement of a predefined 
interaction graph requirement before a multi-agent hier-
archy can be constructed.

2.	 Using a simulated target-detection application domain, 
we discuss how our proposal can be used in an MST 
environment framed as a DCOP_MST.

3.	 We apply our proposed approach to the DPOP and 
CoCoA algorithms (which, respectively, belong to the 
inference-based and local search categories) to demon-
strate the feasibility of using our proposal with existing 
DCOP proposals.

In what follows, we discuss related work in Sect. 2. Section 3 
introduces this study’s background and problem formulation. 
Section 4 discusses our proposed approach. Section 5 intro-
duces the experiment setup and then discusses the results. 
We draw our conclusions in Sect. 6.

1  The interaction graph discussed in this study equates to a constraint 
graph in static DCOP literature.
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2 � Related Work

The constraint or interaction graph is a standard approach 
to represent a DCOP in the literature. It helps to depict 
the constraints between nodes and underscore the locality 
of interactions. The decomposition of the global objec-
tive into local constraints makes DCOP suitable to model 
multi-agent problems where the team objective consists of 
constraints between agents. Each agent can then be rep-
resented as a node in the interaction graph, with an edge 
indicating a shared constraint between agents.

Several DCOP algorithms in the literature rely on an 
ordering derived from the interaction graph to execute. 
In [20–22], the authors apply a DDFS algorithm [15, 16] 
to construct a pseudo-tree to enable the usage of their 
respective DCOP algorithms for agents to coordinate their 
value assignments. The DDFS algorithm depends on a pre-
defined constraint or interaction graph to determine the set 
of acquaintances of each node for the ordering procedure. 
Likewise, a decentralized pseudo-tree construction that 
can exploit the problem structure has been proposed [23]. 
While the pseudo-tree construction is usually seen as a 
preprocessing step of the optimization process, given 
the interaction graph, other proposals also construct the 
pseudo-tree as part of the optimization process [24, 25].

On the other hand, most real-world multi-agent environ-
ments are dynamic and therefore present a challenge when 
conventional DCOP algorithms are applied. In response 
to this challenge, researchers have proposed algorithms 
that solve each change in the environment as a separate 
DCOP  [12, 13]. These methods rely on restarting the 
pseudo-tree construction algorithm each time a change is 
detected to enable the re-run of the optimization algorithm 
on a valid hierarchy. In [1], the authors discussed applying 
the Max-Sum algorithm to MSTs and relied on restarting 
an iterative algorithm discussed in [26] to construct a fac-
tor graph after each change. With every reconstruction of 
the pseudo-tree is the challenge of maintaining reusable 
information from previous solutions. Also, the newly con-
structed hierarchy could have significant variance from the 
previous one and limit the ability to reuse search informa-
tion between time steps. Moreover, if the time scale of 
changes in the environment is smaller than the time taken 
for the disrupted hierarchy to stabilize, the optimization 
process may fail to execute.

Other studies have considered methods that remove the 
need to address the DynDisMHG problem in mulit-agent 
systems by adopting non-hierarchy-based graph structures. 
For instance, in [27], Darko et al. proposed a DCOP frame-
work for traffic incident management. In their work, the 
authors assumed that an incident response vehicle could 

communicate with all other vehicles in the network. This 
removed the need to address the DynDisMHG problem 
introduced by such a dynamic environment. However, in 
complex environments with several agents, such a con-
straint graph structure may not be feasible or expensive to 
construct. Also, the complete graph structure is unable to 
exploit the domain structure (e.g. locality of interactions). 
In [28], the authors extended the CoCoA [29] algorithm to 
the continuous domain. The proposed C-CoCoA method 
was compared to several baselines using different con-
straint graph structures. In their experiments, hierarchy-
based (or tree-based) versions of all algorithms discussed 
in the paper mostly performed better their non-hierarchy-
based graph types such as Sparse, Dense, and Scale-Free 
networks. Thus, using hierarchy-based methods to facili-
tate multi-agent collaboration can enable optimization 
algorithms to achieve better performance.

Due to the challenges above and the likes, Sultanik 
et  al.  [14] proposed the Multi-agent Organization with 
Bounded Edit Distance (Mobed) for maintaining multi-
agent hierarchies. The proposed algorithm ensures that the 
difference between hierarchies is minimal. With Mobed, 
only affected parts of the hierarchy are reconstructed. By 
attaining minimal edit distance, search information reuse 
between DCOPs is encouraged in dynamic environments. 
Mobed requires a different hierarchy construction algorithm 
(e.g. DDFS) to run as an initial step. Also, Mobed cannot be 
used in environments where the interaction graph cannot be 
specified a priori.

