
Vol.:(0123456789)1 3

Human-Centric Intelligent Systems (2023) 3:473–486
https://doi.org/10.1007/s44230-023-00044-0

RESEARCH ARTICLE

Distributed Multi‑Agent Hierarchy Construction for Dynamic DCOPs
in Mobile Sensor Teams

Brighter Agyemang1  · Fenghui Ren1 · Jun Yan1

Received: 8 May 2023 / Accepted: 29 August 2023 / Published online: 12 September 2023
© The Author(s) 2023

Abstract
Coordinating multiple agents to optimize an objective has several real-world applications. In areas such as disaster rescue,
environment monitoring and the like, mobile agents may be deployed to work as a team to achieve a joint goal. Recently,
multi-agent problems involving mobile sensor teams have been formalized in the literature as DCOP_MSTs. Under this
class of problems, DCOP algorithms are applied to enable agents to coordinate the assignment of their physical locations
as they jointly optimize the team objective. In DCOP_MSTs, the environment is dynamic, and agents may leave or join the
environment at random times. As a result, a predefined interaction topology or graph may not be useful over the problem
horizon. Therefore, there is a need to study methods that could facilitate agent-to-agent interaction in such open and dynamic
environments. Existing methods require reconstructing the entire graph upon detecting changes in the environment or assume
a predefined interaction graph. In this study, we propose a dynamic multi-agent hierarchy construction algorithm that can be
used by DCOP_MST algorithms that require a pseudo-tree for execution. We evaluate our proposed method in a simulated
target detection case study to show the effectiveness of the proposed approach in large agent teams.

Keywords  DCOP · D-DCOP · Multi-agent systems · Multi-agent coordination · DCOP_MST

Abbreviations
DCOP	� Distributed constrained optimization

problem
DCOP_MST	� Distributed constrained optimization prob-

lem for mobile sensor teams
MST	� Mobile sensor teams
DynDisMHG	� Dynamic distributed multi-agent hierarchy

generation
D-DCOP	� Dynamic distributed constrained optimi-

zation problem
DDFS	� Distributed depth first search
Mobed	� Multi-agent organization with bounded

edit distance

HARP	� Hybrid algorithm for reconstructing
pseudo-trees

DCSP	� Distributed constraint satisfaction problem
CPA	� Current partial assignment
DIGCA​	� Distributed interaction graph construction

algorithm
CoCoA	� Cooperative constraint approximation
DPOP	� Distributed pseudo-tree optimization

problem
AMQP	� Advanced message queuing protocol
MAS	� Multi-agent system
UTM	� Unmanned aircraft system traffic

management
UAV	� Unmanned aerial vehicle

1  Introduction

In many distributed real-world problems, multi-agent meth-
ods offer key advantages over centralized solutions due to
their ability to scale over time, locality of interactions, lever-
aging expertise of different agents, and the like. To this end,
multi-agent collaboration has been studied from different
perspectives in recent years. Some interesting application

 *	 Brighter Agyemang
	 ba233@uowmail.edu.au

	 Fenghui Ren
	 fren@uow.edu.au

	 Jun Yan
	 jyan@uow.edu.au

1	 School of Computing and Information Technology,
University of Wollongong, 2 Northfields Ave., Wollongong,
NSW 2500, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s44230-023-00044-0&domain=pdf
http://orcid.org/0000-0002-5050-8916

474	 Human-Centric Intelligent Systems (2023) 3:473–486

1 3

domains include power systems, mobile sensing [1], dis-
aster management [2], environment monitoring [3, 4],
traffic light management [5], and resource management in
microgrids [6].

In the Mobile Sensor Team (MST) domain, agents must
collaboratively select their physical positions to monitor
specific points of interest (targets). The MST environment
typically changes over time. Some of these changes may
be external to the agent, such as changes to target coverage
requirements, addition or removal of targets over time, and
weather condition. Likewise, there can be changes inherent
to agents, such as device malfunctioning and disconnection,
neighbourhood change due to movement, and adding a new
agent.

Due to the peculiarity of the MST domain, Zivan et al.
have formalized this class of problems as DCOP_MSTs [7].
Thus, dynamic DCOP algorithms may enable agents to coor-
dinate to select positions in the environment to detect or
monitor targets. Most DCOP algorithms require the avail-
ability of a multi-agent hierarchy or pseudo-tree (used inter-
changeably in this study) to execute [8]. Such hierarchies
enable paralleling computations that are at different subtrees
of the hierarchy. In static DCOP algorithms, pseudo-trees
are constructed from a predefined interaction graph.1 How-
ever, for DCOP_MST class of problems, predefined interac-
tion structures may not be helpful since the environment is
open and dynamic. Here, an open environment refers to a
multi-agent environment where an agent may leave or join
the environment at arbitrary times. A dynamic environment
refers to an environment that evolves.

In open and dynamic environments, changes to the neigh-
borhood of an agent affect how the optimization algorithm
executes. For instance, an agent in an MST problem with
a limited communication range may experience frequent
neighbor changes as it keeps changing its position. In such
a scenario, the agent may be out of range of neighbors in a
predefined pseudo-tree and must coordinate with new neigh-
bors in the current DCOP [1]. Likewise, the neighbor set of
an agent changes when an agent it shares a constraint with
becomes unreachable (e.g. due to power failure). Another
real-world manifestation of open and dynamic environ-
ments is the Unmanned Aircraft System Traffic Manage-
ment (UTM) [9, 10]. In such civil air spaces, the number
of Unmanned Aerial Vehicles (UAVs) may vary and these
UAVs have to address several coordination issues such as
trajectory de-confliction with different neighbors as the
environment changes. In [11], a DCOP framework is dis-
cussed for this trajectory de-confliction problem in the UTM
domain. All these scenarios, and the like, contribute to the

challenges that affect the coordination of agents when tra-
ditional DCOP algorithms are applied to open and dynamic
environments.

A basic solution has been to restart the pseudo-tree con-
struction algorithm or interaction graph each time there is
a change to enable the application of DCOP algorithms [1,
12, 13]. While guaranteed to re-establish a valid pseudo-tree,
such an approach causes unaffected parts of the hierarchy to
execute reconstruction procedures needlessly. Due to possi-
bly significant differences between hierarchies, there is also
the challenge of reusing information from previous hierar-
chies in the optimization process.

Therefore, there is a need to address how agents interact
in a dynamic environment to facilitate the application of
algorithms that require pseudo-trees for execution. In [14],
this problem is called the Dynamic Distributed Multi-agent
Hierarchy Generation (DynDisMHG) problem. Existing
DynDisMHG approaches such as Distributed Depth-First
Search (DDFS) [15, 16] and the Multi-agent Organization
with Bounded Edit Distance (Mobed) depend on the avail-
ability of an interaction graph to operate [12, 17, 18]. In
domains where defining the interaction graph beforehand is
challenging or impossible, agents must be equipped to gen-
erate and maintain the multi-agent hierarchy dynamically.
Our focus in this study is to address this gap in the domain.

