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Abstract. With the Gaussian Process model, the predictive distribu-
tion of the output corresponding to a new given input is Gaussian. But
if this input is uncertain or noisy, the predictive distribution becomes
non-Gaussian. We present an analytical approach that consists of com-
puting only the mean and variance of this new distribution (Gaussian
approximation). We show how, depending on the form of the covariance
function of the process, we can evaluate these moments exactly or ap-
proximately (within a Taylor approximation of the covariance function).
We apply our results to the iterative multiple-step ahead prediction of
non-linear dynamic systems with propagation of the uncertainty as we
predict ahead in time. Finally, using numerical examples, we compare
the Gaussian approximation to the numerical approximation of the true
predictive distribution by simple Monte-Carlo.

1 Background

Given a set of observed data D = {xi, ti}N
i=1, where xi ∈ RD and ti = f(xi)+ε,∈

R (ε is a white noise with variance vt), we model the input/output relationship
using a zero-mean Gaussian Process (GP) with covariance function C(xi,xj).
For the moment, we do not specify the form of the covariance function and
simply assume it is a valid one, generating a positive definite covariance matrix.
We refer to [1, 2, 3, 4] for a review of GPs.

1.1 Prediction at a New x

With this model, given a new ‘test’ input x, and based on the observed data,
the predictive distribution of the corresponding output y = f(x) is readily ob-
tained. This distribution is Gaussian, p(y|D,x) = N (µ(x), σ2(x)), with mean
and variance respectively given by
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




µ(x) =
N∑

i=1

βiC(x,xi)

σ2(x) = C(x,x) −
N∑

i,j=1

K−1
ij C(x,xi)C(x,xj)

(1)

with βββ = K−1t, where t is the N × 1 vector of observed noisy targets and K
is the N × N data covariance matrix, such that Kij = C(xi,xj) + vtδij . The
covariances between the new point and the training cases are given by C(x,xi),
for i = 1 . . .N , and C(x,x) is the covariance between the test point and itself.

In practice, the predictive mean µ(x) is used as a point estimate for the
function output, while the variance σ2(x) can be translated into uncertainty
bounds (error-bars) on this estimate. Although this variance corresponds to the
model’s uncertainty (and therefore depends on the prior and on the local data
complexity), it represents valuable information as it enables us to quantify the
uncertainty attached to the prediction. Figure 1 shows the predictive means
and their 2σ error-bars computed for 81 test inputs. A Gaussian Process with
zero-mean and Gaussian covariance function (Eq. (22)) was trained using only
N = 10 points. Near the data points, the predictive variance is small, increasing
as the test inputs are far away from the training ones.
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Fig. 1. Predictive means (dashed line)
and 2σ error-bars (dotted lines) corre-
sponding to 81 noise-free test inputs. A
zero-mean GP was trained on 10 train-
ing points (crosses) to learn the under-
lying function (continuous line).

1.2 Motivation

We first motivate the necessity of being able to make a prediction at an uncertain
or noisy input using a dynamic example.

Dynamic Case Let a time-series be known up to time t and assume a sim-
ple auto-regressive generative model of the form yt+1 = f(yt) where the input
now corresponds to a delayed value of the time-series. Having formed a set of in-
put/output pairs and trained a GP, we wish to predict the value of the time-series
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at, say, time t+k. With our one-step ahead model, we need to iterate predictions
up to the desired horizon, i.e. we have yt+k = f(yt+k−1), yt+k−1 = f(yt+k−2),
so on, down to yt+1 = f(yt). Since yt is known, the predictive distribution of
yt+1 is simply Gaussian, p(yt+1|D, yt) = N (µ(yt), σ2(yt)), with mean and vari-
ance given by (1) evaluated at x = yt. For the next time-step, a naive approach
consists in only using µ(yt) as an estimate for yt+1, ŷt+1 = µ(yt), and evaluate
p(yt+2|D, ŷt+1) = N (µ(ŷt+1), σ2(ŷt+1)). As we will see in our numerical exam-
ples, this approach is not advisable for two reasons: it is over-confident about
the estimate (the variance σ2(ŷt+1) will typically be very small) and it is also
throwing away valuable information, namely, the uncertainty attached to the es-
timate ŷt+1, σ(yt). If we wish to account for this uncertainty, and thus propagate
it as we predict ahead in time, we need to be able to evaluate p(yt+2|D, yt+1)
where yt+1 ∼ N (µ(yt), σ2(yt)). This means being able to evaluate the predictive
distribution corresponding to an uncertain or noisy input, yt+1 here.

Static Case In real experiments and applications, we use sensors and detectors
that can be corrupted by many different sources of disturbances. We might then
only observe a noise corrupted version of the true input and the system senses
the new input imperfectly. Again, if the model does not account for this ‘extra’
uncertainty (as opposed to the uncertainty usually acknowledged on the observed
outputs), the model is too confident, which is misleading and could potentially
be dangerous if, say, the model’s output were to be used in a decision-making
process of a critical application. Note that in this case, the approach we suggest
assumes prior knowledge of the input noise variance.

In the next section, we present the problem of predicting at a noisy input
when using a Gaussian Process model. We then suggest an analytical approxi-
mation and compute the mean and variance of the new predictive distribution
(sections 3 and 4). In section 5, we return to the iterative forecasting of a non-
linear time-series to which we apply our results.

Although most of the material presented in this chapter has already been
published [5, 6, 7], the present document aims at unifying and presenting the
different results in a more principled manner.

2 Prediction at an Uncertain Input

Let the new test input be corrupted by some noise, εεεx ∼ Nεεεx(0,ΣΣΣx), such that
x = u + εεεx. That is, we wish to make a prediction at x ∼ Nx(u,ΣΣΣx) and to
do so, we need to integrate the predictive distribution p(y|D,x) over the input
distribution3

p(y|D,u,ΣΣΣx) =
∫

p(y|D,x)p(x|u,ΣΣΣx)dx . (2)

3 When the bounds are not indicated, it means that the integrals are evaluated from
−∞ to +∞.
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For the GP, we have p(y|D,x) = 1√
2πσ2(x)

exp
[
− 1

2
(y−µ(x))2

σ2(x)

]
, which is a nonlin-

ear function of x, such that this integral cannot be solved without resorting to
approximations.

2.1 Possible Approximations

Many techniques are available to approximate intractable integrals of this kind.
Approximation methods are divided into deterministic approximations and
Monte-Carlo numerical methods. The most popular deterministic approaches
are variational methods,4 Laplace’s method and Gaussian quadrature that con-
sist of analytical approximations of the integral. Refer to [4] for a review of these
methods.