In [17], Yeoh et. discussed the significance of information 
reuse between DCOPs in a dynamic environment. In particu-
lar, the authors proposed an algorithm enabling the reuse of 
contexts when using the ADOPT algorithm. In addition, they 
discussed the Hybrid Algorithm for Reconstructing Pseudo 
Trees (HARP). In its execution, HARP is used to detect 
agents affected in the new DCOP in a distributed manner. 
These affected agents then execute the DDFS algorithm to 
reconstruct their local subtree.

Thus, even though HARP and Mobed discuss new tech-
niques for improving the hierarchy construction, HARP still 
relies on DDFS to operate, albeit at the subtree level. In con-
trast, Mobed requires a method such as DDFS to construct 
the first hierarchy. Also, due to the assumption that there 
is an expected interaction graph in DCOP proposals, [8, 
30–32], DDFS-based pseudo-tree construction is typical in 
the literature. However, in open and dynamic environments, 
such as those modeled as DCOP_MSTs, it may be challeng-
ing or impossible to specify an exhaustive interaction graph 
beforehand since several random events could influence the 
environment and agent organization or order. Indeed, Zivan 
et al. reported that fixed interaction graphs are ineffective 
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in dynamic environments [7]. To this end, we investigate 
a multi-agent hierarchy generation problem where a fixed 
interaction graph cannot be used over the horizon and pro-
pose a valid hierarchy generation and maintenance method.

3 � Problem Formulation and Background

3.1 � Problem Formulation

We extend the formulation in [14] to the domain where no 
fixed interaction graph is guaranteed to be consistent across 
the horizon of the Multi-agent System (MAS). Let At be an 
ordered set of agents in a multi-agent system at time t that 
gives rise to an unordered, labeled, rooted tree. We call the 
tree T = ⟨A,� ∶ A → A⟩ a multi-agent hierarchy. � is a func-
tion that, given an agent aj ∈ A , specifies the parent of aj 
already in the hierarchy. The neighbor set of aj is denoted as 
Nj . We denote the children set of aj as Cj ⊆ Nj . The hierarchy 
is valid if, after adding or removing agent ai to the hierarchy, 
it continues to be acyclic after a finite number of steps. Such 
a hierarchy enables agents in disjoint parts of the tree to 
execute in parallel.

3.2 � Dynamic DCOP

We consider the operation of the ad-hoc multi-agent hier-
archy in a dynamic DCOP context. In multi-agent systems 
formulated as DCOPs, agents assign values from a domain 
to their decision variables to optimize certain constraint 
functions. It is assumed that the agents are fully cooperative 
and can fully observe the environment [8, 28]. Also, the 
environment is dynamic and deterministic. The DCOP is 
modeled as a tuple P = ⟨A,X,D,F, �⟩ , where:

•	 A =
{
a1, a2, ..., am

}
 is a finite set of agents,

•	 X =
{
x1, x2, ..., xn

}
 is a finite set of variables,

•	 D =
{
D1,D2, ...,Dn

}
 is a set of variable domains such 

that, the domain of xi ∈ X is Di,
•	 F =

{
f1, f2, ..., fK

}
 is a set of constraint functions defined 

on X where each fk ∈ F is defined over a subset 
Xk =

{
xk
1
, xk

2
, ..., xk

p

}
 , with p ≤ n , determines the cost of 

value assignments of the variables in Xk  as 
fk ∶ D1 × D2 × ... × Dp → ℝ ∪ {⟂} . Here, the cardinality 
of Xk is the arity of fk . The total cost of the values 
assigned to variables in X is Fg(X) =

∑K

k=1
fk(Xk),

•	 � ∶ X → A is an onto function that assigns the control of 
a variable x ∈ X to an agent �(x).

We assume that � assigns only one variable per agent2 and 
the use of binary constraint functions. A Current Partial 
Assignment (CPA) or partial assignment is the assignment 
of values to a set of variables x such that x ⊂ X . A complete 
assignment � is when all variables in X are assigned a value. 
A constraint function fk ∈ F is satisfied if fk(�Xk

) ≠⟂ . The 
objective of a DCOP is to find a complete assignment that 
minimizes the total cost:

where � is the set of all possible complete assignments.
The Dynamic DCOP (D-DCOP) is an extension of the 

DCOP formulation to address dynamic multi-agent envi-
ronments. D-DCOP is modeled as a sequence of DCOPs, 
D1,D2, ...,DT  .  Here ,  Dt =

⟨
A

t
,X

t
,D

t
,F

t
, �t

⟩
 where 

1 ≤ t ≤ T  . D-DCOP aims to solve the arising DCOP prob-
lem at each time step.