This study extends our earlier work on the Ad-hoc Dis-
tributed Multi-agent Hierarchy generation problem [19] to
the MST domain using the DCOP_MST formulation. Spe-
cifically, our main contributions are as follows:

1.	 We propose a dynamic multi-agent hierarchy construc-
tion algorithm for open and dynamic environments.
Due to the challenges mentioned above, the proposed
approach dispenses with the requirement of a predefined
interaction graph requirement before a multi-agent hier-
archy can be constructed.

2.	 Using a simulated target-detection application domain,
we discuss how our proposal can be used in an MST
environment framed as a DCOP_MST.

3.	 We apply our proposed approach to the DPOP and
CoCoA algorithms (which, respectively, belong to the
inference-based and local search categories) to demon-
strate the feasibility of using our proposal with existing
DCOP proposals.

In what follows, we discuss related work in Sect. 2. Section 3
introduces this study’s background and problem formulation.
Section 4 discusses our proposed approach. Section 5 intro-
duces the experiment setup and then discusses the results.
We draw our conclusions in Sect. 6.

1  The interaction graph discussed in this study equates to a constraint
graph in static DCOP literature.

475Human-Centric Intelligent Systems (2023) 3:473–486	

1 3

2 � Related Work

The constraint or interaction graph is a standard approach
to represent a DCOP in the literature. It helps to depict
the constraints between nodes and underscore the locality
of interactions. The decomposition of the global objec-
tive into local constraints makes DCOP suitable to model
multi-agent problems where the team objective consists of
constraints between agents. Each agent can then be rep-
resented as a node in the interaction graph, with an edge
indicating a shared constraint between agents.

Several DCOP algorithms in the literature rely on an
ordering derived from the interaction graph to execute.
In [20–22], the authors apply a DDFS algorithm [15, 16]
to construct a pseudo-tree to enable the usage of their
respective DCOP algorithms for agents to coordinate their
value assignments. The DDFS algorithm depends on a pre-
defined constraint or interaction graph to determine the set
of acquaintances of each node for the ordering procedure.
Likewise, a decentralized pseudo-tree construction that
can exploit the problem structure has been proposed [23].
While the pseudo-tree construction is usually seen as a
preprocessing step of the optimization process, given
the interaction graph, other proposals also construct the
pseudo-tree as part of the optimization process [24, 25].

On the other hand, most real-world multi-agent environ-
ments are dynamic and therefore present a challenge when
conventional DCOP algorithms are applied. In response
to this challenge, researchers have proposed algorithms
that solve each change in the environment as a separate
DCOP [12, 13]. These methods rely on restarting the
pseudo-tree construction algorithm each time a change is
detected to enable the re-run of the optimization algorithm
on a valid hierarchy. In [1], the authors discussed applying
the Max-Sum algorithm to MSTs and relied on restarting
an iterative algorithm discussed in [26] to construct a fac-
tor graph after each change. With every reconstruction of
the pseudo-tree is the challenge of maintaining reusable
information from previous solutions. Also, the newly con-
structed hierarchy could have significant variance from the
previous one and limit the ability to reuse search informa-
tion between time steps. Moreover, if the time scale of
changes in the environment is smaller than the time taken
for the disrupted hierarchy to stabilize, the optimization
process may fail to execute.

Other studies have considered methods that remove the
need to address the DynDisMHG problem in mulit-agent
systems by adopting non-hierarchy-based graph structures.
For instance, in [27], Darko et al. proposed a DCOP frame-
work for traffic incident management. In their work, the
authors assumed that an incident response vehicle could

communicate with all other vehicles in the network. This
removed the need to address the DynDisMHG problem
introduced by such a dynamic environment. However, in
complex environments with several agents, such a con-
straint graph structure may not be feasible or expensive to
construct. Also, the complete graph structure is unable to
exploit the domain structure (e.g. locality of interactions).
In [28], the authors extended the CoCoA [29] algorithm to
the continuous domain. The proposed C-CoCoA method
was compared to several baselines using different con-
straint graph structures. In their experiments, hierarchy-
based (or tree-based) versions of all algorithms discussed
in the paper mostly performed better their non-hierarchy-
based graph types such as Sparse, Dense, and Scale-Free
networks. Thus, using hierarchy-based methods to facili-
tate multi-agent collaboration can enable optimization
algorithms to achieve better performance.

Due to the challenges above and the likes, Sultanik
et al. [14] proposed the Multi-agent Organization with
Bounded Edit Distance (Mobed) for maintaining multi-
agent hierarchies. The proposed algorithm ensures that the
difference between hierarchies is minimal. With Mobed,
only affected parts of the hierarchy are reconstructed. By
attaining minimal edit distance, search information reuse
between DCOPs is encouraged in dynamic environments.
Mobed requires a different hierarchy construction algorithm
(e.g. DDFS) to run as an initial step. Also, Mobed cannot be
used in environments where the interaction graph cannot be
specified a priori.

In [17], Yeoh et. discussed the significance of information
reuse between DCOPs in a dynamic environment. In particu-
lar, the authors proposed an algorithm enabling the reuse of
contexts when using the ADOPT algorithm. In addition, they
discussed the Hybrid Algorithm for Reconstructing Pseudo
Trees (HARP). In its execution, HARP is used to detect
agents affected in the new DCOP in a distributed manner.
These affected agents then execute the DDFS algorithm to
reconstruct their local subtree.

Thus, even though HARP and Mobed discuss new tech-
niques for improving the hierarchy construction, HARP still
relies on DDFS to operate, albeit at the subtree level. In con-
trast, Mobed requires a method such as DDFS to construct
the first hierarchy. Also, due to the assumption that there
is an expected interaction graph in DCOP proposals, [8,
30–32], DDFS-based pseudo-tree construction is typical in
the literature. However, in open and dynamic environments,
such as those modeled as DCOP_MSTs, it may be challeng-
ing or impossible to specify an exhaustive interaction graph
beforehand since several random events could influence the
environment and agent organization or order. Indeed, Zivan
et al. reported that fixed interaction graphs are ineffective

476	 Human-Centric Intelligent Systems (2023) 3:473–486

1 3

in dynamic environments [7]. To this end, we investigate
a multi-agent hierarchy generation problem where a fixed
interaction graph cannot be used over the horizon and pro-
pose a valid hierarchy generation and maintenance method.