Numerical methods relying on Markov-Chain Monte-Carlo sampling tech-
niques evaluate the integral numerically, thus approximating the true distribu-
tion. In our case, the numerical approximation by simple Monte-Carlo is straight-
forward since we simply need to sample from a Gaussian distribution Nx(u,ΣΣΣx).
For each sample xt from this distribution, p(y|D,xt) is normal, with mean and
variance given by Eqs. (1):

p(y|D,u,ΣΣΣx) � 1
T

T∑

t=1

p(y|D,xt) =
1
T

T∑

t=1

Ny(µ(xt), σ2(xt)) . (3)

The numerical approximation of p(y|D,u,ΣΣΣx) is then a mixture of T Gaus-
sians with identical mixing proportions. As the number of samples T grows, the
approximate distribution will tend to the true distribution.

On Fig. 2, 100 predictive means with their corresponding uncertainties are
plotted, corresponding to 100 samples xt from p(x), centered at the noisy ob-
served input x (asterisks), with variance vx = 1. The ‘true’ test inputs are u = 2
(left) and u = 6 (right). The histograms of the samples at which predictions are
made are shown on Fig. 3. The circle and asterisk indicate the noise-free and
noisy inputs (u and x respectively). After having computed the loss associated
to each xt5, we find that for which the loss is minimum (triangle), which is close
to the true value.

In the remaining of this document, we focus on an analytical approximation
which consists of computing only the first two moments, the mean and vari-
ance, of p(y|D,u,ΣΣΣx). As we will now see, approximate or exact moments are
computed, depending on the form of the covariance function.

2.2 Analytical Approximation

To distinguish from µ(u) and σ2(u), the mean and variance of the Gaussian
predictive distribution p(y|D,u) corresponding to a noise-free u, we denote by
4 Many references can be found at http://www.gatsby.ucl.ac.uk/vbayes/
5 We compute the squared error and the minus log-predictive density, see section 6.
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Fig. 2. Monte-Carlo approximation to the prediction at an observed noisy in-
put x (asterisk). Predictive means µ(xt) (crosses) with 2σ(xt) error-bars (dots),
computed for 100 samples xt from p(x), with mean x and variance vx. The true
input distribution is x ∼ Nx(u, vx), for u = 2 (left), u = 6 (right) and vx = 1.
The circle indicates the output corresponding to the noise-free input u.

m(u,ΣΣΣx) the mean and by v(u,ΣΣΣx) the variance of the non-Gaussian predic-
tive distribution p(y|D,u,ΣΣΣx), corresponding to x ∼ Nx(u,ΣΣΣx). This can be
interpreted as a Gaussian approximation, such that

p(y|D,u,ΣΣΣx) ≈ N (m(u,ΣΣΣx), v(u,ΣΣΣx)) .

This mean and variance are respectively given by

m(u,ΣΣΣx) =
∫

y

{∫

p(y|D,x)p(x|u,ΣΣΣx)dx
}

dy

v(u,ΣΣΣx) =
∫

y2

{∫

p(y|D,x)p(x|u,ΣΣΣx)dx
}

dy − m(u,ΣΣΣx)2 .

Using the law of iterated expectations and that of conditional variances,6 we
directly have

m(u,ΣΣΣx) = Ex[µ(x)] (4)
v(u,ΣΣΣx) = Ex[σ2(x)] + Varx[µ(x)] , (5)

6 Recall that E[X] = E[E[X|Y ]] and Var[X] = E[Var[X|Y ]] + Var[E[X|Y ]].
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Fig. 3. Histogram of the samples xt from p(x) at which predictions were made,
when the true input (circle) is u = 2 (left) and u = 6 (right). Also plotted, the
observed noisy input (asterisk), taken as the mean of p(x), and the sample xt

that leads to the minimum loss (triangle).

where Varx[µ(x)] = Ex[µ(x)2] − m(u,ΣΣΣx)2. Replacing µ(x) and σ2(x) by their
expressions (Eqs. (1)), we finally have





m(u,ΣΣΣx) =
N∑

i=1

βiEx[C(x,xi)]

v(u,ΣΣΣx)= Ex[C(x,x)] −
N∑

i,j=1

(K−1
ij − βiβj)Ex[C(x,xi)C(x,xj)]− m(u,ΣΣΣx)2 .

(6)
Let

l =
∫

C(x,x)p(x)dx (7)

li =
∫

C(x,xi)p(x)dx (8)

lij =
∫

C(x,xi)C(x,xj)p(x)dx . (9)

How solvable integrals (7)-(9) are basically depends on the form of the covariance
function.

1. If the covariance function is e.g. linear, Gaussian, polynomial (or a mixture
of those), we can compute the integrals exactly and obtain the exact mean
and variance. In section 4, we derive the ‘exact’ moments for the linear and
Gaussian covariance functions.

2. Otherwise, we can again approximate (7)-(9) in a number of ways. Since we
are mostly interested in closed form approximate solutions, we evaluate the
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integrals within a Taylor approximation of the covariance function around
the mean u of x and obtain the ‘approximate’ mean and variance.

Note that this second case might be required, if the form of the covariance
function is definitely one for which one cannot solve the integrals exactly, or
simply preferable, if the integrals are tractable but at the cost of long and tedious
calculations (assuming one has access to software like Mathematica or Matlab’s
symbolic toolbox to compute the derivatives, the solutions obtained using the
proposed approximations provide a suitable performance/implementation trade-
off).

Figure 4 summarizes the different possible approximations and highlights
the analytical one we take. We now turn to the evaluation of the mean and
variance in the case of a ‘general’ the covariance function, that is when further
approximations are needed to evaluate integrals (7)-(9) analytically.

x given

x ~ N(u,v)

p(y|D,x)

p(y|D,u,v):
 integrate p(y|D,x) over x 

Numerical

Analytical

(Approximations)

Compute mean and variance
of p(y|D,u,v)

Approximated
moments

Exact 
moments

Depending 
on C(.,.)