We consider adding an agent, removing an agent, and 
constraint function modification as events that transition the 
environment from one DCOP to another. Each agent ai first 
has to resolve its local neighbor list and parent–child associ-
ations before it can solve the DCOP collaboratively with its 
identified neighbors and relations. DynDisMHG algorithms 
(such as the proposal of this study) enable DCOP algorithms 
that rely on pseudo-trees to operate.

(1)�∗ ∶= argmin
�∈�

Fg(�) = argmin
�∈�

∑

fk∈F

fk(�Xk
),

Fig. 1   Mobile sensor team target detection illustration

2  Each variable could be represented as an aggregation of sub-
variables where its domain constitutes the cartesian product of the 
domains of all the sub-variables. We use agent and variable inter-
changeably since an agent controls only one variable.
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3.3 � Motivating Domain

In Fig. 1, we illustrate a target detection problem for a 
Mobile Sensing Team (MST). In this environment, agents 
(denoted by solid circles) are to collaborate and detect tar-
gets in the environment. Thus, the variable of interest in 
the environment is the agent’s position, and its domain is 
the possible locations it can move into in a single step. In 
the DCOP_MST formulation, targets (denoted by diamond 
shapes) may also be mobile in the environment. Here, we 
assume the targets are static in the environment (e.g. mili-
tary installations, illegal mining sites, or potential natural 
disaster sites). As an agent moves in the environment, its 
domain, neighbour set, constraints, and utilities may be 
affected. Each target defines the constraint that applies to 
agents within its region. In Fig. 1, we assume that the sens-
ing range and mobility range are equal (denoted by broken 
circles). These two properties may be differ in the real-world 
and does not limit the proposed method. Here, the environ-
ment is manifested as a grid world, and the coverage require-
ment of each target is for an agent to be in the same cell it 
occupies.

We assume agents have a perfect reputation model3 and 
detecting a target with teammates yields a higher score than 
detecting the target alone. In the environment, each change 
is represented as a DCOP that the agents have to optimize. 
Such changes include adding an agent in the environment, 
removing an agent, and constraint change. As an agent 
moves in the environment from target to target, it changes 
its constraint, as defined in the DCOP_MST model. Agents 
in close proximity construct a multi-agent hierarchy or 
pseudo-tree and then execute an optimization algorithm to 
coordinate their value assignments (positions to move into) 
to detect targets. In Fig. 1, agents ai, a2 and a3 are likely to 
construct a hierarchy due to their proximity, whereas a4 will 
be an isolated agent since it is far from the rest of the team 
in the given scenario. We refer the reader to  [7] for a com-
prehensive discussion on DCOP_MSTs.

4 � Proposed Approach

4.1 � Distributed Interaction Graph Construction 
Algorithm

This section discusses our proposed approach for the multi-
agent hierarchy construction problem in open and dynamic 

environments. We make the following assumptions in this 
study: 

1.	 Each agent has a globally unique ID that determines its 
index in the ordered set in 3.1.

2.	 The agents behave cooperatively to the extent necessary 
for optimizing the global objective.

3.	 Agents communicate via message-passing. In this 
message-passing approach, each message contains the 
sender’s ID and address that the receiver can use to send 
a response. Other information could be included in the 
payload when needed.

4.	 Communication messages are guaranteed to be delivered 
and in the order sent, despite possible delays.

5.	 We assume that the agent is able to detect other agents 
in communication range U in each time step.

We use a state machine to track the algorithm’s execution, 
manage concurrent procedure calls, and prevent deadlocks.

The pseudocode of the proposed algorithm is presented 
in Algorithm 1. Our key objective is to enable an agent to 
dynamically discover and order its neighbors without requir-
ing a predefined interaction graph. The algorithm ensures 
that an agent seeking connection has a single insertion point 
under consideration to avoid conflicting edges in the hierar-
chy. Also, unreachable neighbors of an agent are removed, 
and where a parent is removed, the agent can reconnect to an 
existing hierarchy. Since no interaction graph is used, a new 
agent to be added to the hierarchy does not know of poten-
tial neighbors. We address this challenge using a message 
broadcasting scheme to discover nearby agents. In our dis-
cussion, agent ai (referenced as i) is the agent that executes 
a procedure asynchronously. Agent aj (referenced as j) is an 
agent interacting with i in the environment.