3 � Problem Formulation and Background

3.1 � Problem Formulation

We extend the formulation in [14] to the domain where no
fixed interaction graph is guaranteed to be consistent across
the horizon of the Multi-agent System (MAS). Let At be an
ordered set of agents in a multi-agent system at time t that
gives rise to an unordered, labeled, rooted tree. We call the
tree T = ⟨A,� ∶ A → A⟩ a multi-agent hierarchy. � is a func-
tion that, given an agent aj ∈ A , specifies the parent of aj
already in the hierarchy. The neighbor set of aj is denoted as
Nj . We denote the children set of aj as Cj ⊆ Nj . The hierarchy
is valid if, after adding or removing agent ai to the hierarchy,
it continues to be acyclic after a finite number of steps. Such
a hierarchy enables agents in disjoint parts of the tree to
execute in parallel.

3.2 � Dynamic DCOP

We consider the operation of the ad-hoc multi-agent hier-
archy in a dynamic DCOP context. In multi-agent systems
formulated as DCOPs, agents assign values from a domain
to their decision variables to optimize certain constraint
functions. It is assumed that the agents are fully cooperative
and can fully observe the environment [8, 28]. Also, the
environment is dynamic and deterministic. The DCOP is
modeled as a tuple P = ⟨A,X,D,F, �⟩ , where:

•	 A =
{
a1, a2, ..., am

}
 is a finite set of agents,

•	 X =
{
x1, x2, ..., xn

}
 is a finite set of variables,

•	 D =
{
D1,D2, ...,Dn

}
 is a set of variable domains such

that, the domain of xi ∈ X is Di,
•	 F =

{
f1, f2, ..., fK

}
 is a set of constraint functions defined

on X where each fk ∈ F is defined over a subset
Xk =

{
xk
1
, xk

2
, ..., xk

p

}
 , with p ≤ n , determines the cost of

value assignments of the variables in Xk as
fk ∶ D1 × D2 × ... × Dp → ℝ ∪ {⟂} . Here, the cardinality
of Xk is the arity of fk . The total cost of the values
assigned to variables in X is Fg(X) =

∑K

k=1
fk(Xk),

•	 � ∶ X → A is an onto function that assigns the control of
a variable x ∈ X to an agent �(x).

We assume that � assigns only one variable per agent2 and
the use of binary constraint functions. A Current Partial
Assignment (CPA) or partial assignment is the assignment
of values to a set of variables x such that x ⊂ X . A complete
assignment � is when all variables in X are assigned a value.
A constraint function fk ∈ F is satisfied if fk(�Xk

) ≠⟂ . The
objective of a DCOP is to find a complete assignment that
minimizes the total cost:

where � is the set of all possible complete assignments.
The Dynamic DCOP (D-DCOP) is an extension of the

DCOP formulation to address dynamic multi-agent envi-
ronments. D-DCOP is modeled as a sequence of DCOPs,
D1,D2, ...,DT  . Here , Dt =

⟨
A

t
,X

t
,D

t
,F

t
, �t

⟩
 where

1 ≤ t ≤ T  . D-DCOP aims to solve the arising DCOP prob-
lem at each time step.

We consider adding an agent, removing an agent, and
constraint function modification as events that transition the
environment from one DCOP to another. Each agent ai first
has to resolve its local neighbor list and parent–child associ-
ations before it can solve the DCOP collaboratively with its
identified neighbors and relations. DynDisMHG algorithms
(such as the proposal of this study) enable DCOP algorithms
that rely on pseudo-trees to operate.

(1)�∗ ∶= argmin
�∈�

Fg(�) = argmin
�∈�

∑

fk∈F

fk(�Xk
),

Fig. 1   Mobile sensor team target detection illustration

2  Each variable could be represented as an aggregation of sub-
variables where its domain constitutes the cartesian product of the
domains of all the sub-variables. We use agent and variable inter-
changeably since an agent controls only one variable.

477Human-Centric Intelligent Systems (2023) 3:473–486	

1 3

3.3 � Motivating Domain

In Fig. 1, we illustrate a target detection problem for a
Mobile Sensing Team (MST). In this environment, agents
(denoted by solid circles) are to collaborate and detect tar-
gets in the environment. Thus, the variable of interest in
the environment is the agent’s position, and its domain is
the possible locations it can move into in a single step. In
the DCOP_MST formulation, targets (denoted by diamond
shapes) may also be mobile in the environment. Here, we
assume the targets are static in the environment (e.g. mili-
tary installations, illegal mining sites, or potential natural
disaster sites). As an agent moves in the environment, its
domain, neighbour set, constraints, and utilities may be
affected. Each target defines the constraint that applies to
agents within its region. In Fig. 1, we assume that the sens-
ing range and mobility range are equal (denoted by broken
circles). These two properties may be differ in the real-world
and does not limit the proposed method. Here, the environ-
ment is manifested as a grid world, and the coverage require-
ment of each target is for an agent to be in the same cell it
occupies.

We assume agents have a perfect reputation model3 and
detecting a target with teammates yields a higher score than
detecting the target alone. In the environment, each change
is represented as a DCOP that the agents have to optimize.
Such changes include adding an agent in the environment,
removing an agent, and constraint change. As an agent
moves in the environment from target to target, it changes
its constraint, as defined in the DCOP_MST model. Agents
in close proximity construct a multi-agent hierarchy or
pseudo-tree and then execute an optimization algorithm to
coordinate their value assignments (positions to move into)
to detect targets. In Fig. 1, agents ai, a2 and a3 are likely to
construct a hierarchy due to their proximity, whereas a4 will
be an isolated agent since it is far from the rest of the team
in the given scenario. We refer the reader to [7] for a com-
prehensive discussion on DCOP_MSTs.

4 � Proposed Approach

4.1 � Distributed Interaction Graph Construction
Algorithm

This section discusses our proposed approach for the multi-
agent hierarchy construction problem in open and dynamic

environments. We make the following assumptions in this
study:

1.	 Each agent has a globally unique ID that determines its
index in the ordered set in 3.1.

2.	 The agents behave cooperatively to the extent necessary
for optimizing the global objective.

3.	 Agents communicate via message-passing. In this
message-passing approach, each message contains the
sender’s ID and address that the receiver can use to send
a response. Other information could be included in the
payload when needed.

4.	 Communication messages are guaranteed to be delivered
and in the order sent, despite possible delays.

5.	 We assume that the agent is able to detect other agents
in communication range U in each time step.

We use a state machine to track the algorithm’s execution,
manage concurrent procedure calls, and prevent deadlocks.

The pseudocode of the proposed algorithm is presented
in Algorithm 1. Our key objective is to enable an agent to
dynamically discover and order its neighbors without requir-
ing a predefined interaction graph. The algorithm ensures
that an agent seeking connection has a single insertion point
under consideration to avoid conflicting edges in the hierar-
chy. Also, unreachable neighbors of an agent are removed,
and where a parent is removed, the agent can reconnect to an
existing hierarchy. Since no interaction graph is used, a new
agent to be added to the hierarchy does not know of poten-
tial neighbors. We address this challenge using a message
broadcasting scheme to discover nearby agents. In our dis-
cussion, agent ai (referenced as i) is the agent that executes
a procedure asynchronously. Agent aj (referenced as j) is an
agent interacting with i in the environment.