Fig. 4. Dealing with a noisy test input: With the GP model, the predictive
distribution of the output corresponding to a new test input x is readily obtained,
by conditioning on the training data D and on the new x. If x is noisy, such
that x ∼ N (u, v), the new predictive distribution is now obtained by integrating
over the input distribution. Since p(y|D, x) is nonlinear in x, the integral is
analytically intractable. Although a numerical approximation of the integral is
possible, we concentrate on an analytical approximation. We suggest to compute
the mean and the variance of the new predictive distribution, which is done
exactly or approximately, depending on the parametric form of the covariance
function C(., .).
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3 Gaussian Approximation: Approximate Moments

We use the Delta method (also called Moment Approximation), which consists
of approximating the integrand by a Taylor polynomial. In the one-dimensional
case, the Delta method is as follows [8, 9]: Let x be a random variable with
mean Ex[x] = u and variance Varx[x] = vx, and y = φ(x). For sufficiently small
σx =

√
vx and well-behaved φ we can write

Ex[y] � φ(u) +
1
2
vxφ′′(u) (10)

Varx[y] � φ′(u)2vx (11)

where φ′ and φ′′ are the first and second derivatives of φ evaluated at u.

These results are simply obtained by considering the expansion of φ(x) in
Taylor series about u, up to the second order:

y = φ(x) = φ(u) + (x − u)φ′(u) +
1
2
(x − u)2φ′′(u) + O([(x − u)3]) . (12)

By taking the expectation on both sides, we directly find the approximation
(10). For the variance, we have Var[y] = E[y2]−E[y]2 and the estimate given by
(11) corresponds to an approximation of the second order estimate: Neglecting
the term in v2

x for both E[y2] and E[y]2, we have

E[y2] ≈ φ(u)2 + vxφ′(u)2 + φ(u)φ′′(u)vx

E[y]2 ≈ φ(u)2 + φ(u)φ′′(u)vx

leading to (11). This approximation is motivated by the fact that the Taylor
approximation is useful for small standard deviations (if σx is small, by Cheby-
chev’s inequality P (|x − u| > kσx) < 1

k2 ), such that x will depart only a little
from u except on rare occasions and therefore (x − u) will be small.

There are obviously conditions which φ(x) should fulfill to make the Taylor
series possible (in the neighborhood of u) and to avoid anomalies of behavior
away from u. As in [8], we do not state such conditions and assume the covariance
function to be such that the expressions are valid.

3.1 Approximate Mean

Let map(u,ΣΣΣx) be the approximate mean, such that

map(u,ΣΣΣx) =
N∑

i=1

βil
ap
i

with lap
i = Ex[Cap(x,xi)] and where Cap(x,xi) corresponds to the second order

Taylor polynomial of C(x,xi) around the mean u of x,

Cap(x,xi) = C(u,xi) + (x − u)T C′(u,xi) +
1
2
(x − u)TC′′(u,xi)(x − u) .
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We directly have

lap
i = C(u,xi) +

1
2
Tr[C′′(u,xi)ΣΣΣx]

so that the approximate mean is

map(u,ΣΣΣx) = µ(u) +
1
2

N∑

i=1

βiTr[C′′(u,xi)ΣΣΣx] (13)

where µ(u) =
∑N

i=1 βiC(u,xi) is the noise-free predictive mean computed at u.

3.2 Approximate Variance

Similarly, the approximate variance is

vap(u,ΣΣΣx) = lap −
N∑

i,j=1

(K−1
ij − βiβj)l

ap
ij − map(u,ΣΣΣx)2

with lap = Ex[Cap(x,x)] and lap
ij = Ex[Cap(x,xi)Cap(x,xj)], where Cap(., .) is

again the second order Taylor approximation of C(., .). We have

lap = C(u,u) +
1
2
Tr[C′′(u,u)ΣΣΣx]

and

lap
ij ≈ C(u,xi)C(u,xj) + Tr[C′(u,xi)C′(u,xj)TΣΣΣx]+

1
2
C(u,xi)Tr[C′′(u,xj)ΣΣΣx]

+
1
2
C(u,xj)Tr[C′′(u,xi)ΣΣΣx]

where the approximation comes from discarding terms of higher order than ΣΣΣx

in Cap(x,xi)Cap(x,xj), as discussed in the previous section. Similarly, approx-
imating map(u,ΣΣΣx)2 by

map(u,ΣΣΣx)2 ≈
N∑

i,j=1

βiβj

(

C(u,xi)C(u,xj) +
1
2
C(u,xi)Tr[C′′(u,xj)ΣΣΣx]

+
1
2
C(u,xj)Tr[C′′(u,xi)ΣΣΣx]

)

,

we find, after simplifications,

vap(u,ΣΣΣx) =σ2(u) +
1

2
Tr[C′′(u,u)ΣΣΣx] −

N∑

i,j=1

(K−1
ij − βiβj)Tr[C′(u,xi)C

′(u,xj)
TΣΣΣx]

− 1

2

N∑

i,j=1

K−1
ij (C(u,xi)Tr[C′′(u,xj)ΣΣΣx] + C(u,xj)Tr[C′′(u,xi)ΣΣΣx])

(14)
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where σ2(u) = C(u,u) − ∑N
i,j=1 K−1

ij C(u,xi)C(u,xj) is the noise-free predic-
tive variance.

Note that these results might be more easily derived by approximating µ(x)
and σ2(x) directly in Eqs. (4) and (5), as done in [5, 7].7 Applying (10) to µ(x),
we have E[µ(x)] � µ(u) + 1

2Tr[µµµ′′(u)ΣΣΣx], and replacing into (4) gives

map(u,ΣΣΣx) = µ(u) +
1
2
Tr[µµµ′′(u)ΣΣΣx] .

Similarly, E[σ2(x)] � σ2(u) + 1
2Tr[σσσ2

′′
(u)ΣΣΣx] and, using (11), Var[µ(x)] �

Tr[µµµ′(u)µµµ′(u)TΣΣΣx]. Replacing into (5) we obtain

vap(u,ΣΣΣx) = σ2(u) + Tr
[(

1
2
σσσ2

′′
(u) + µµµ′(u)µµµ′(u)T

)

ΣΣΣx

]

.

Although, replacing the derivatives by their expressions, these results are obvi-
ously the same as those obtained when working with the covariance function,
working directly with µ(x) and σ2(x) lacks flexibility in that it is not clear that
exact moments can be computed.

Both approximate mean and variance are composed of the noise-free predic-
tive moments plus correction terms. Assuming ΣΣΣx is diagonal, these correction
terms consist of the sum of the derivatives of the covariance function in each
input dimension, weighted by the variance of the new test input in the same di-
rection. Figure 5 illustrates these results. On the x-axis, the asterisks indicate the
observed noisy inputs and the distribution they come from (p(x) = Nx(u, vx), for
u = 2, 6, 9.5 and vx = 1). The circles indicate the function output corresponding
to the noise-free u’s. The approximate means map(u, vx) and associated uncer-
tainties, ±2

√
v

ap(u, vx) are plotted as triangles and dotted lines. We can compare
them to the naive (noise-free) means µ(u) with error-bars ±2σ(u), which do not
account for the noise on the input.