Algorithm 1 is executed by i in every time step (note that 
each time step represents a new DCOP in DCOP_MST). The 
agent is set to an inactive state on initialization, and other 
initial properties are set (lines 1–5). The children set and 
parent properties ( �(i) and Ci ) are set when the agent starts 
the algorithm for the first time (lines 6–9).

The Connect function is the primary procedure and is 
scheduled as a process that regularly executes within a time 
step (or based on a schedule that may depend on the applica-
tion domain). When called, it first ensures that the agent is 
in an inactive state, has an agent that can serve as a parent 
(see Sect. 4.3), and does not have a parent (line 9). Once the 
connection conditions are satisfied, the agent broadcasts an 
Announce message in the environment (lines 11, 12) and 
waits for a period, condition, or timeout before proceed-
ing (line 13). During this waiting period, an available agent 
in the environment receives the Announce message and 
responds by sending an AnnounceResponse message (lines 
27–31) if it is a potential parent. Before an agent can send 

3  In a real-world setting, a perfect reputation model may not hold in a 
DCOP_MST. However, since we focus on the hierarchy construction 
problem, this does not limit our work but enables us to focus on the 
study’s objective.
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an AnnounceResponse, it must be inactive, and a response 
determinant function � ∶ A → � must be ���� . The func-
tion � may be defined based on the application domain (we 
discuss one such function in Sect. 4.3).

When i receives an AnnounceResponse message, it adds 
the sending agent to a response list if i is inactive (lines 
32–36). After the waiting period (line 13), i selects an agent 
in the response list using � (line 14). This selection ensures 
that a single point of insertion is considered for connection. 
� could be designed to first examine each agent in L to deter-
mine a potential neighbour or uniformly sample from L . 
Agent i then sends an AddMe message to the selected agent 
j and goes into an active state while it waits to hear from j 
(lines 15–17). Since other agents may be expecting AddMe 
message from i, these agents (except j selected to receive 
AddMe message) receive AnnounceResponseIgnored mes-
sage from i (lines 18–20). The response list is cleared before 
ending the execution of the connect function (line 20). When 
the condition for broadcasting Announce messages fails but 
the timeout for the optimization elapses, the D-DCOP algo-
rithm is started by i (lines 23–25).

When i receives an AddMe message from j, it adds j to its 
children and sends a ChildAdded message to j if i is inactive 
(lines 37–40). Otherwise, it replies with an AlreadyActive 
message to j (lines 41–43). When an AlreadyActive message 
is received by i, it sets its state to inactive (lines 56–58) to 
enable the next call to the Connect procedure to satisfy the 
state condition on line 11.

After receiving a ChildAdded message from j, i must be 
in an active state and without a parent to proceed (line 46). 
If so, it assigns j as its parent and becomes inactive (lines 47, 
48). Agent i then sends a ParentAssigned message to j (line 
49). Subsequently, i calls the D-DCOP computation since 
its neighbour set has changed (line 50). On the other hand, 
i calls the D-DCOP algorithm when it receives a ParentAs-
signed message (lines 53, 55) since it has a new child in the 
hierarchy.

Also, when i receives an AnnounceResponseIgnored mes-
sage from j, it updates the register for tracking all agents 
that have sent such messages (lines 59–60). When all 
other agents that i expect AddMe messages from ignore i’s 
AnnounceResponse messages and i has not assigned a value 
to its decision variable, it initiates the D-DCOP algorithm 
(lines 59–61). This scenario may happen when, as i moves 
in the environment, it comes in contact with another agent 
j that satisfies �i but j picks a different agent to send an 
AddMe instead of i.

While invoking the D-DCOP algorithm for every agent 
connection is possible, we place a further check to ensure 
all possible connections within a time step have been 
established before i executes the optimization algorithm. 
Therefore, if i comes into contact with j that satisfies �i 
and hence assumes that j would be sending an Announce 
message but j already has a parent, i will never trigger its 
optimization procedure (if i always waits for all potential 
connections to be established before optimization begins). 
The timeout condition on line 23 ensures this deadlock is 
broken for the agent to call the D-DCOP algorithm.