Algorithm 1 is executed by i in every time step (note that
each time step represents a new DCOP in DCOP_MST). The
agent is set to an inactive state on initialization, and other
initial properties are set (lines 1–5). The children set and
parent properties ( �(i) and Ci ) are set when the agent starts
the algorithm for the first time (lines 6–9).

The Connect function is the primary procedure and is
scheduled as a process that regularly executes within a time
step (or based on a schedule that may depend on the applica-
tion domain). When called, it first ensures that the agent is
in an inactive state, has an agent that can serve as a parent
(see Sect. 4.3), and does not have a parent (line 9). Once the
connection conditions are satisfied, the agent broadcasts an
Announce message in the environment (lines 11, 12) and
waits for a period, condition, or timeout before proceed-
ing (line 13). During this waiting period, an available agent
in the environment receives the Announce message and
responds by sending an AnnounceResponse message (lines
27–31) if it is a potential parent. Before an agent can send

3  In a real-world setting, a perfect reputation model may not hold in a
DCOP_MST. However, since we focus on the hierarchy construction
problem, this does not limit our work but enables us to focus on the
study’s objective.

478	 Human-Centric Intelligent Systems (2023) 3:473–486

1 3

an AnnounceResponse, it must be inactive, and a response
determinant function � ∶ A → � must be ���� . The func-
tion � may be defined based on the application domain (we
discuss one such function in Sect. 4.3).

When i receives an AnnounceResponse message, it adds
the sending agent to a response list if i is inactive (lines
32–36). After the waiting period (line 13), i selects an agent
in the response list using � (line 14). This selection ensures
that a single point of insertion is considered for connection.
� could be designed to first examine each agent in L to deter-
mine a potential neighbour or uniformly sample from L .
Agent i then sends an AddMe message to the selected agent
j and goes into an active state while it waits to hear from j
(lines 15–17). Since other agents may be expecting AddMe
message from i, these agents (except j selected to receive
AddMe message) receive AnnounceResponseIgnored mes-
sage from i (lines 18–20). The response list is cleared before
ending the execution of the connect function (line 20). When
the condition for broadcasting Announce messages fails but
the timeout for the optimization elapses, the D-DCOP algo-
rithm is started by i (lines 23–25).

When i receives an AddMe message from j, it adds j to its
children and sends a ChildAdded message to j if i is inactive
(lines 37–40). Otherwise, it replies with an AlreadyActive
message to j (lines 41–43). When an AlreadyActive message
is received by i, it sets its state to inactive (lines 56–58) to
enable the next call to the Connect procedure to satisfy the
state condition on line 11.

After receiving a ChildAdded message from j, i must be
in an active state and without a parent to proceed (line 46).
If so, it assigns j as its parent and becomes inactive (lines 47,
48). Agent i then sends a ParentAssigned message to j (line
49). Subsequently, i calls the D-DCOP computation since
its neighbour set has changed (line 50). On the other hand,
i calls the D-DCOP algorithm when it receives a ParentAs-
signed message (lines 53, 55) since it has a new child in the
hierarchy.

Also, when i receives an AnnounceResponseIgnored mes-
sage from j, it updates the register for tracking all agents
that have sent such messages (lines 59–60). When all
other agents that i expect AddMe messages from ignore i’s
AnnounceResponse messages and i has not assigned a value
to its decision variable, it initiates the D-DCOP algorithm
(lines 59–61). This scenario may happen when, as i moves
in the environment, it comes in contact with another agent
j that satisfies �i but j picks a different agent to send an
AddMe instead of i.

While invoking the D-DCOP algorithm for every agent
connection is possible, we place a further check to ensure
all possible connections within a time step have been
established before i executes the optimization algorithm.
Therefore, if i comes into contact with j that satisfies �i
and hence assumes that j would be sending an Announce
message but j already has a parent, i will never trigger its
optimization procedure (if i always waits for all potential
connections to be established before optimization begins).
The timeout condition on line 23 ensures this deadlock is
broken for the agent to call the D-DCOP algorithm.

1

2

3

Announce
broadcast

1

3

2

1. AnnounceResponse

2. AddMe
3. ChildAdded

4. ParentAssigned

1. AnnounceResponse

connection process

1

3

2
Initial state Connected state

Fig. 2   An illustration of how an agent gets connected using the pro-
posed algorithm. An un-annotated line denotes already established
connection and an annotated line depicts a step in the connection pro-
cess. When Agent 3 wants to connect/re-connect to the current inter-
action graph, (1) it broadcasts Announce message to agents in range

(2) Agents 1 and 2 respond to Agent 3 with AnnounceResponse, (3)
Agent 3 selects agent 1 and sends an AddMe message, (4) Agent 1
responds with a ChildAdded message, (5) Agent 3 then sends a
ParentAssigned message

479Human-Centric Intelligent Systems (2023) 3:473–486	

1 3

4.2 � Agent Connection Maintenance

In Algorithm 1, i can connect to another agent in the envi-
ronment or the multi-agent hierarchy described in Sect. 3.1.
Next, the question we address is how it discovers agents in

Algorithm 1 Distributed Interaction Graph Construction Algorithm (DIGCA)
Input: DCOP algorithm, stateTimeout
Output: Selected value v for decision variable of i in current time step
1: v ← null
2: state ← INACTIVE
3: L ← ∅
4: U ← determine agents in communication range
5: B ← ∅
6: if on start up then
7: Ci ← ∅
8: π(i) ← null
9: end if

10: procedure Connect(i) � Called by i to find a neighbor to connect to
11: if π(i) is null and hasPotentialParent(U) and state = INACTIVE then
12: Publish Announce{i}
13: Wait for AnnounceResponse from available agents for a period
14: j ← ϑ(L) � Select an agent from the list of respondents, if any
15: if j is found then
16: Send AddMe{i} to j
17: state ← ACTIVE
18: for a in L/j do
19: Send AnnounceResponseIgnored{i} to a
20: end for
21: end if
22: L ← ∅
23: else if execTimeout then
24: Start D-DCOP algorithm to determine v
25: end if
26: end procedure
27: procedure ReceiveAnnounce(j) � When i gets an Announce message from j
28: if state is INACTIVE and φi(j) then
29: Send AnnounceResponse{i} to j
30: end if
31: end procedure
32: procedure ReceiveAnnounceResponse(j) � When i gets AnnounceResp

from j
33: if state is INACTIVE then
34: Add j to L
35: end if
36: end procedure
37: procedure ReceiveAddMe(j) � When i receives AddMe message from j
38: if state is INACTIVE then
39: Add j to Ci

40: Send ChildAdded{i} to j
41: else
42: Send AlreadyActive{i} to j
43: end if
44: end procedure

its neighbour set that are currently unreachable and updates
its registers accordingly. In a domain where i can perceive all
agents in its neighbourhood at every time step, i can easily
remove agents that are no longer in communication range.

