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DEDICATION

This book is dedicated to all
designers working in
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PREFACE

The evolution of electronic systems is pushing traditional silicon designers
into areas that require new domains of expertise. In addition to the design of
complex hardware, System-on-Chip (SoC) design requires software develop-
ment, operating systems and new system architectures. Future SoC designs
will resemble a miniature on-chip distributed computing system combining
many types of microprocessors, re-configurable fabrics, application-specific
hardware and memories, all communicating via an on-chip inter-connection
network. Designing good SoCs will require insight into these new types of
architectures, the embedded software, and the interaction between the
embedded software, the SoC architecture, and the applications for which the
SoC is designed.

This book collects contributions from the Embedded Software Forum of
the Design, Automation and Test in Europe Conference (DATE 03) that took
place in March 2003 in Munich, Germany. The success of the Embedded
Software Forum at DATE reflects the increasing importance of embedded
software in the design of a System-on-Chip.

Embedded Software for SoC covers all software related aspects of SoC
design

xiii

Embedded and application-domain specific operating systems, interplay
between application, operating system, and architecture.
System architecture for future SoC, application-specific architectures based
on embedded processors and requiring sophisticated hardware/software
interfaces.
Compilers and interplay between compilers and architectures.
Embedded software for applications in the domains of automotive, avionics,
multimedia, telecom, networking, . . .

This book is a must-read for SoC designers that want to broaden their
horizons to include the ever-growing embedded software content of their next
SoC design. In addition the book will provide embedded software designers
invaluable insights into the constraints imposed by the use of embedded
software in a SoC context.

Diederik Verkest
IMEC
Leuven, Belgium

Norbert Wehn
University of Kaiserslautern
Germany



INTRODUCTION

Embedded software is becoming more and more important in system-on-chip
(SoC) design. According to the ITRS 2001, “embedded software design has
emerged as the most critical challenge to SoC” and “Software now routinely
accounts for 80% of embedded systems development cost” [1]. This will
continue in the future. Thus, the current design productivity gap between chip
fabrication and design capacity will widen even more due to the increasing
‘embedded SoC SW implementation gap’. To overcome the gap, SoC
designers should know and master embedded software design for SoC. The
purpose of this book is to enable current SoC designers and researchers to
understand up-to-date issues and design techniques on embedded software for
SoC.

One of characteristics of embedded software is that it is heavily depen-
dent on the underlying hardware. The reason of the dependency is that
embedded software needs to be designed in an application-specific way. To
reduce the system design cost, e.g. code size, energy consumption, etc.,
embedded software needs to be optimized exploiting the characteristics of
underlying hardware.

Embedded software design is not a novel topic. Then, why do people
consider that embedded software design is more and more important for SoC
these days? A simple, maybe not yet complete, answer is that we are more
and more dealing with platform-based design for SoC [2].

Platform-based SoC design means to design SoC with relatively fixed archi-
tectures. This is important to reduce design cycle and cost. In terms of reduc-
tion in design cycle, platform-based SoC design aims to reuse existing and
proven SoC architectures to design new SoCs. By doing that, SoC designers
can save architecture construction time that includes the design cycle of IP
(intellectual property core) selection, IP validation, IP assembly, and archi-
tecture validation/evaluation.

In platform-based SoC design, architecture design is to configure, statically
or dynamically in system runtime, the existing platforms according to new
SoC designs [3]. Since the architecture design space is relatively limited and
fixed, most of the design steps are software design. For instance, when SoC
designers need to implement a functionality that is not implemented by
hardware blocks in the platform, they need to implement it in software. As
the SoC functionality becomes more complex, software will implement more
and more functionality compared to the relatively fixed hardware. Thus, many
design optimization tasks will become embedded software optimization ones.

xv



xvi Introduction

To understand embedded software design for SoC, we need to know current
issues in embedded software design. We want to classify the issues into two
parts: software reuse for SoC integration and architecture-specific software
optimization. Architecture-specific software optimization has been studied for
decades. On the other side, software reuse for SoC integration is an impor-
tant new issue. To help readers to understand better the specific contribution
of this book, we want to address this issue more in detail in this introduction.

SW REUSE FOR SOC INTEGRATION

Due to the increased complexity of embedded software design, the design
cycle of embedded software is becoming the bottleneck to reduce time-to-
market. To shorten the design cycle, embedded software needs to be reused
over several SoC designs. However, the hardware dependency of embedded
software makes software reuse very difficult.