1

2

3

Announce
broadcast

1

3

2

1. AnnounceResponse

2. AddMe
3. ChildAdded

4. ParentAssigned

1. AnnounceResponse

connection process

1

3

2
Initial state Connected state

Fig. 2   An illustration of how an agent gets connected using the pro-
posed algorithm. An un-annotated line denotes already established 
connection and an annotated line depicts a step in the connection pro-
cess. When Agent 3 wants to connect/re-connect to the current inter-
action graph, (1) it broadcasts Announce message to agents in range 

(2) Agents 1 and 2 respond to Agent 3 with AnnounceResponse, (3) 
Agent 3 selects agent 1 and sends an AddMe message, (4) Agent 1 
responds with a ChildAdded message, (5) Agent 3 then sends a 
ParentAssigned message
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4.2 � Agent Connection Maintenance

In Algorithm 1, i can connect to another agent in the envi-
ronment or the multi-agent hierarchy described in Sect. 3.1. 
Next, the question we address is how it discovers agents in 

Algorithm 1 Distributed Interaction Graph Construction Algorithm (DIGCA)
Input: DCOP algorithm, stateTimeout
Output: Selected value v for decision variable of i in current time step
1: v ← null
2: state ← INACTIVE
3: L ← ∅
4: U ← determine agents in communication range
5: B ← ∅
6: if on start up then
7: Ci ← ∅
8: π(i) ← null
9: end if

10: procedure Connect(i) � Called by i to find a neighbor to connect to
11: if π(i) is null and hasPotentialParent(U) and state = INACTIVE then
12: Publish Announce{i}
13: Wait for AnnounceResponse from available agents for a period
14: j ← ϑ(L) � Select an agent from the list of respondents, if any
15: if j is found then
16: Send AddMe{i} to j
17: state ← ACTIVE
18: for a in L/j do
19: Send AnnounceResponseIgnored{i} to a
20: end for
21: end if
22: L ← ∅
23: else if execTimeout then
24: Start D-DCOP algorithm to determine v
25: end if
26: end procedure
27: procedure ReceiveAnnounce(j) � When i gets an Announce message from j
28: if state is INACTIVE and φi(j) then
29: Send AnnounceResponse{i} to j
30: end if
31: end procedure
32: procedure ReceiveAnnounceResponse(j) � When i gets AnnounceResp

from j
33: if state is INACTIVE then
34: Add j to L
35: end if
36: end procedure
37: procedure ReceiveAddMe(j) � When i receives AddMe message from j
38: if state is INACTIVE then
39: Add j to Ci

40: Send ChildAdded{i} to j
41: else
42: Send AlreadyActive{i} to j
43: end if
44: end procedure

its neighbour set that are currently unreachable and updates 
its registers accordingly. In a domain where i can perceive all 
agents in its neighbourhood at every time step, i can easily 
remove agents that are no longer in communication range. 
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Also, agents can use a keep-alive message-passing approach 
in Algorithm 2 to address this question.

Similar to Algorithm 1, the procedures in Algorithm 2 are 
executed asynchronously. First, the inspectNeighbors and 
sendKeepAlive procedures are executed by i as two back-
ground processes called at regular periods like the Connect 
procedure of Algorithm 1. Agent i maintains a list of neigh-
bours to keep alive (line 1). The sendKeepAlive procedure 
sends a message to all its neighbours to inform them of its 
availability when called (lines 2–5). When i receives a Kee-
pAlive message, it adds the sender to the keep-alive message 
list P (lines 7–10). When the inspectNeighbors procedure 
is executed by i, it removes any neighbour j not found in 
the keep-alive list (lines 13–21). If j (a removed agent) was 

the parent, i goes into an inactive state. This state change is 
necessary to enable the connect procedure of Algorithm 1 to 
find a new parent. If a change in neighbourhood is detected, 
i starts the associated D-DCOP computation (lines 27–29).

Since the execution order is a property of the D-DCOP 
algorithm, i will be able to know whether to execute or for-
ward computations to its parent or children. While we focus 
on D-DCOP computation with the multi-agent hierarchy, 
other distributed computations that use hierarchies could 
also be applied. Due to the asynchronous execution envi-
ronment, there could be a quick succession of computation 
invocations, and therefore, such an environment may require 
an abort procedure. Another approach could be to defer the 
execution of computations till all graph-associated message 
handling are complete. We adpot the latter in this study.