480	 Human-Centric Intelligent Systems (2023) 3:473–486

1 3

Also, agents can use a keep-alive message-passing approach
in Algorithm 2 to address this question.

Similar to Algorithm 1, the procedures in Algorithm 2 are
executed asynchronously. First, the inspectNeighbors and
sendKeepAlive procedures are executed by i as two back-
ground processes called at regular periods like the Connect
procedure of Algorithm 1. Agent i maintains a list of neigh-
bours to keep alive (line 1). The sendKeepAlive procedure
sends a message to all its neighbours to inform them of its
availability when called (lines 2–5). When i receives a Kee-
pAlive message, it adds the sender to the keep-alive message
list P (lines 7–10). When the inspectNeighbors procedure
is executed by i, it removes any neighbour j not found in
the keep-alive list (lines 13–21). If j (a removed agent) was

the parent, i goes into an inactive state. This state change is
necessary to enable the connect procedure of Algorithm 1 to
find a new parent. If a change in neighbourhood is detected,
i starts the associated D-DCOP computation (lines 27–29).

Since the execution order is a property of the D-DCOP
algorithm, i will be able to know whether to execute or for-
ward computations to its parent or children. While we focus
on D-DCOP computation with the multi-agent hierarchy,
other distributed computations that use hierarchies could
also be applied. Due to the asynchronous execution envi-
ronment, there could be a quick succession of computation
invocations, and therefore, such an environment may require
an abort procedure. Another approach could be to defer the
execution of computations till all graph-associated message
handling are complete. We adpot the latter in this study.

Algorithm 2 Disconnected Neighbor Removal Algorithm
Input: Ni,DCOP algorithm
1: P ← ∅ � keep alive list
2: procedure sendKeepAlive(j) � Called by i to inform j of its availability
3: for neighbor in Ni do
4: Send KeepAlive{i} to j
5: end for
6: end procedure
7: procedure ReceiveKeepAlive(j) � When i gets a KeepAlive message from j
8: if j not in P then
9: Add j to P

10: end if
11: end procedure
12: procedure InspectNeighbors � Called regularly by i to remove unreachable

neighbors
13: affected ← False
14: for j in Ni do
15: if j not in P then
16: if j == π(i) then
17: π(i) ← null
18: state ← INACTIVE
19: else
20: remove j from Ci

21: end if
22: clear all information about j in i’s registers
23: affected ← True
24: end if
25: end for
26: P ← ∅
27: if affected then
28: start DCOP algorithm
29: end if
30: end procedure

481Human-Centric Intelligent Systems (2023) 3:473–486	

1 3

We illustrate how an agent connects to another agent in
Fig. 2. This illustration assumes a successful connection
process on the first try for didactic purposes. However, we
note that an agent may issue multiple connect calls in the
environment, and the frequency of such calls is application
dependent.

4.3 � Response Determinant Heuristic

Notice that using � ensures that i considers only a single
insertion point during the connection process. Nonetheless,
since j could also be broadcasting Announce messages, there
is a need for a mechanism that avoids cyclic connections in
the hierarchy. To this end, the result of �i ∶ A → � must
be consistent and independent of the problem horizon. We
define an instance of � in equation 2 based on the ordered
set of agents mentioned in Sect. 3.1.

This definition has the intuition that the agent with the low-
est index will be the root. In other words, given two agents
i and j, the agent with the lower order is a potential parent
to the agent with the higher order (and vice-versa). We con-
sider two extreme cases in the generation of the multi-agent
hierarchy. The first is a situation where the hierarchy tends
towards a chain. Such a scenario may be helpful for syn-
chronized computations but undesirable when parallelism
is desired. The second is when all agents are connected to
one root (tree of depth 1). While this encourages parallelism,
removing the root causes all other agents to be affected and
the need to invoke the connection algorithm. To balance
these extremes, we use a max-degree heuristic to limit the
possible neighbours and define � to weight agents with a sin-
gle or no child higher when selecting from the response list.

5 � Experiments and Results

In this section we discus the experiments and analyze the
results.

5.1 � Setting

We conducted our experiments based on the motivating
domain in Sect. 3.3. We implemented the simulation envi-
ronment as a grid world where a cell can contain agents and
targets. In our experiments, we used a 5-by-5 grid environ-
ment whose horizon is composed of discrete time steps. The
environment waits for a complete assignment in each time
step before transitioning to a new time step. An agent may

(2)𝜙i(j) =

{
���� if i < j,

����� Otherwise

be added to a cell randomly (add event) or removed from
the environment (remove event). Existing agents, however,
can perform a single move operation in the step. Legitimate
actions of an agent in a cell include directions of movement
that can lead the agent to an adjacent cell (i.e. maximum of 8
actions). Thus, the list of possible actions may change as the
agent moves from cell to cell. For instance, an agent in cell
1–1 can only move to the right, down, and right-down (or
bottom right) cells, whereas an agent in cell 2–2 can move
to the left, right, up, down, left-up, right-up, left-down, and
right-down cells. In each time step, these legitimate actions
constitute the domain from which an agent can select a value
(i.e. the domain is dynamic) using the optimization process.
As mentioned, the goal is to detect static targets randomly
placed in the environment. Each target defines a constraint
where detection by multiple agents yields higher rewards
than detection by a single agent.

Aside from the proposed algorithm, we based on [15] on
implementing a dynamic DDFS algorithm as a baseline in
our experiments. Since DDFS assumes a predefined interac-
tion graph, we assume that the agents within communication
range in a time step form a fully connected graph. The agents
use this information to execute the DDFS algorithm. We
used Cooperative Constraint Approximation (CoCoA) [29]
and Distributed Pseudo-tree Optimization Problem (DPOP)
as the DCOP algorithms. These DCOP algorithms only run
when all possible connections are established or the hierar-
chy construction algorithm timeouts as explained in Sect. 4.

