
Reverse Engineering of 
Object Oriented Code 



Monographs in Computer Science 

Abadi and Cardelli, A Theory of Objects 

Benosman and Kang [editors], Panoramic Vision: Sensors, Theory and Applications 

Broy and Stolen, Specification and Development of Interactive Systems: FOCUS on 
Streams, Interfaces, and Refinement 

Brzozowski and Seger, Asynchronous Circuits 

Cantone, Omodeo, and Policriti, Set Theory for Computing: From Decision 
Procedures to Declarative Programming with Sets 

Castillo, Gutierrez, and Hadi, Expert Systems and Probabilistic Network Models 

Downey and Fellows, Parameterized Complexity 

Feijen and van Gasteren, On a Method of Multiprogramming 

Herbert and Sparck Jones [editors], Computer Systems: Theory, Technology, and 
Applications 

Leiss, Language Equations 

Mclver and Morgan [editors]. Programming Methodology 

Mclver and Morgan, Abstraction, Refinement and Proof for Probabilistic Systems 

Misra, A Discipline of Multiprogramming: Program Theory for Distributed 
Applications 

NIelson [editor], ML with Concurrency 

Raton [editor]. Active Rules in Database Systems 

Selig, Geometric Fundamentals of Robotics, Second Edition 

Tonella and Potrich, Reverse Engineering of Object Oriented Code 



Paolo Tonella 
Alessandra Potrich 

Reverse Engineering of 
Object Oriented Code 

^ Sp ringer 



Paolo Tonella and Alessandra Potrich 
ITC-irst 
Via Sommarive 
Povo, Trent 38050 
ITALY 

Series Editors 
David Gries Fred P. Schneider 
Department of Computer Science Department of Computer Science 
Cornell University Cornell University 
4130 Upson Hall 4130 Upson Hall 
Ithaca, NY 14853-7501 Ithaca, NY 14853-7501 
USA USA 

Cover illustration: Verona-climbing the tower. Photo courtesy Philip Greenspun, 
http://philip.greenspun.com. 

ISBN 0-387-40295-0 e-ISBN 0-387- 23803-4 Printed on acid-free paper. 

© 2005 Springer Science+Business Media, Inc. 
All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, 
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly 
analysis. Use in connection with any form of information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now know or hereafter 
developed is forbidden. 
The use in this pubhcation of trade names, trademarks, service marks and similar terms, even if 
the are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights. 

Printed in the United States of America. (BS/DH) 

9 8 7 6 5 4 3 2 1 SPIN 10935804 

springeronline.com 



To Silvia and Chiara 
- Paolo 

To Bruno 
- Alessandra 



Contents 

Foreword XI 

Preface XIII 

1 Introduction 1 

1.1 Reverse Engineering 1 
1.2 The eLib Program 3 
1.3 Class Diagram 5 
1.4 Object Diagram 8 
1.5 Interaction Diagrams 10 
1.6 State Diagrams 14 
1.7 Organization of the Book 18 

2 The Object Flow Graph 21 
2.1 Abstract Language 21 

2.1.1 Declarations 22 
2.1.2 Statements 24 

2.2 Object Flow Graph 25 
2.3 Containers 27 
2.4 Flow Propagation Algorithm 30 
2.5 Object sensitivity 32 
2.6 The eLib Program 36 
2.7 Related Work 40 

3 Class Diagram 43 
3.1 Class Diagram Recovery 44 

3.1.1 Recovery of the inter-class relationships 46 
3.2 Declared vs. actual types 47 

3.2.1 Flow propagation 48 
3.2.2 Visualization 49 



VIII Contents 

3.3 Containers 51 
3.3.1 Flow propagation 52 

3.4 The eLib Program 56 
3.5 Related Work 59 

3.5.1 Object identification in procedural code 60 

4 Objec t D i a g r a m 63 
4.1 The Object Diagram 64 
4.2 Object Diagram Recovery 65 
4.3 Object Sensitivity 68 
4.4 Dynamic Analysis 74 