4 Gaussian Approximation: Exact Moments

We are now going to show that in the special cases of the linear and the Gaussian
(squared exponential) covariance functions, we can evaluate integrals (7)-(9)
exactly.

4.1 Case of the Linear Covariance Function

Let us write the linear covariance function as CL(xi,xj) = xT
i Lxj where L =

diag[α1 . . . αD]. In the noise-free case, the prediction at u leads to a Gaussian
distribution with mean and variance
7 In [5, 7], we only considered a first order approximation for the mean µ(x).



168 Agathe Girard and Roderick Murray-Smith

−2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

x

Approximate v Naive

x observed

N(u,v
x
=1) 

f(u) 

map 

+2sqrt(vap)

−2sqrt(vap)

µ

+2σ 

−2σ 

Fig. 5. Gaussian approximation to the
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




µL(u) =
N∑

i=1

βiCL(u,xi)

σ2
L(u) = CL(u,u) −

N∑

i,j=1

K−1
ij CL(u,xi)CL(u,xj) .

(15)

When predicting at a noisy input, the predictive mean and variance are now
given by

mexL(u,ΣΣΣx) =
N∑

i=1

βil
exL

i (16)

vexL(u,ΣΣΣx) = lexL −
N∑

i,j=1

(K−1
ij − βiβj)lexL

ij − mexL(u,ΣΣΣx)2 (17)

so that we need to evaluate

lexL = Ex[CL(x,x)] =
∫

xT LxNx(u,ΣΣΣx)dx

lexL

i = Ex[CL(x,xi)] =
∫

xT LxiNx(u,ΣΣΣx)dx

lexL

ij = Ex[CL(x,xi)CL(x,xj)] =
∫

xT LxixTLxjNx(u,ΣΣΣx)dx .

Using the formula giving the expectation of a quadratic form under a Gaussian8

we directly obtain

8

∫

x

(x− m)T M−1(x− m)Nx(u,ΣΣΣx)dx = (m− u)T M−1(m − u) + Tr[M−1ΣΣΣx]
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lexL = uT Lu + Tr[LΣΣΣx] = CL(u,u) + Tr[LΣΣΣx]
lexL

i = uTLxi = CL(u,xi)
lexL

ij = uT (LxixT
j L)u + Tr[LxixT

j LΣΣΣx]=CL(u,xi)CL(xj ,u) + Tr[LxixT
j LΣΣΣx] .

Therefore, the predictive mean is the same as the noise-free one, as we have

mexL(u,ΣΣΣx) =
N∑

i=1

βiCL(u,xi) . (18)

On the other hand, the variance becomes

vexL(u,ΣΣΣx) = CL(u,u) + Tr[LΣΣΣx] −
N∑

i,j=1

(K−1
ij − βiβj)Tr[LxixT

j LΣΣΣx])

−
N∑

i,j=1

K−1
ij CL(u,xi)CL(xj ,u)

(19)

after simplification of the βiβj terms. Or, in terms of the noise-free variance,

vexL(u,ΣΣΣx) = σ2
L(u) + Tr[LΣΣΣx] −

N∑

i,j=1

(K−1
ij − βiβj)Tr[LxixT

j LΣΣΣx]) . (20)

If we note that C′
L(u,xi) = ∂CL(u,xi)

∂u = Lxi and C′′
L(u,u) = ∂2CL(u,u)

∂u∂uT = 2L,
we can also write it as

vexL(u,ΣΣΣx) = σ2
L(u) +

1
2
Tr[C′′

L(u,u)ΣΣΣx]

−
N∑

i,j=1

(K−1
ij − βiβj)Tr[C′

L(x,xi)C′
L(x,xj)TΣΣΣx]) .

(21)

As we would expect, the predictive mean and variance in the case of the linear
covariance function correspond to the approximate moments we would obtain
within a first order approximation of the covariance function.

4.2 Case of the Gaussian Covariance Function

The Gaussian (or squared exponential) covariance function became a popular
choice especially after Rasmussen demonstrated that a GP with such a covariance
function performed as well, if not better, than other models like neural networks
[10]. It is usually expressed as

CG(xi,xj) = v exp
[

−1
2
(xi − xj)T W−1(xi − xj)

]

(22)

with W−1 = diag[w1 . . . wD], where wd is a roughness parameter, inversely pro-
portional to the square of the correlation length in direction d (wd = 1/λ2

d), which
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represents the length along which successive values are strongly correlated (with
a role similar to the Automatic Relevance Determination tool of Mackay and
Neal [11, 12]). The parameter v controls the overall vertical scale relative to the
zero mean of the process in the output space (the vertical amplitude of variation
of a typical function).

We now denote by µG(u) and σ2
G(u) the corresponding noise-free predictive

mean and variance,






µG(u) =
N∑

i=1

βiCG(u,xi)

σ2
G(u) = CG(u,u) −

N∑

i,j=1

K−1
ij CG(u,xi)CG(u,xj)

(23)

where CG(x,x) = v. In this case, the predictive mean and variance, obtained for
a prediction at x ∼ Nx(u,ΣΣΣx), are given by

mexG(u,ΣΣΣx) =
N∑

i=1

βil
exG

i (24)

vexG(u,ΣΣΣx) = lexG −
N∑

i,j=1

(K−1
ij − βiβj)lexG

ij − mexG(u,ΣΣΣx)2 . (25)

We directly have lexG = Ex[CG(x,x)] = v = CG(u,u), and we need to evaluate

lexG

i = Ex[CG(x,xi)] = c

∫

Nx(xi,W)Nx(u,ΣΣΣx)dx

lexG

ij = Ex[CG(x,xi)CG(x,xj)] = c2

∫

Nx(xi,W)Nx(xj ,W)Nx(u,ΣΣΣx)dx ,

where, for notational convenience, we write the Gaussian covariance function
as9 CG(xi,xj) = cNxi(xj ,W), with c = (2π)D/2|W|1/2v. Using the product of
Gaussians formula,10 we find

lexG

i = cNu(xi,W + ΣΣΣx) . (26)

And for lexG

ij , using this product twice,

lexG

ij = c2Nxi(xj , 2W)Nu

(
xi + xj

2
,ΣΣΣx +

W
2

)

. (27)

9 Note that N(., .) is used to denote the parametric form of the function, it does not
correspond to a normal probability distribution N (., .).