Regarding the execution environment, we conducted the
experiments on a 16-gigabyte RAM computer using an Intel
i7-6700 CPU and running Ubuntu 20.04.5 LTS. The simu-
lation system had five main components: an event genera-
tion function that randomly generates agent addition and
removal events to be executed as DCOPs in the environ-
ment, the grid world environment that runs generated events
and receives agent registration when the agent is first added
(referred to as AgentRegistration message), a runner com-
ponent that receives agent addition and removal messages
from the simulation environment and starts/remove agents,
and agent component. Agents were implemented as threads,
and each agent ran an instance of a hierarchy construction
algorithm (DIGCA or DDFS) and DCOP algorithm (CoCoA
or DPOP). We allowed each active agent in the environment
to execute the Connect function as often as possible in each
time step. The fifth component of the simulation setup is
the communication layer. We used the RabbitMQ Advanced
Message Queuing Protocol (AMQP) message broker as the
communication layer. We also developed an auxiliary graph
visualization component to monitor the hierarchy generation
during the simulation. The source codes of our experiments
can be found at https://​github.​com/​bbrig​httaer/​ddcop-​dynag​
raph.

https://github.com/bbrighttaer/ddcop-dynagraph
https://github.com/bbrighttaer/ddcop-dynagraph

482	 Human-Centric Intelligent Systems (2023) 3:473–486

1 3

Table 1   Main message types
used in our experiments

Code Message Type Algorithm Description

AR Agent Registration - Sent by a new agent to the simulation
environment to indicate its presence

AM Announce Message DIGCA​ Broadcasted by an agent that wants to
find a parent to connect to

ARM Announce Response Message DIGCA​ Sent by an agent that receives an AM
from a potential child agent

AIM Announce Response
Ignored Message

DIGCA​ Sent by an agent to another agent that
was not selected to receive an ADM

ADM Add-me Message DIGCA​ Sent by an agent to another agent that
as been selected to be the sending agent’s parent

CAM Child Added Message DIGCA​ Sent by a parent agent to a child agent
to confirm addition as a child

PAM Parent Assigned Message DIGCA​ Sent by a child agent to its parent to
confirm assignment as a parent

AAM Already Active Message DIGCA​ Sent by an agent that is unable to
respond to an ADM

USM Update State Message CoCoA Sent to neighbor agents to inform
them about the sending agent’s status/state

IM Inquiry Message CoCoA Sent by an agent to its neighbors to
solicit CMs, as part of the local search procedure

CM Cost Message CoCoA Sent by an agent that as received an IM
to the sender of the IM

ER Execution Request Message CoCoA Due to dynamic environment, we introduced
this message type to enable an agent
that is not the root to request the start of
the optimization from its parent

DVM DDFS Value Message DDFS Sent to an agent that can either be parent
or a pseudo-parent

DPM DDFS Position Message DDFS Sent to an agent that can either be a child
or pseudo-child

DCM DDFS Child Message DDFS Sent by a child agent to its parent to
indicate establishment of a
parent–child connection

DPCM DDFS Pseudo-Child Message DDFS Sent to an agent that has been selected
as a pseudo-parent

DND DDFS Neighbor Data DDFS In the dynamic DDFS implementation,
we use this message type to help
agents in close proximity to share degree
information among themselves to enable
the use of the max-degree heuristic

UM Util Message DPOP Sent by a child agent to a parent to report
utility values in the child agent’s subtree

VM Value Message DPOP Sent by a parent agent to a child agent to
report the value selected by the parent agent

Fig. 3   Number of messages
exchanged in the environment

483Human-Centric Intelligent Systems (2023) 3:473–486	

1 3

5.2 � Results

5.2.1 � Complexity Analysis

We now analyze the interaction complexity (number of
messages) when an agent makes a Connect call to connect
to another agent. Since the complexity of the optimization
depends on the DCOP algorithm in use, it is not factored

in this analysis. Assuming there are m agents within the
communication range of i, all m agents would receive the
Announce message. Hence, in the worst case, the connect
procedure’s complexity is O(m). Using Eq. 2, the worst case
would be when i has the highest index, which implies that
it will receive O(m) AnnounceResponse messages. Since
only one insertion point is selected by i, the worst-case com-
plexity of AddMe interaction is O(1). On the other hand,

Fig. 4   Number of messages
exchanged in the environment
by message types

(a) CoCoA-DIGCA (b) DPOP-DIGCA

(c) CoCoA-DDFS (d) DPOP-DDFS

Fig. 5   Average edit distance
recorded per time step. Dashed
line depicts number of agents at
each time step

Fig. 6   Average number of com-
ponents in the graph constructed
in each time step. Dashed line
depicts number of agents at
each time step

484	 Human-Centric Intelligent Systems (2023) 3:473–486

1 3

assuming i receives AddMe messages from m new agents
(meaning i is the lowest index in the communication range),
sending ChildAdded or AlreadyActive messages as replies
has an asymptotic complexity of O(m). Thus, the interaction
complexity of each agent in a time step is linear in terms of
the number of agents in its local area in the worst case. It is,
therefore, feasible to use the proposed approach with opti-
mization algorithms capable of exploiting local interactions
for agents to collaborate in a MAS.

5.2.2 � Empirical Analysis

Firstly, we used the event generation component to ran-
domly generate 35 scenarios of 30 add-agent events and 5
remove-agent events. We maintained this sequence of events
throughout our experiments to enable a fair comparison. The
results report averages of 5 runs of each experiment using 5

different random number seeds. The main message types that
agents exchanged in the experiments are listed in Table 1.

We show the accumulated number of messages
exchanged by the agents in the environment using different
combinations of hierarchy construction and DCOP algo-
rithms in Fig. 3. In both DCOP algorithms, our proposed
approach used about half the number of messages used by
the baseline method at the end of the horizon. This perfor-
mance results from DDFS being restarted in each time step,
as has been done in previous studies that adopt DDFS in
dynamic environments. DIGCA, on the contrary, maintains
unaffected connections in the hierarchy and only agents in
affected parts exchange connection-related messages.

In Fig. 4, where we show the breakdown of the number of
messages tally, we gain deeper insights into the contribution
of each message type. Using Table 1 as a guide, we notice
that the message types of the proposed approach contrib-
uted far less to its overall number of messages exchanged, as

Fig. 7   Sample connected
components (of agents) in the
environment for the last 6 time
steps of a run

(a) time step 30 (b) time step 31

(c) time step 32 (d) time step 33

(e) time step 34 (f) time step 35

485Human-Centric Intelligent Systems (2023) 3:473–486	

1 3

shown in Fig. 3. Instead, the DCOP-related messages were
the main contributors to the overall number of messages in
the case of DIGCA. In contrast, the DDFS baseline recorded
more messages for its message types compared to associated
DCOP message types. This reveals the efficiency of our pro-
posed approach in terms of the number of messages it takes
to establish a multi-agent hierarchy.

We also studied some properties of the graph constructed in
each time step to understand how each hierarchy transformed.
Here, the desiderata are to reduce the number of changes
between multi-agent hierarchy updates and have agents close to
one another form a valid hierarchy. Therefore, we measure each
time step’s average edit distance and the number of connected
components. The edit distance measures hierarchy perturba-
tions between time steps. The results are presented in Figs. 5
and 6. The broken line shows the event type executed in each
time step - a rise indicates an add-agent event, and a dip indi-
cates a remove-agent event. The best behaviour is to see the edit
distance minimized after adding an agent to the environment.

In both the baseline and proposed approach experiments, we
observed that as more agents were added to the environment,
agents in different parts of the environment formed hierarchies.
This observation explains why the average number of connected
components recorded across the time steps in Fig. 6 is mostly
below 5 even though several agents were in the environment.