4.4.1 Discussion 76 
4.5 The eLib Program 78 

4.5.1 OFG Construction 79 
4.5.2 Object Diagram Recovery 82 
4.5.3 Discussion 83 
4.5.4 Dynamic analysis 84 

4.6 Related Work 87 

5 I n t e r a c t i o n D i a g r a m s 89 
5.1 Interaction Diagrams 90 
5.2 Interaction Diagram Recovery 91 

5.2.1 Incomplete Systems 95 
5.2.2 Focusing 98 

5.3 Dynamic Analysis 102 
5.3.1 Discussion 105 

5.4 The eLib Program 106 
5.5 Related Work 112 

6 S t a t e D i a g r a m s 115 
6.1 State Diagrams 116 
6.2 Abstract Interpretation 118 
6.3 State Diagram Recovery 122 
6.4 The eLib Program 125 
6.5 Related Work 131 

7 Package D i a g r a m 133 
7.1 Package Diagram Recovery 134 
7.2 Clustering 136 

7.2.1 Feature Vectors 136 
7.2.2 Modularity Optimization .140 

7.3 Concept Analysis 143 
7.4 The eLib Program 148 
7.5 Related Work 152 



Contents IX 

8 Conclusions 155 
8.1 Tool Architecture 156 

8.1.1 Language Model 157 
8.2 The eLib Program 159 

8.2.1 Change Location 160 
8.2.2 Impact of the Change 162 

8.3 Perspectives 170 
8.4 Related Work 172 

8.4.1 Code Analysis at CERN 172 

A S o u r c e Code of t h e eLib p r o g r a m 175 

B Dr ive r c lass for t h e eLib p r o g r a m 185 

References 191 

Index 199 



Foreword 

There has been an ongoing debate on how best to document a software system 
ever since the first software system was built. Some would have us writing nat
ural language descriptions, some would have us prepare formal specifications, 
others would have us producing design documents and others would want us 
to describe the software thru test cases. There are even those who would have 
us do all four, writing natural language documents, writing formal specifica
tions, producing standard design documents and producing interpret able test 
cases all in addition to developing and maintaining the code. The problem 
with this is that whatever is produced in the way of documentation becomes 
in a short time useless, unless it is maintained parallel to the code. Maintain
ing alternate views of complex systems becomes very expensive and highly 
error prone. The views tend to drift apart and become inconsistent. 

The authors of this book provide a simple solution to this perennial prob
lem. Only the source code is maintained and evolved. All of the other infor
mation required on the system is taken from the source code. This entails 
generating a complete set of UML diagrams from the source. In this way, the 
design documentation will always reflect the real system as it is and not the 
way the system should be from the viewpoint of the documentor. There can 
be no inconsistency between design and implementation. The method used is 
that of reverse engineering, the target of the method is object oriented code in 
C-I-+, C # , or Java. From the code class diagrams, object diagrams, interac
tion diagrams and state diagrams are generated in accordance with the latest 
UML standard. Since the method is automated, there are no additional costs. 
Design documentation is provided at the click of a button. 

This approach, the result of many years of research and development, will 
have a profound impact upon the way IT-systems are documented. Besides 
the source code itself, only one other view of the system needs to be developed 
and maintained, that is the user view in the form of a domain specific lan
guage. Each application domain will have to come up with it's own language 
to describe applications from the view point of the user. These languages may 
range from natural languages to set theory to formal mathematical notations. 



XII Foreword 

What these languages will not describe is how the system is or should be con
structed. This is the purpose of UML as a modeling language. The techniques 
described in this book demonstrate that this design documentation can and 
should be extracted from the code, since this is the cheapest and most reliable 
means of achieving this end. There may be some UML documents produced 
on the way to the code, but since complex IT systems are almost always de
veloped by trial and error, these documents will only have a transitive nature. 
The moment the code exists they are both obsolete and superfluous. From 
then on, the same documents can be produced cheaper and better from the 
code itself. This approach coincides with and supports the practice of extreme 
programming. 

Of course there are several drawbacks, as some types of information are 
not captured in the code and, therefore, reverse engineering cannot capture 
them. An example is that there still needs to be a test oracle - something to 
test against. This something is the domain specific specification from which 
the application-oriented test cases are derived. The technical test cases can 
be derived from the generated UML diagrams. In this way, the system as 
implemented will be verified against the system as specified. Without the 
UML diagrams, extracted from the code, there would be no adequate basis of 
comparison. 