10 Recall that Nx(a, A)Nx(b, B) = zNx(d, D) with D = (A−1+B−1)−1, d = D(A−1a+
B−1b) and z = Na(b, A + B) = Nb(a, A + B).
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Exact Predictive Mean Replacing lexG

i in mexG(u,ΣΣΣx), we have

mexG(u,ΣΣΣx) =
N∑

i=1

βicNu(xi,W + ΣΣΣx) (28)

and we can directly check that, as we would expect, m(u,ΣΣΣx = 0) = µG(u).
It is useful to write mexG(u,ΣΣΣx) as a corrected version of µG(u). Using

the matrix inversion lemma, we have (W + ΣΣΣx)−1 = W−1 − W−1(W−1 +
ΣΣΣ−1

x )−1W−1, leading to

lexG

i = CG(u,xi)Ccorr(u,xi) (29)

with

Ccorr(u,xi) = |I + W−1ΣΣΣx|−1/2 exp
[
1
2
(u − xi)T ∆−1(u − xi)

]

(30)

where ∆−1 = W−1(W−1 +ΣΣΣ−1
x )−1W−1. The predictive mean is then given by

mexG(u,ΣΣΣx) =
N∑

i=1

βiCG(u,xi)Ccorr(u,xi) . (31)

Compared to the noise-free µG(u), the covariances between the new noisy in-
put and the training inputs, formerly given by CG(u,xi), are now weighted by
Ccorr(u,xi), thus accounting for the uncertainty associated to u.

Exact Predictive Variance Replacing lexG

ij by its expression, we have

vexG(u,ΣΣΣx) = CG(u,u) − c2
N∑

i,j=1

(K−1
ij − βiβj)Nxi(xj , 2W)Nu

(
xi + xj

2
,ΣΣΣx +

W

2

)

−mexG(u,ΣΣΣx)2

and again, we can show that for ΣΣΣx = 0, we have vexG(u,ΣΣΣx = 0) = σ2
G(u).11

11 We have

vexG(u,ΣΣΣx = 0) = CG(u,u) − c2
N∑

i,j=1

(K−1
ij − βiβj)Nxi(xj , 2W)Nu

(
xi + xj

2
,
W

2

)

−mexG(u,ΣΣΣx = 0)2

with mexG(u,ΣΣΣx = 0)2 = c2 ∑N
i,j=1 βiβjNxi (xj , 2W)Nu

(
xi+xj

2
, W

2

)
,

to be compared to the noise-free predictive variance that we can write

σ2
G(u) = CG(u, u) − c2

∑N
i,j=1 K−1

ij Nxi (xj , 2W)Nu

(
xi+xj

2
, W

2

)
, using

Nu(xi,W)Nu(xj ,W) = Nxi(xj , 2W)Nu

(
xi+xj

2
, W

2

)
.
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As done for the predictive mean, we can find another form for vexG(u,ΣΣΣx)
where the Gaussian covariance function appears weighted by a correction term.
It can be shown that we can write lexG

ij as

lexG

ij = CG(u,xi)CG(u,xj)Ccorr2(u, x̄)

where x̄ = xi+xj

2 and

Ccorr2(u, x̄) =

∣
∣
∣
∣
∣

(
W
2

)−1

ΣΣΣx + I

∣
∣
∣
∣
∣

−1/2

exp
[
1
2
(u− x̄)T Λ−1(u − x̄)

]

(32)

with Λ−1 =
(
W
2

)−1
((

W
2

)−1
+ ΣΣΣ−1

x

)−1 (
W
2

)−1
.

In terms of σ2
G(u), we can then write

vexG(u,ΣΣΣx) = σ2
G(u) +

N∑

i,j=1

K−1
ij CG(u,xi)CG(u,xj)(1 − Ccorr2(u, x̄))

+
N∑

i,j=1

βiβjCG(u,xi)CG(u,xj)(Ccorr2(u, x̄) − Ccorr(u,xi)Ccorr(u,xj)) ,

(33)

where we have used
mexG(u,ΣΣΣx)2 =

∑N
i,j=1 βiβjCG(u,xi)Ccorr(u,xi)CG(u,xj)Ccorr(u,xj).

Although we will not give the details of the calculations here, it can be
shown that these predictive mean and variance tend to the approximate mean
and variance presented in section 3 when ΣΣΣx tends to zero (so that we can
approximate ex by 1 + x). As Figure 5 for the approximate moments, Figure
6 shows the exact predictive mean and error-bars (triangles) obtained when
predicting at noisy inputs (asterisks).
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Fig. 6. As in Fig. 5, the triangles now
indicate the exact predictive means with
their error-bars, accounting for the un-
certainty on the noisy inputs (asterisks).
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5 Iterative k-step Ahead Prediction

Using the results derived in the previous sections, we now derive an algorithm
for propagating the uncertainty as we predict ahead in time the output of a
nonlinear dynamic system, represented by on one-step ahead non-linear auto-
regressive (NAR) model.

At this point, it might be useful to recall the different notations used, de-
pending on the situation, as done in Table 1. It is important not to forget that
the predictive distribution corresponding to a noise-free u is Gaussian but it is
not when predicting at x ∼ Nx(u,ΣΣΣx). We only compute its mean and variance,
which is done exactly when the covariance function is e.g. Gaussian or linear, or
approximately, in the general case.

Table 1. Notation used, depending on the type of covariance function (left
column) and whether the prediction is at a noise-free or a noisy input. (‘Where’
in the document the corresponding equations can be found is indicated in small
fonts.)

Covariance function Prediction at u Prediction at x ∼ Nx(u,ΣΣΣx)

General µ(u), σ2(u) map(u,ΣΣΣx) Eq. (13)

Eqs. (1), at u vap(u,ΣΣΣx) Eq. (14)

Linear µL(u), σ2
L(u) mexL(u,ΣΣΣx) Eq. (18)

Eqs. (15) vexL(u,ΣΣΣx) Eq. (21)

Gaussian µG(u), σ2
G(u) mexG(u,ΣΣΣx) Eq. (31)

Eqs. (23) vexG(u,ΣΣΣx) Eq. (33)

5.1 Background

Given a discrete one-dimensional time-series y1, . . . , yt, we wish to predict its
value at, say, time t + k. Viewing the observed time-series as a projection of the
dynamics of the underlying system, which lie in a higher dimensional space [13],
we consider the following non-linear auto-regressive (NAR) model

yt+1 = f(xt) with xt = [yt, yt−1, . . . , yt−L]T , (34)

whose order, L, corresponds to the dimension of the reconstructed space (number
of delayed outputs, called lag or embedding dimension). The state (or input) at
time t is xt and yt+1 is the corresponding output. Note that in practise, yt+1 is
alone considered as noisy (yt+1 = f(xt) + εt+1). Here, we simply assume that
εt+1 is a white noise but colored noise models can also be considered, as in [14].