Interestingly, while the baseline method outperformed the
proposed approach in ensuring a minimal number of con-
nected components, it performed poorly regarding its edit
distance. The performance of DDFS on the number of con-
nected components metrics is due to its ability to use updated
agent neighbourhood information to reconstruct the hierar-
chy in each time step. DIGCA, on the other hand, maintains
previous unaffected connections, enabling DCOP algorithms
that need to reuse information from the previous time step to
do so. This property of DIGCA explains why it outperformed
the baseline on the edit distance metric. Thus, DDFS is more
suitable for environments with few agents, whereas the pro-
posed method works well in large agent sizes.

Our experiments show that our proposed method is fea-
sible for facilitating the application of pseudo-tree-based
DCOP algorithms and other multi-agent hierarchy-based
optimization methods in an open and dynamic environment.
We show sample multi-agent hierarchies constructed by the
proposed method in Fig. 7.

6 � Conclusion

In this paper, we have discussed the ad-hoc distributed
multi-agent hierarchy generation problem. We have also
proposed a distributed algorithm for constructing and
maintaining a stable multi-agent hierarchy for interac-
tion when collaborating in a dynamic environment. Our

proposed approach addresses a vital issue in multi-agent
operations in open and dynamic environments. Unlike
existing methods, DIGCA does not require an existing
interaction graph or reconstruction of the entire multi-
agent hierarchy when changes are detected. We compared
our proposed approach to a dynamic variant of the DDFS
algorithm. Our method’s effectiveness in domains with a
high number of agents has been shown using a grid world
simulation environment and examining the behaviour of
the hierarchy construction method across all time steps.
An aspect of our work that could be probed further is how
Abort schemes could be incorporated to enable already
initiated optimization processes to be terminated when
necessary. Also, since real-world communication systems
may not always guarantee the delivery of messages, further
research is needed on how to address the DynDisMHG
problem in unstable communication settings. We are also
leveraging DIGCA to propose robust multi-agent coor-
dination algorithms for open and dynamic environments.

Acknowledgements  The authors would like to thank all reviewers of
the manuscript for their inputs.

Author Contributions  BA contributed in concept, experiments, and
writing. FR and JY assisted with report improvement and review, as
well as provided guidance on writing. All authors examined the results
and gave final approval to the manuscript’s final version.

Funding  Not applicable

Availability of data and materials  The source codes and related materi-
als can be found at https://​github.​com/​bbrig​httaer/​ddcop-​dynag​raph

Declarations 

Conflict of interest  The authors have no competing interests to declare
that are relevant to the content of this article.

Consent for publication  The authors hereby consent to publication of
the work.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Yedidsion H, Zivan R, Farinelli A. Applying max-sum to teams
of mobile sensing agents. Eng Appl Artif Intell. 2018;71:87–99.
https://​doi.​org/​10.​1016/j.​engap​pai.​2018.​02.​017.

https://github.com/bbrighttaer/ddcop-dynagraph
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.engappai.2018.02.017

486	 Human-Centric Intelligent Systems (2023) 3:473–486

1 3

	 2.	 Rybski PE, Stoeter SA, Gini M, Hougen DF, Papanikolopoulos
N. Effects of limited bandwidth communications channels on the
control of multiple robots. In: Proceedings 2001 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Expand-
ing the Societal Role of Robotics in the the Next Millennium
(Cat. No.01CH37180), 2001;1:369–3741. https://​doi.​org/​10.​1109/​
IROS.​2001.​973385

	 3.	 Padhy P, Dash RK, Martinez K, Jennings NR. A utility-based
sensing and communication model for a glacial sensor network.
In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems. AAMAS ’06, pp.
1353–1360. Association for Computing Machinery New York,
NY, USA 2006. https://​doi.​org/​10.​1145/​11606​33.​11608​85 .

	 4.	 Pujol-Gonzalez M, Cerquides J, Meseguer P, Rodríguez-Aguilar
JA, Tambe M. Engineering the decentralized coordination of uavs
with limited communication range. In: Bielza C, Salmerón A,
Alonso-Betanzos A, Hidalgo JI, Martínez L, Troncoso A, Cor-
chado E, Corchado JM, editors. Advances in artificial intelligence.
Berlin: Springer; 2013. p. 199–208.

	 5.	 Junges R, Bazzan ALC. Evaluating the performance of dcop
algorithms in a real world, dynamic problem. In: Proceedings of
the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 2. AAMAS ’08, pp. 599–606.
International Foundation for Autonomous Agents and Multiagent
Systems Richland, SC. 2008.

	 6.	 Lezama F, Munoz de Cote E, Farinelli A, Soares J, Pinto T, Vale
Z. Distributed constrained optimization towards effective agent-
based microgrid energy resource management. Lecture Notes in
Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics) 11804
LNAI(July 2017), 2019;438–449. https://​doi.​org/​10.​1007/​978-3-​
030-​30241-2_​37

	 7.	 Zivan R, Yedidsion H, Okamoto S, Glinton R, Sycara K. Distrib-
uted constraint optimization for teams of mobile sensing agents.
Auton Agent Multi-Agent Syst. 2015;29(3):495–536. https://​doi.​
org/​10.​1007/​s10458-​014-​9255-3.

	 8.	 Fioretto F, Pontelli E, Yeoh W. Distributed constraint optimi-
zation problems and applications: a survey. J Artif Intell Res
2018;61:623–698 https://​doi.​org/​10.​1613/​jair.​5565arXiv:​1602.​
06347

	 9.	 Federal Aviation Agency: UTM Concept of Operations Version
2.0. Technical report 2020. https://​www.​faa.​gov/​sites/​faa.​gov/​
files/​2022-​08/​UTM_​ConOps_​v2.​pdf

	10.	 Capitán C, Pérez-León H, Capitán J, Castaño Á, Ollero A.
Unmanned aerial traffic management system architecture for
U-space in-flight services. Appl Sci. 2021;11:9. https://​doi.​org/​
10.​3390/​app11​093995.

	11.	 Picard G. Trajectory coordination based on distributed con-
straint optimization techniques in unmanned air traffic man-
agement. Ifaamas. 2022;9:1065–73.

	12.	 Petcu A, Faltings B. Superstabilizing, fault-containing distrib-
uted combinatorial optimization. Proc Natl Conf Artif Intell.
2005;1:449–54.

	13.	 Petcu A, Faltings B. Optimal solution stability in dynamic, dis-
tributed constraint optimization. Proceedings of the IEEE/WIC/
ACM International Conference on Intelligent Agent Technol-
ogy, IAT. 2007;2007:321–7. https://​doi.​org/​10.​1109/​IAT.​2007.​
11.