Algorithm 2 Disconnected Neighbor Removal Algorithm
Input: Ni,DCOP algorithm
1: P ← ∅ � keep alive list
2: procedure sendKeepAlive(j) � Called by i to inform j of its availability
3: for neighbor in Ni do
4: Send KeepAlive{i} to j
5: end for
6: end procedure
7: procedure ReceiveKeepAlive(j) � When i gets a KeepAlive message from j
8: if j not in P then
9: Add j to P

10: end if
11: end procedure
12: procedure InspectNeighbors � Called regularly by i to remove unreachable

neighbors
13: affected ← False
14: for j in Ni do
15: if j not in P then
16: if j == π(i) then
17: π(i) ← null
18: state ← INACTIVE
19: else
20: remove j from Ci

21: end if
22: clear all information about j in i’s registers
23: affected ← True
24: end if
25: end for
26: P ← ∅
27: if affected then
28: start DCOP algorithm
29: end if
30: end procedure
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We illustrate how an agent connects to another agent in 
Fig. 2. This illustration assumes a successful connection 
process on the first try for didactic purposes. However, we 
note that an agent may issue multiple connect calls in the 
environment, and the frequency of such calls is application 
dependent.

4.3 � Response Determinant Heuristic

Notice that using � ensures that i considers only a single 
insertion point during the connection process. Nonetheless, 
since j could also be broadcasting Announce messages, there 
is a need for a mechanism that avoids cyclic connections in 
the hierarchy. To this end, the result of �i ∶ A → � must 
be consistent and independent of the problem horizon. We 
define an instance of � in equation 2 based on the ordered 
set of agents mentioned in Sect. 3.1.

This definition has the intuition that the agent with the low-
est index will be the root. In other words, given two agents 
i and j, the agent with the lower order is a potential parent 
to the agent with the higher order (and vice-versa). We con-
sider two extreme cases in the generation of the multi-agent 
hierarchy. The first is a situation where the hierarchy tends 
towards a chain. Such a scenario may be helpful for syn-
chronized computations but undesirable when parallelism 
is desired. The second is when all agents are connected to 
one root (tree of depth 1). While this encourages parallelism, 
removing the root causes all other agents to be affected and 
the need to invoke the connection algorithm. To balance 
these extremes, we use a max-degree heuristic to limit the 
possible neighbours and define � to weight agents with a sin-
gle or no child higher when selecting from the response list.

5 � Experiments and Results

In this section we discus the experiments and analyze the 
results.

5.1 � Setting

We conducted our experiments based on the motivating 
domain in Sect. 3.3. We implemented the simulation envi-
ronment as a grid world where a cell can contain agents and 
targets. In our experiments, we used a 5-by-5 grid environ-
ment whose horizon is composed of discrete time steps. The 
environment waits for a complete assignment in each time 
step before transitioning to a new time step. An agent may 

(2)𝜙i(j) =

{
���� if i < j,

����� Otherwise

be added to a cell randomly (add event) or removed from 
the environment (remove event). Existing agents, however, 
can perform a single move operation in the step. Legitimate 
actions of an agent in a cell include directions of movement 
that can lead the agent to an adjacent cell (i.e. maximum of 8 
actions). Thus, the list of possible actions may change as the 
agent moves from cell to cell. For instance, an agent in cell 
1–1 can only move to the right, down, and right-down (or 
bottom right) cells, whereas an agent in cell 2–2 can move 
to the left, right, up, down, left-up, right-up, left-down, and 
right-down cells. In each time step, these legitimate actions 
constitute the domain from which an agent can select a value 
(i.e. the domain is dynamic) using the optimization process. 
As mentioned, the goal is to detect static targets randomly 
placed in the environment. Each target defines a constraint 
where detection by multiple agents yields higher rewards 
than detection by a single agent.

Aside from the proposed algorithm, we based on [15] on 
implementing a dynamic DDFS algorithm as a baseline in 
our experiments. Since DDFS assumes a predefined interac-
tion graph, we assume that the agents within communication 
range in a time step form a fully connected graph. The agents 
use this information to execute the DDFS algorithm. We 
used Cooperative Constraint Approximation (CoCoA) [29] 
and Distributed Pseudo-tree Optimization Problem (DPOP) 
as the DCOP algorithms. These DCOP algorithms only run 
when all possible connections are established or the hierar-
chy construction algorithm timeouts as explained in Sect. 4.

Regarding the execution environment, we conducted the 
experiments on a 16-gigabyte RAM computer using an Intel 
i7-6700 CPU and running Ubuntu 20.04.5 LTS. The simu-
lation system had five main components: an event genera-
tion function that randomly generates agent addition and 
removal events to be executed as DCOPs in the environ-
ment, the grid world environment that runs generated events 
and receives agent registration when the agent is first added 
(referred to as AgentRegistration message), a runner com-
ponent that receives agent addition and removal messages 
from the simulation environment and starts/remove agents, 
and agent component. Agents were implemented as threads, 
and each agent ran an instance of a hierarchy construction 
algorithm (DIGCA or DDFS) and DCOP algorithm (CoCoA 
or DPOP). We allowed each active agent in the environment 
to execute the Connect function as often as possible in each 
time step. The fifth component of the simulation setup is 
the communication layer. We used the RabbitMQ Advanced 
Message Queuing Protocol (AMQP) message broker as the 
communication layer. We also developed an auxiliary graph 
visualization component to monitor the hierarchy generation 
during the simulation. The source codes of our experiments 
can be found at https://​github.​com/​bbrig​httaer/​ddcop-​dynag​
raph.