Using this one-step ahead model, the iterative k-step ahead prediction task
can be thought of as a missing or noisy data modelling problem12 since what
12 The missing variables can be seen as noisy variables for complete noise.
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we want is to predict yt+k, when yt+k−1 down to yt are missing, provided the
time-series is known up to time t. This problem has been the scope of much
research (see e.g. [15, 16]) but has not yet been addressed for the GP model. A
naive way of solving the iterative multiple-step ahead prediction task is simply
to substitute a single value to the missing value (say the value of the time-series
at another time-step, or a maximum likelihood estimate) but this approach has
been shown not to be optimal and to lead to biased predictions [17, 15]. In
[18], long-term predictions are improved by eliminating the systematic errors
induced by each successive short term prediction, by considering a function of
the estimates.

Using our approximation for the prediction at a noisy input, we suggest to
incorporate the uncertainty about intermediate regressor values as we predict
ahead in time. This results in an update of the uncertainty on the current pre-
diction and therefore an improvement of each successive predictions.

5.2 Propagation of Uncertainty Algorithm

We assume that a zero-mean GP model was trained to minimize the one-step
ahead predictions of a time-series known up to time t. By propagating the uncer-
tainty as we predict ahead in time, we mean that for yt+k =f(yt+k−1, . . . ,yt+k−L),
we consider the delayed yt+k−1, . . . , yt+k−L as Gaussian random variables, with
mean m(., .) and variance v(., .), computed either approximately or exactly, de-
pending on the covariance function of the process.

Here is a sketch of how we proceed:

– Time t+1, xt+1 = [yt, . . . , yt−L]T : Since the state is formed on known values
of the time-series, we simply have yt+1 ∼ N (µ(xt+1, σ

2(xt+1)).
– Time t + 2, xt+2 = [yt+1, yt, . . . , yt+1−L]T ∼ N (ut+2,ΣΣΣt+2) with

ut+2 =








µ(xt+1)
yt

...
yt+1−L








and ΣΣΣt+2 =








σ2(xt+1) 0 . . . 0
0 0 . . . 0
...

...
...

...
0 . . . . . . 0








.

Within our analytical approximation, we only compute the mean and vari-
ance of yt+2 and consider yt+2 ∼ N (m(ut+2,ΣΣΣt+2), v(ut+2,ΣΣΣt+2)).

– Time t + 3, xt+3 = [yt+2, yt+1, . . . , yt+2−L]T ∼ N (ut+3,ΣΣΣt+3) with

ut+3 =










m(xt+2)
µ(xt+1)

yt

...
yt+2−L










and ΣΣΣt+3 =










v(xt+2) Cov[yt+2, yt+1] 0 . . . 0
Cov[yt+1, yt+2] σ2(xt+1) 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

0 . . . . . . . . . 0










.

Compute yt+3 ∼ N (m(ut+3,ΣΣΣt+3), v(ut+3,ΣΣΣt+3)).
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Repeating this procedure up to the desired horizon k, and assuming k > L,
at t + k, we have xt+k = [yt+k−1, yt+k−2, . . . , yt+k−L]T ∼ N (ut+k,ΣΣΣt+k) and
compute yt+k ∼ N (m(ut+k,ΣΣΣt+k), v(ut+k,ΣΣΣt+k)). The input mean is then given
by

ut+k = [m(xt+k−1), m(xt+k−2), . . . , m(xt+k−L)]T

and the input covariance matrix is

ΣΣΣt+k =







v(xt+k−1) Cov[yt+k−1, yt+k−2] . . . Cov[yt+k−1, yt+k−L]
Cov[yt+k−2, yt+k−1] v(xt+k−2) . . . Cov[yt+k−2, yt+k−L]

. . . . . . . . . . . .
Cov[yt+k−L, yt+k−1] Cov[yt+k−L, yt+k−2] . . . v(xt+k−L)





 .

We now need to compute the cross-covariance terms: In general, at time t+ l,
we have the random input vector xt+l = [yt+l−1, . . . , yt+l−L]T ∼ N (ut+l,ΣΣΣt+l).
The L × L covariance matrix ΣΣΣt+l has the delayed predictive variances on its
diagonal and the cross-covariance terms correspond to the covariances between
yt+l−i and yt+l−j , for i, j = 1 . . . L with i �= j. Discarding the last (oldest)
element of xt+l, we need to compute Cov[yt+l−i, yt+l−j ] = Cov[yt+l,xt+l], that
is

Cov[yt+l,xt+l] = E[yt+lxt+l] − E[yt+l]E[xt+l] (35)

where E[yt+l] = m(ut+l,ΣΣΣt+l) and E[xt+l] = ut+l. For the expectation of the
product, we have

E[yt+lxt+l] =
∫ ∫

yt+lxt+lp(yt+l,xt+l)dyt+ldxt+l

=
∫ ∫

yt+lxt+lp(yt+l|xt+l)p(xt+l)dyt+ldxt+l

and since
∫

yt+lp(yt+l|xt+l)dyt+l = µ(xt+l), we can write

E[yt+lxt+l] =
∫

xt+lµ(xt+l)p(xt+l)dxt+l .

Replacing µ(xt+l) by its expression, we have

E[yt+lxt+l] =
∑

i

βi

∫

xt+lC(xt+l,xi)p(xt+l)dxt+l . (36)

Depending on the form of C(., .), we evaluate this integral exactly or approxi-
mately. Denoting xt+l by x for notational convenience, let Ii =

∫
xC(x,xi)p(x)dx

be the integral we wish to solve.

Gaussian Case In the case of the Gaussian covariance function, we have
m(., .) = mexG(., .) and v(., .) = vexG(., .), as given by Eqs. (31) and (33).