For these and other reasons, this book is highly recommendable to all 
who are developing and maintaining Object-Oriented software systems. They 
should be aware of the possibilities and limitations of automated post docu
mentation. It will become increasing significant in the years to come, as the 
current generation of 00-systems become the legacy systems of the future. 
The implementation knowledge they encompass will most likely be only in the 
source and there will be no other means of regaining it other than through 
reverse engineering. 

Trento, Italy, July 2004 Harry Sneed 
Benevento, Italy, July 2004 Aniello Cimitile 



Preface 

Diagrams representing the organization and behavior of an Object Oriented 
software system can help developers comprehend it and evaluate the impact of 
a modification. However, such diagrams are often unavailable or inconsistent 
with the code. Their extraction from the code is thus an appealing option. 
This book represents the state of the art of the research in Object Oriented 
code analysis for reverse engineering. It describes the algorithms involved 
in the recovery of several alternative views from the code and some of the 
techniques that can be adopted for their visualization. 

During software evolution, availability of high level descriptions is ex
tremely desirable, in support to program understanding and to change-impact 
analysis. In fact, location of a change to be implemented can be guided by 
high level views. The dependences among entities in such views indicate the 
proportion of the ripple effects. 

However, it is often the case that diagrams available during software evo
lution are not consistent with the code, or - even more frequently - that no 
diagram has altogether been produced. In such contexts, it is crucial to be 
able to reverse engineer design diagrams directly from the code. Reverse engi
neered diagrams are a faithful representation of the actual code organization 
and of the actual interactions among objects. Programmers do not face any 
misalignment or gap when moving from such diagrams to the code. 

The material presented in this book is based on the techniques devel
oped during a collaboration we had with CERN (Conseil Europeen pour la 
Recherche Nucleaire). At CERN, work for the next generation of experiments 
to be run on the Large Hadron Collider has started in large advance, since 
these experiments represent a major challenge, for the size of the devices, 
teams, and software involved. We collaborated with CERN in the introduc
tion of tools for software quality assurance, among which a reverse engineering 
tool. 

The algorithms described in this book deal with the reverse engineering of 
the following diagrams: 



XIV Preface 

Class diagram: Extraction of inter-class relationships in presence of weakly 
typed containers and interfaces, which prevent an exact knowledge of the 
actual type of referenced objects. 

Object and interaction diagrams: Recovery of the associations among 
the objects that instantiate the classes in a system and of the messages 
exchanged among them. 

State diagram: Modeling of the behavior of each class in terms of states 
and state transitions. 

Package diagram: Identification of packages and of the dependences among 
packages. 

All the algorithms share a common code analysis framework. The basic 
principle underlying such a framework is that information is derived statically 
(no code execution) by performing a propagation of proper data in a graph 
representation of the object flows occurring in a program. The data structure 
that has been defined for such a purpose is called the Object Flow Graph 
(OFG). It allows tracking the lifetime of the objects from their creation along 
their assignment to program variables. 

UML, the Unified Modeling Language, has been chosen as the graphical 
language to present the outcome of reverse engineering. This choice was mo
tivated by the fact that UML has become the standard for the representation 
of design diagrams in Object Oriented development. However, the choice of 
UML is by no means restrictive, in that the same information recovered from 
the code can be provided to the users in different graphical or non graphical 
formats. 

A well known concern of most reverse engineering methods is how to fil
ter the results, when their size and complexity are excessively high. Since 
the recovered diagrams are intended to be inspected by a human, the pre
sentation modes should take into account the cognitive limitations of humans 
explicitly. Techniques such as focusing, hierarchical structuring and element 
explosion/implosion will be introduced specifically for some diagram types. 

The research community working in the field of reverse engineering has 
produced an impressive amount of knowledge related to techniques and tools 
that can be used during software evolution in support of program under
standing. It is the authors' opinion that an important step forward would be 
to publish the achievements obtained so far in comprehensive books dealing 
with specific subtopics. 

This book on reverse engineering from Object Oriented code goes exactly 
in this direction. The authors have produced several research papers in this 
field over time and have been active in the research community. The techniques 
and the algorithms described in the book represent the current state of the 
art. 

Trento, Italy Paolo Tonella 
July 2004 Alessandra Potrich 