https://github.com/bbrighttaer/ddcop-dynagraph
https://github.com/bbrighttaer/ddcop-dynagraph
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Table 1   Main message types 
used in our experiments

Code Message Type Algorithm Description

AR Agent Registration - Sent by a new agent to the simulation
environment to indicate its presence

AM Announce Message DIGCA​ Broadcasted by an agent that wants to
find a parent to connect to

ARM Announce Response Message DIGCA​ Sent by an agent that receives an AM
from a potential child agent

AIM Announce Response
Ignored Message

DIGCA​ Sent by an agent to another agent that
was not selected to receive an ADM

ADM Add-me Message DIGCA​ Sent by an agent to another agent that
as been selected to be the sending agent’s parent

CAM Child Added Message DIGCA​ Sent by a parent agent to a child agent
to confirm addition as a child

PAM Parent Assigned Message DIGCA​ Sent by a child agent to its parent to
confirm assignment as a parent

AAM Already Active Message DIGCA​ Sent by an agent that is unable to
respond to an ADM

USM Update State Message CoCoA Sent to neighbor agents to inform
them about the sending agent’s status/state

IM Inquiry Message CoCoA Sent by an agent to its neighbors to
solicit CMs, as part of the local search procedure

CM Cost Message CoCoA Sent by an agent that as received an IM
to the sender of the IM

ER Execution Request Message CoCoA Due to dynamic environment, we introduced
this message type to enable an agent
that is not the root to request the start of
the optimization from its parent

DVM DDFS Value Message DDFS Sent to an agent that can either be parent
or a pseudo-parent

DPM DDFS Position Message DDFS Sent to an agent that can either be a child
or pseudo-child

DCM DDFS Child Message DDFS Sent by a child agent to its parent to
indicate establishment of a
parent–child connection

DPCM DDFS Pseudo-Child Message DDFS Sent to an agent that has been selected
as a pseudo-parent

DND DDFS Neighbor Data DDFS In the dynamic DDFS implementation,
we use this message type to help
agents in close proximity to share degree
information among themselves to enable
the use of the max-degree heuristic

UM Util Message DPOP Sent by a child agent to a parent to report
utility values in the child agent’s subtree

VM Value Message DPOP Sent by a parent agent to a child agent to
report the value selected by the parent agent

Fig. 3   Number of messages 
exchanged in the environment
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5.2 � Results

5.2.1 � Complexity Analysis

We now analyze the interaction complexity (number of 
messages) when an agent makes a Connect call to connect 
to another agent. Since the complexity of the optimization 
depends on the DCOP algorithm in use, it is not factored 

in this analysis. Assuming there are m agents within the 
communication range of i, all m agents would receive the 
Announce message. Hence, in the worst case, the connect 
procedure’s complexity is O(m). Using Eq. 2, the worst case 
would be when i has the highest index, which implies that 
it will receive O(m) AnnounceResponse messages. Since 
only one insertion point is selected by i, the worst-case com-
plexity of AddMe interaction is O(1). On the other hand, 

Fig. 4   Number of messages 
exchanged in the environment 
by message types

(a) CoCoA-DIGCA (b) DPOP-DIGCA

(c) CoCoA-DDFS (d) DPOP-DDFS

Fig. 5   Average edit distance 
recorded per time step. Dashed 
line depicts number of agents at 
each time step

Fig. 6   Average number of com-
ponents in the graph constructed 
in each time step. Dashed line 
depicts number of agents at 
each time step
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assuming i receives AddMe messages from m new agents 
(meaning i is the lowest index in the communication range), 
sending ChildAdded or AlreadyActive messages as replies 
has an asymptotic complexity of O(m). Thus, the interaction 
complexity of each agent in a time step is linear in terms of 
the number of agents in its local area in the worst case. It is, 
therefore, feasible to use the proposed approach with opti-
mization algorithms capable of exploiting local interactions 
for agents to collaborate in a MAS.