Using a similar notation as in section 4.2, we need to solve

IexG

i = c

∫

xNx(xi,W)p(x)dx
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where C(x,xi) = cNx(xi,W), with c = (2π)D/2|W|1/2v. As before, using the
product of Gaussians, we find

IexG

i = cNu(xi,W + ΣΣΣx)[(I + WΣΣΣ−1
x )−1xi + (I + ΣΣΣxW−1)−1u]

where cNu(xi,W +ΣΣΣx) = C(u,xi)Ccorr(u,xi), with Ccorr(u,xi) given by (30).
We can then write

E[yt+lxt+l]=
∑

i

βiC(ut+l,xi)Ccorr(ut+l,xi)[(I+WΣΣΣ−1
t+l)

−1xi+(I+ΣΣΣt+lW
−1)−1ut+l] .

After simplifications, the cross-covariance terms are given by

Cov[yt+l,xt+l] =
∑

i

βiC(ut+l,xi)Ccorr(ut+l,xi)(I + WΣΣΣ−1
t+l)

−1xi . (37)

General Case When the covariance function is such that approximations are
needed, the predictive mean and variance corresponding to a noisy input are
given by m(., .) = map(., .), using Eq. (13) and v(., .) = vap(., .), using (14).

For the computation of the cross-covariances, we resort to a second order
Taylor approximation of the covariance function, as in section 3. We then have13

Iap
i ≈ uT C(u,xi) + C′(u,xi)TΣΣΣx +

1
2
uT Tr[ΣΣΣxC′′(u,xi)] .

After simplifications, we obtain the following expression for the cross-covariance
terms

Cov[yt+l,xt+l] =
∑

i

βiC′(ut+l,xi)TΣΣΣt+l. (38)

6 Numerical Examples

For clarity, we will denote the different approaches as follows:

– MC, for the Monte-Carlo approximation to the true predictive distribution
corresponding to a noisy input;

– A, for the Gaussian approximation that computes only the mean and vari-
ance of this distribution, and specifically Aap when these moments are com-
puted using the Taylor approximation, and Aex when they are computed
exactly;

13 This result was obtained by extending the one-dimensional case to L-dimensions. In
1D, we have

Iap
i ≈

∫

x

(

C(u, xi) + (x − u)C′(u, xi) +
1

2
(x − u)2C′′(u, xi)

)

p(x)dx

≈ uC(u, xi) + vxC′(u, xi) +
1

2
uvxC′′(u, xi)

where we have used
∫

x2p(x)dx = vx + u2 and
∫

x3p(x)dx = 3uvx + u3.
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– N , for the naive predictive mean and variances that do not account for the
noise on the input.

We assess the performance of the different methods by computing the av-
erage squared error (E1), over the test set, and average minus log predictive
density (E2), which measures the density of the actual true test output under
the Gaussian predictive distribution and use its negative log as a measure of
loss. To assess the performance of the Monte-Carlo approximation, we compute
the squared error and minus log-likelihood loss for the predictions given by each
sample and average over the number of samples. We also compute the average
predictive mean (sample mean) and average predictive variance (sample vari-
ance) and compute the associated losses.

6.1 A Simple Comparison on a Static Example

On the static example previously used, we compare the different approaches for
the prediction at a noisy input, when the true noise-free input is 2 (left) and 6
(right) and the input noise variance is 1. Figure 7 shows the predictive distri-
bution given by MC (continuous), N (dashed), Aap (dots) and Aex (asterisks).
Note how the naive approach leads to a narrow distribution (N), peaked around
its mean value, since it does not account for the uncertainty on the input. The
Monte-Carlo approximation to the true distribution highlights how the true dis-
tribution is non-Gaussian.

−4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5
Prediction at x= 2.4

x

MC 

N 

A
ex

 

A
ap

 

f(u=2) 

0 5 10 15
−1

−0.5

0

0.5

1

1.5
Prediction at x= 6.9

x

f(u=6) 

N 

MC 

A
ex

 
A

ap
 

Fig. 7. Predictive distributions (on the y-axis) obtained when predicting at a
noisy input: MC is the numerical approximation by simple Monte-Carlo, Aex

and Aap correspond to the Gaussian approximation with moments computed
exactly and approximately. N is the naive predictive distribution that does not
account for the noise on the input.

For both the prediction at x = 2.4 (left) and x = 6.9 (right), Figure 8 shows
the histogram of the losses (squared error E1 on the left and minus log predic-
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tive density E2 on the right) computed for each of the 100 samples given by
the Monte-Carlo approximation. The minus-log predictive density loss is a very
useful quantitative measure to assess the ‘goodness’ or quality of an approach
as, unlike the squared error loss, it also accounts for the variance (or uncer-
tainty) attached to the mean predictions. Table 2 summarizes the average losses
obtained for each method (average over three test points). In this table, the
losses reported for MC correspond to those obtained using the average sample
mean and variance (average over 100 samples). We can also compute the losses
associated to each sample and average those. We then obtain E1 = 0.42 and
E2 = 25.09.
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Fig. 8. Squared error (E1) and minus log-likelihood (E2) computed for 100 sam-
ples of the Monte-Carlo approximation (for the observed noisy x = 2.4, left and
x = 6.9, right).

Table 2. Average squared error E1 and minus log-predictive density E2 over
three test points obtained for the different approaches.

Loss N Aap Aex MC

E1 0.009 0.004 0.005 0.004

E2 7.685 −0.53 −0.635 −0.58

From this simple static example, for which the input noise variance is assumed
to be known, we can conclude that our Gaussian approximation leads to results
comparable to those obtained by simple Monte-Carlo, which approximates the
true distribution.
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6.2 Dynamic Case

The Mackey-Glass chaotic time-series constitutes a well-known challenging bench-
mark for the multiple-step ahead prediction task, due to its strong non-linearity
[19]. We consider dy(t)

dt = −by(t)+a y(t−τ)
1+y(t−τ)10 , with a = 0.2, b = 0.1 and τ = 17.

The series is re-sampled with period 1 and normalized. We then assume the
following NAR model yt+1 = f(yt, yt−1, . . . , yt−L), where L = 16 and we cor-
rupt the output yt+1 by a white noise with variance 0.001. Having formed the
input/output pairs, we train a zero-mean Gaussian Process with a Gaussian co-
variance function14 on 100 points (taken at random). We first validate the model
on one-step ahead predictions: We obtain E1 = 4.41 10−4, E2 = −2.16 where
the average is taken over Nt = 1000 test points. After performing a simulation
of the test set (i.e. Nt-steps ahead prediction, where Nt is the length of the test
set), we decide to make k = 100 steps ahead predictions (which corresponds to
the horizon up to which predictions are ‘reasonably good’).