	14.	 Sultanik EA, Lass RN, Regli WC. Dynamic configuration of agent
organizations. IJCAI International Joint Conference on Artificial
Intelligence, 2009;305–311

	15.	 Youssef Hamadi Christian Bessiere JQ. Backtracking in distrib-
uted constraint networks. ECAI, 1998;219–223

	16.	 Collin Z, Dolev S. Self-stabilizing depth-first search. Inf Process
Lett. 1994;49(6):297–301. https://​doi.​org/​10.​1016/​0020-​0190(94)​
90103-1.

	17.	 Yeoh W, Varakantham P, Sun X, Koenig S. Incremental DCOP
search algorithms for solving dynamic DCOP problems. Proceed-
ings - 2015 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology, WI-IAT 2015
2015;2:257–264. https://​doi.​org/​10.​1109/​WI-​IAT.​2015.​114

	18.	 Yeoh W, Varakantham P, Sun X, Koenig S. Incremental DCOP
Search Algorithms for Solving Dynamic DCOPs (Extended
Abstract). Artificial Intelligence (Aamas), 2011;1069–1070

	19.	 Agyemang B, Ren F, Yan J. Distributed interaction graph con-
struction for dynamic DCOPs in cooperative multi-agent systems.
arXiv 2022. https://​doi.​org/​10.​48550/​ARXIV.​2212.​03461 . https://​
arxiv.​org/​abs/​2212.​03461

	20.	 Modi PJ, Shen WM, Tambe M, Yokoo M. Adopt: Asynchronous
distributed constraint optimization with quality guarantees. Artif
Intell. 2005;161(1–2):149–80. https://​doi.​org/​10.​1016/j.​artint.​
2004.​09.​003.

	21.	 Hoang K.D, Fioretto F, Hou P, Yokoo M, Yeoh W, Zivan R. Pro-
active dynamic distributed constraint optimization. Proceedings
of the International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS, 597–605 (2016)

	22.	 Hoang KD, Hou P, Fioretto F, Yeoh W, Zivan R, Yokoo M. Infi-
nite-horizon proactive dynamic DCOPs. Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS. 2017;1:212–20.

	23.	 Chechetka A, Sycara K. A decentralized variable ordering method
for distributed constraint optimization. Proceedings of the Inter-
national Conference on Autonomous Agents, 2005;1385–1386.
https://​doi.​org/​10.​1145/​10824​73.​10827​46

	24.	 Silaghi MC, Yokoo M. Distributed constraint reasoning. Encycl
Artif Intell. 2011;2:507–13. https://​doi.​org/​10.​4018/​978-1-​59904-​
849-9.​ch077.

	25.	 Zivan R, Meisels A. Dynamic ordering for asynchronous back-
tracking on DisCSPs. In: Beek P, editor. Principles and practice
of constraint programming - CP 2005. Berlin: Springer; 2005. p.
32–46.

	26.	 Stranders R, Farinelli A, Rogers A, Jennings NR. Decentralised
coordination of mobile sensors using the max-sum algorithm.
IJCAI International Joint Conference on Artificial Intelligence,
299–304 (2009)

	27.	 Darko J, Park H. Proactive distributed constraint optimization
of heterogeneous incident vehicle teams. CoRR abs/2207.11132
2022. https://​doi.​org/​10.​48550/​arXiv.​2207.​11132arXiv:​2207.​
11132

	28.	 Sarker A, Choudhury M, Khan MM. A local search based approach
to solve continuous DCOPs. Aamas 21, 2021;1127–1135.

	29.	 Van Leeuwen CJ, Pawełczak P. CoCoA: A non-iterative approach
to a local search (A)DCOP Solver. 31st AAAI Conference on
Artificial Intelligence, AAAI 2017, 3944–3950 (2017) https://​doi.​
org/​10.​1609/​aaai.​v31i1.​11125

	30.	 Hoang K.D, Yeoh W, Yokoo M, Rabinovich Z. New algorithms
for continuous distributed constraint optimization problems. Pro-
ceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2020-May(Aamas),
2020;502–510.

	31.	 Barambones J, Imbert R, Moral C. Applicability of multi-agent
systems and constrained reasoning for sensor-based distributed
scenarios: a systematic mapping study on dynamic DCOPs. Sen-
sors. 2021;21:11. https://​doi.​org/​10.​3390/​s2111​3807.

	32.	 Hoang KD, Fioretto F, Hou P, Yeoh W, Yokoo M, Zivan R. Proac-
tive dynamic distributed constraint optimization problems. J Artif
Intell Res. 2022;74:179–225. https://​doi.​org/​10.​1613/​jair.1.​13499.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/IROS.2001.973385
https://doi.org/10.1109/IROS.2001.973385
https://doi.org/10.1145/1160633.1160885
https://doi.org/10.1007/978-3-030-30241-2_37
https://doi.org/10.1007/978-3-030-30241-2_37
https://doi.org/10.1007/s10458-014-9255-3
https://doi.org/10.1007/s10458-014-9255-3
https://doi.org/10.1613/jair.5565
http://arxiv.org/abs/1602.06347
http://arxiv.org/abs/1602.06347
https://www.faa.gov/sites/faa.gov/files/2022-08/UTM_ConOps_v2.pdf
https://www.faa.gov/sites/faa.gov/files/2022-08/UTM_ConOps_v2.pdf
https://doi.org/10.3390/app11093995
https://doi.org/10.3390/app11093995
https://doi.org/10.1109/IAT.2007.11
https://doi.org/10.1109/IAT.2007.11
https://doi.org/10.1016/0020-0190(94)90103-1
https://doi.org/10.1016/0020-0190(94)90103-1
https://doi.org/10.1109/WI-IAT.2015.114
https://doi.org/10.48550/ARXIV.2212.03461
https://arxiv.org/abs/2212.03461
https://arxiv.org/abs/2212.03461
https://doi.org/10.1016/j.artint.2004.09.003
https://doi.org/10.1016/j.artint.2004.09.003
https://doi.org/10.1145/1082473.1082746
https://doi.org/10.4018/978-1-59904-849-9.ch077
https://doi.org/10.4018/978-1-59904-849-9.ch077
https://doi.org/10.48550/arXiv.2207.11132
http://arxiv.org/abs/2207.11132
http://arxiv.org/abs/2207.11132
https://doi.org/10.1609/aaai.v31i1.11125
https://doi.org/10.1609/aaai.v31i1.11125
https://doi.org/10.3390/s21113807
https://doi.org/10.1613/jair.1.13499

	Distributed Multi-Agent Hierarchy Construction for Dynamic DCOPs in Mobile Sensor Teams
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation and Background
	3.1 Problem Formulation
	3.2 Dynamic DCOP
	3.3 Motivating Domain

	4 Proposed Approach
	4.1 Distributed Interaction Graph Construction Algorithm
	4.2 Agent Connection Maintenance
	4.3 Response Determinant Heuristic

	5 Experiments and Results
	5.1 Setting
	5.2 Results
	5.2.1 Complexity Analysis
	5.2.2 Empirical Analysis

	6 Conclusion
	Acknowledgements
	References