A general solution to resolve this software reuse problem is to have a
multi-layer architecture for embedded software. Figure 1 illustrates such an
architecture. In the figure, a SoC consists of sub-systems connected with each
other via a communication network. Within each sub-system, embedded
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software consists of several layers: application software, communication mid-
dleware (e.g. message passing interface [4]), operating system (OS), and
hardware abstraction layer (HAL)). In the architecture, each layer uses an
abstraction of the underlying ones. For instance, the OS layer is seen by upper
layers (communication middleware and application layers) as an abstraction
of the underlying architecture, in the form of OS API (application program-
ming interface), while hiding the details of OS and HAL implementation and
those of the hardware architecture.

Embedded software reuse can be done at each layer. For instance, we can
reuse an RTOS as a software component. We can also think about finer gran-
ularity of software component, e.g. task scheduler, interrupt service routine,
memory management routine, inter-process communication routine, etc. [5].

By reusing software components as well as hardware components, SoC
design becomes an integration of reused software and hardware components.
When SoC designers do SoC integration with a platform and a multi-layer
software architecture, the first question can be ‘what is the API that gives an
abstraction of my platform?’ We call the API that abstracts a platform
‘platform API’. Considering the multi-layer software architecture, the platform
API can be Communication API, OS API, or HAL API. When we limit the
platform only to the hardware architecture, the platform API can be an API
at transaction level model (TLM) [6]. We think that a general answer to this
question may not exist. The platform API may depend on designer’s plat-
forms. However, what is sure is that the platform API needs to be defined
(by designers, by standardization institutions like Virtual Socket Interface
Alliance, or by anyone) to enable platform-based SoC design by reusing
software components.

In SoC design with multi-layer software architecture, another important
problem is the validation and evaluation of reused software on the platform.
Main issues are related to software validation without the final platform and,
on the other hand, to assess the performance of the reused software on the
platform. Figure 2 shows this problem more in detail. As shown in the figure,
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software can be reused at one of several abstraction levels, Communicaton
API, OS API, HAL API, or ISA (instruction set architecture) level, each of
which corresponds to software layer. The platform can also be defined with
its API. In the figure, we assume a hardware platform which can be reused
at one of the abstraction levels, message, transaction, transfer layer, or RTL
[6]. When SoC designers integrate both reused software and hardware platform
at a certain abstraction level for each, the problem is how to validate and
evaluate such integration. As more software components and hardware plat-
forms are reused, this problem will become more important.

The problem is to model the interface between reused software and
hardware components called ‘hardware/software interface’ as shown in Figure
2. Current solutions to model the HW/SW interface will be bus functional
model, BCA (bus cycle accurate) shell, etc. However, they do not consider
the different abstraction levels of software. We think that there has been little
research work covering both the abstraction levels of software and hardware
in this problem.

GUIDE TO THIS BOOK

The book is organised into 10 parts corresponding to sessions presented at the
Embedded Systems Forum at DATE’03. Both software reuse for SoC and
application specific software optimisations are covered.

The topic of Software reuse for SoC integration is explained in three parts
“Embedded Operating System for SoC”, “Embedded Software Design and
Implementation”, “Operating System Abstraction and Targeting”. The key
issues addressed are:

The layered software architecture and its design in chapters 3 and 9.
The OS layer design in chapters 1, 2, 3, and 7.
The HAL layer in chapter 1.
The problem of modelling the HW/SW interface in chapters 5 and 8.
Automatic generation of software layers, in chapters 6 and 11.
SoC integration in chapters 10, 12 and 13.

Architecture-specific software optimization problems are mainly
addressed in five parts, “Software Optimization for Embedded Systems”,
“Embedded System Architecture”, “Transformations for Real-Time Software”,
“Energy Aware Software Techniques”, and “Low Power Software”. The key
issues addressed are:

Sub-system-specific techniques in chapters 18, 19, 26, 29, 30 and 31.
Communication-aware techniques in chapters 23, 24, 27 and 28.
Architecture independent solutions which perform code transformation
to enhance performance or to reduce design cost without considering
specific target architectures are presented in chapters 17, 20, 21 and 33.
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Energy-aware techniques in chapters 22, 23, 24, 34, 35, 36 and 37.
Reliable embedded software design techniques in chapters 4, 25 and 32.
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