This example is intended to illustrate the propagation of uncertainty algo-
rithm, described in section 5.2. We assess the quality of the predictions obtained
using the approximate moments, given by the Gaussian approximation, by com-
paring them to the exact ones. We also compare the ‘exact predictions’ to those
given by the naive approach, that feeds back only the predictive means as we
predict ahead in time. Let t be the time up to which the time-series is known.
Fig. 9 (top plots) shows the mean predictions (left) with their associated uncer-
tainties (right) from t + 1 to t + 100. The crosses indicate the exact moments
given by the Gaussian approximation (Aex), the circles indicate the approximate
moments (Aap) and the dots the naive moments (N) that ignore the uncertainty
induced by each successive prediction. We can see that up to around 60 steps
ahead, the predictive means given by the different approaches are very similar.
The uncertainty bars given by naive approach are very tight and the model is
overly confident about its mean predictions. On the other hand, both the exact
and approximate error-bars reflect well the fact that, as we predict ahead in
time, less information is available and the estimates (predictive means) become
more and more uncertain. On Fig. 9, the bottom left figure shows the 100-step
ahead predictive means with their uncertainty. The upper plot shows the predic-
tive means given by the naive approach, with their 2σ error-bars which are so
tight that one cannot distinguish them from the means. The middle and bottom
plots show respectively the approximate and exact 100-step ahead means where
the shaded area corresponds to the uncertainty interval. On the right, we can see
the evolution of the average squared error (left) and minus log-predictive density
(right, on a log-scale), as the number of steps increases from one to 100. In this
case, both losses clearly indicate that as the number of steps increases, the naive
approach leads to poor predictions. These plots also show that, although not as
good as Aex, the predictions given by the approximate moments Aap are quite
encouraging.

14 The covariance function is that given by Eq. (22) with v = 1.
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Fig. 9. Top plots: Iterative method in action on the Mackey-Glass time-series.
Mean predictions (left) and uncertainty error bars (right) from 1 to 100 steps
ahead, given by the exact moments Aap (crosses), the approximate ones Aap

(circles) and the naive ones (dots). Bottom plots: 100-step ahead prediction of
a portion of the time-series (left). From top to bottom: naive, approximate and
exact means with the uncertainty region shaded. Right: Evolution of the average
losses as the number of steps ahead increases from one to 100 (E1 is the average
squared error and E2 the minus log-predictive density, on a log-scale)

We now turn to comparing the Gaussian approximation (exact moments) to
the approximation of the true distribution by Monte-Carlo (MC). The Monte-
Carlo approximation for the 100-step ahead prediction is done as follows: At t+1,
compute p(yt+1|D,xt+1) = N (µ(xt+1), σ2(xt+1)) where xt+1 = [yt, yt−1, . . . ,
yt−16]. At t+2, draw a sample ys

t+1 from p(yt+1|D,xt+1), form the state xt+2 =
[ys

t+1, yt, . . . , yt−15] and compute p(yt+2|D,xt+2) = N (µ(xt+2), σ2(xt+2)). So on,
up to t + 100. Then, go back to t + 1 and repeat the whole process. We repeat
this S = 1000 times (s = 1 . . . S), so that we finally obtain 1000 samples for
each time-step. Finally, we do so for 100 different ‘starting times t’ (i.e. 100 test
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inputs), resulting in a 100 × S × k matrix of predictive means and variances,
where S is the number of samples and k is the prediction horizon (k = 100). Fig.
10 shows the predictive uncertainties from t + 1 to t + 100.
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Fig. 10. Left: 1000 predictive error-bars from the Monte-Carlo approximation,
from t + 1 to t + k, where k = 100 steps ahead. Also plotted, the predictive
uncertainties given by the exact method Aex (continuous lines). At t + k, for
k = 10, 60, 100, we plot the corresponding predictive distribution(right plot), as
it is approximated numerically by Monte-Carlo (dotted line) and analytically,
by the Gaussian with exact moments (continuous).

This experiment clearly validates our analytical approximation of the true
predictive distribution as we can see that the error bars given by the exact
moments encompass those of the samples from the Monte-Carlo approximation.
It is interesting noting how the approximation to the true distribution is long-
tailed at 100 step-ahead.

Table 3, reports the average losses computed for the different approaches.
(Note that since the Monte-Carlo approach uses only 100 test points, all losses
are averaged over 100 points only.) The reported losses for MC correspond
to the those computed using the average sample mean and variance. We can
also compute the losses given by each single prediction and average them. We
then obtain E1 = 0.72 and E2 = 340.27. These results for the Monte-Carlo
approximation might look surprising but one should keep in mind that estimating
the quality of this approximation with these losses is not really representative
(since the distribution is not normal).

7 Conclusions

We have presented an original solution to the problem of iterative multiple-step
ahead prediction of nonlinear dynamic systems within a NAR representation.
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Table 3. Average (over 100 test points) squared error (E1) and minus log pre-
dictive density (E2) for the k = 100 step ahead predictions.

N Aap Aex MC

E1 0.52 0.75 0.35 0.38

E2 243.46 1.55 0.94 172.51

We do so by first showing how predicting at an uncertain or noisy input can
be done within an analytical approximation of the predictive distribution of
the Gaussian Process model (note that this approach is valid for other kernel-
based models like the Relevance Vector Machines, see [20]). In experiments on
simulated dynamic systems, we show that this analytical approach 1, performs
as well as a numerical Monte-Carlo approximation of the true distribution and 2,
propagating the uncertainty as we predict ahead in time improves the multiple-
step ahead prediction task, achieving more realistic prediction variances than
a method that uses only output estimates and thus ignores the uncertainty on
current state.

In the derivation of the mean and variance of the predictive distribution,
we show how exact or approximate moments are obtained, depending on the
form of the covariance function. In the case of the Gaussian covariance function,
for which exact moments are available, a numerical example proves that the
approximate moments, computed using the Gaussian covariance function, lead
to almost similar results as those obtained using the exact moments, which is
encouraging for using the approximation.

Explicitly using the predictive variance has been recently successfully used
in a control context [21] and also the propagation of uncertainty methodology,
in a model predictive control framework where knowledge of the accuracy of the
model predictions over the whole prediction horizon is required (see [22]).

In this chapter, we do not address the problem of learning in the presence
of noisy inputs (we have assumed that the training inputs were noise-free). This
is the subject of ongoing research. We suggest an approximation similar to that
presented here: Assuming the input noise is white, the new non-Gaussian pro-
cess can be approximated by a GP. We then derive its covariance function that
accounts for the input noise variance, which is then learnt as an extra parameter.
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