5.2.2 � Empirical Analysis

Firstly, we used the event generation component to ran-
domly generate 35 scenarios of 30 add-agent events and 5 
remove-agent events. We maintained this sequence of events 
throughout our experiments to enable a fair comparison. The 
results report averages of 5 runs of each experiment using 5 

different random number seeds. The main message types that 
agents exchanged in the experiments are listed in Table 1.

We show the accumulated number of messages 
exchanged by the agents in the environment using different 
combinations of hierarchy construction and DCOP algo-
rithms in Fig. 3. In both DCOP algorithms, our proposed 
approach used about half the number of messages used by 
the baseline method at the end of the horizon. This perfor-
mance results from DDFS being restarted in each time step, 
as has been done in previous studies that adopt DDFS in 
dynamic environments. DIGCA, on the contrary, maintains 
unaffected connections in the hierarchy and only agents in 
affected parts exchange connection-related messages.

In Fig. 4, where we show the breakdown of the number of 
messages tally, we gain deeper insights into the contribution 
of each message type. Using Table 1 as a guide, we notice 
that the message types of the proposed approach contrib-
uted far less to its overall number of messages exchanged, as 

Fig. 7   Sample connected 
components (of agents) in the 
environment for the last 6 time 
steps of a run

(a) time step 30 (b) time step 31

(c) time step 32 (d) time step 33

(e) time step 34 (f) time step 35
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shown in Fig. 3. Instead, the DCOP-related messages were 
the main contributors to the overall number of messages in 
the case of DIGCA. In contrast, the DDFS baseline recorded 
more messages for its message types compared to associated 
DCOP message types. This reveals the efficiency of our pro-
posed approach in terms of the number of messages it takes 
to establish a multi-agent hierarchy.

We also studied some properties of the graph constructed in 
each time step to understand how each hierarchy transformed. 
Here, the desiderata are to reduce the number of changes 
between multi-agent hierarchy updates and have agents close to 
one another form a valid hierarchy. Therefore, we measure each 
time step’s average edit distance and the number of connected 
components. The edit distance measures hierarchy perturba-
tions between time steps. The results are presented in Figs. 5 
and 6. The broken line shows the event type executed in each 
time step - a rise indicates an add-agent event, and a dip indi-
cates a remove-agent event. The best behaviour is to see the edit 
distance minimized after adding an agent to the environment.

In both the baseline and proposed approach experiments, we 
observed that as more agents were added to the environment, 
agents in different parts of the environment formed hierarchies. 
This observation explains why the average number of connected 
components recorded across the time steps in Fig. 6 is mostly 
below 5 even though several agents were in the environment.

Interestingly, while the baseline method outperformed the 
proposed approach in ensuring a minimal number of con-
nected components, it performed poorly regarding its edit 
distance. The performance of DDFS on the number of con-
nected components metrics is due to its ability to use updated 
agent neighbourhood information to reconstruct the hierar-
chy in each time step. DIGCA, on the other hand, maintains 
previous unaffected connections, enabling DCOP algorithms 
that need to reuse information from the previous time step to 
do so. This property of DIGCA explains why it outperformed 
the baseline on the edit distance metric. Thus, DDFS is more 
suitable for environments with few agents, whereas the pro-
posed method works well in large agent sizes.

Our experiments show that our proposed method is fea-
sible for facilitating the application of pseudo-tree-based 
DCOP algorithms and other multi-agent hierarchy-based 
optimization methods in an open and dynamic environment. 
We show sample multi-agent hierarchies constructed by the 
proposed method in Fig. 7.

6 � Conclusion

In this paper, we have discussed the ad-hoc distributed 
multi-agent hierarchy generation problem. We have also 
proposed a distributed algorithm for constructing and 
maintaining a stable multi-agent hierarchy for interac-
tion when collaborating in a dynamic environment. Our 

proposed approach addresses a vital issue in multi-agent 
operations in open and dynamic environments. Unlike 
existing methods, DIGCA does not require an existing 
interaction graph or reconstruction of the entire multi-
agent hierarchy when changes are detected. We compared 
our proposed approach to a dynamic variant of the DDFS 
algorithm. Our method’s effectiveness in domains with a 
high number of agents has been shown using a grid world 
simulation environment and examining the behaviour of 
the hierarchy construction method across all time steps. 
An aspect of our work that could be probed further is how 
Abort schemes could be incorporated to enable already 
initiated optimization processes to be terminated when 
necessary. Also, since real-world communication systems 
may not always guarantee the delivery of messages, further 
research is needed on how to address the DynDisMHG 
problem in unstable communication settings. We are also 
leveraging DIGCA to propose robust multi-agent coor-
dination algorithms for open and dynamic environments.
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