
EMBEDDED SOFTWARE FOR SoC



Embedded Software
for SoC

Edited by

TIMA Laboratory, France

TIMA Laboratory, France

IMEC, Belgium

and

University of Kaiserlautern, Germany

Ahmed Amine Jerraya

Sungjoo Yoo

Diederik Verkest

Norbert Wehn

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW



eBook ISBN: 0-306-48709-8
Print ISBN: 1-4020-7528-6

©2004 Springer Science + Business Media, Inc.

Print ©2003 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Dordrecht



DEDICATION

This book is dedicated to all
designers working in

hardware hell.



TABLE OF CONTENTS

Dedication

Contents

Preface

Introduction

v

vii

xiii

xv

PART I:
EMBEDDED OPERATING SYSTEMS FOR SOC

Chapter 1
APPLICATION MAPPING TO A HARDWARE PLATFORM THROUGH

ATOMATED CODE GENERATION TARGETING A RTOS
Monica Besana and Michele Borgatti

Chapter 2
FORMAL METHODS FOR INTEGRATION OF AUTOMOTIVE SOFTWARE

Marek Jersak, Kai Richter, Razvan Racu, Jan Staschulat, Rolf
Ernst, Jörn-Christian Braam and Fabian Wolf

Chapter 3
LIGHTWEIGHT IMPLEMENTATION OF THE POSIX THREADS API FOR

AN ON-CHIP MIPS MULTIPROCESSOR WITH VCI INTERCONNECT

Frédéric Pétrot, Pascal Gomez and Denis Hommais

Chapter 4
DETECTING SOFT ERRORS BY A PURELY SOFTWARE APPROACH:

METHOD, TOOLS AND EXPERIMENTAL RESULTS

B. Nicolescu and R. Velazco

PART II:
OPERATING SYSTEM ABSTRACTION AND TARGETING

Chapter 5
RTOS MODELLING FOR SYSTEM LEVEL DESIGN

Andreas Gerstlauer, Haobo Yu and Daniel D. Gajski

Chapter 6
MODELING AND INTEGRATION OF PERIPHERAL DEVICES IN EMBEDDED

SYSTEMS

Shaojie Wang, Sharad Malik and Reinaldo A. Bergamaschi

11

25

39

53

55

69

1

3

vii



viii Table of Conents

Chapter 7
SYSTEMATIC EMBEDDED SOFTWARE GENERATION FROM SYSTEMIC

F. Herrera, H. Posadas, P. Sánchez and E. Villar

PART III:
EMBEDDED SOFTWARE DESIGN AND IMPLEMENTATION

Chapter 8
EXPLORING SW PERFORMANCE USING SOC TRANSACTION-LEVEL

MODELING

Imed Moussa, Thierry Grellier and Giang Nguyen

Chapter 9
A FLEXIBLE OBJECT-ORIENTED SOFTWARE ARCHITECTURE FOR SMART

WIRELESS COMMUNICATION DEVICES

Marco Götze

Chapter 10
SCHEDULING AND TIMING ANALYSIS OF HW/SW ON-CHIP

COMMUNICATION IN MP SOC DESIGN

Youngchul Cho, Ganghee Lee, Kiyoung Choi, Sungjoo Yoo and
Nacer-Eddine Zergainoh

Chapter 11
EVALUATION OF APPLYING SPECC TO THE INTEGRATED DESIGN

METHOD OF DEVICE DRIVER AND DEVICE

Shinya Honda and Hiroaki Takada

Chapter 12
INTERACTIVE RAY TRACING ON RECONFIGURABLE SIMD MORPHOSYS

H. Du, M. Sanchez-Elez, N. Tabrizi, N. Bagherzadeh,
M. L. Anido and M. Fernandez

Chapter 13
PORTING A NETWORK CRYPTOGRAPHIC SERVICE TO THE RMC2000

Stephen Jan, Paolo de Dios, and Stephen A. Edwards

PART IV:
EMBEDDED OPERATING SYSTEMS FOR SOC

Chapter 14
INTRODUCTION TO HARDWARE ABSTRACTION LAYERS FOR SOC

Sungjoo Yoo and Ahmed A. Jerraya

Chapter 15
HARDWARE/SOFTWARE PARTITIONING OF OPERATING SYSTEMS

Vincent J. Mooney III

83

95

97

111

125

137

151

165

177

179

187



Table of Conents ix

Chapter 16
EMBEDDED SW IN DIGITAL AM-FM CHIPSET

M. Sarlotte, B. Candaele, J. Quevremont and D. Merel

PART V:
SOFTWARE OPTIMISATION FOR EMBEDDED SYSTEMS

Chapter 17
CONTROL FLOW DRIVEN SPLITTING OF LOOP NESTS AT THE SOURCE

CODE LEVEL

Heiko Falk, Peter Marwedel and Francky Catthoor

Chapter 18
DATA SPACE ORIENTED SCHEDULING

M. Kandemir, G. Chen, W. Zhang and I. Kolcu

Chapter 19
COMPILER-DIRECTED ILP EXTRACTION FOR CLUSTERED VLIW/EPIC
MACHINES

Satish Pillai and Margarida F. Jacome

Chapter 20
STATE SPACE COMPRESSION IN HISTORY DRIVEN QUASI-STATIC

SCHEDULING

Antonio G. Lomeña, Marisa López-Vallejo, Yosinori Watanabe
and Alex Kondratyev

Chapter 21
SIMULATION TRACE VERIFICATION FOR QUANTITATIVE CONSTRAINTS

Xi Chen, Harry Hsieh, Felice Balarin and Yosinori Watanabe

PART VI:
ENERGY AWARE SOFTWARE TECHNIQUES

Chapter 22
EFFICIENT POWER/PERFORMANCE ANALYSIS OF EMBEDDED AND

GENERAL PURPOSE SOFTWARE APPLICATIONS

Venkata Syam P. Rapaka and Diana Marculescu

Chapter 23
DYNAMIC PARALLELIZATION OF ARRAY BASED ON-CHIP MULTI-

PROCESSOR APPLICATIONS

M. Kandemir W. Zhang and M. Karakoy

Chapter 24
SDRAM-ENERGY-AWARE MEMORY ALLOCATION FOR DYNAMIC

MULTI-MEDIA APPLICATIONS ON MULTI-PROCESSOR PLATFORMS

P. Marchal, J. I. Gomez, D. Bruni, L. Benini, L. Piñuel,
F. Catthoor and H. Corporaal

207

213

215

231

245

261

275

287

289

305

319



x Table of Conents

PART VII:
SAFE AUTOMOTIVE SOFTWARE DEVELOPMENT

Chapter 25
SAFE AUTOMOTIVE SOFTWARE DEVELOPMENT

Ken Tindell, Hermann Kopetz, Fabian Wolf and Rolf Ernst

PART VIII:
EMBEDDED SYSTEM ARCHITECTURE

Chapter 26
EXPLORING HIGH BANDWIDTH PIPELINED CACHE ARCHITECTURE FOR

SCALED TECHNOLOGY

Amit Agarwal, Kaushik Roy and T. N. Vijaykumar

Chapter 27
ENHANCING SPEEDUP IN NETWORK PROCESSING APPLICATIONS BY

EXPLOITING INSTRUCTION REUSE WITH FLOW AGGREGATION

G. Surendra, Subhasis Banerjee and S. K. Nandy

Chapter 28
ON-CHIP STOCHASTIC COMMUNICATION

and

Chapter 29
HARDWARE/SOFTWARE TECHNIQUES FOR IMPROVING CACHE

PERFORMANCE IN EMBEDDED SYSTEMS

Gokhan Memik, Mahmut T. Kandemir, Alok Choudhary and
Ismail Kadayif

Chapter 30
RAPID CONFIGURATION & INSTRUCTION SELECTION FOR AN ASIP:
A CASE STUDY

Newton Cheung, Jörg Henkel and Sri Parameswaran

PART IX
TRANSFORMATIONS FOR REAL-TIME SOFTWARE

Chapter 31
GENERALIZED DATA TRANSFORMATIONS

V. Delaluz, I. Kadayif, M. Kandemir and U. Sezer

Chapter 32
SOFTWARE STREAMING VIA BLOCK STREAMING

Pramote Kuacharoen, Vincent J. Mooney III and Vijay K.
Madisetti

331

333

343

345

359

373

387

403

419

421

435



Table of Conents xi

Chapter 33
ADAPTIVE CHECKPOINTING WITH DYNAMIC VOLTAGE SCALING IN

EMBEDDED REAL-TIME SYSTEMS

Ying Zhang and Krishnendu Chakrabarty

PART X:
LOW POWER SOFTWARE

Chapter 34
SOFTWARE ARCHITECTURAL TRANSFORMATIONS

Tat K. Tan, Anand Raghunathan and Niraj K. Jha

Chapter 35
DYNAMIC FUNCTIONAL UNIT ASSIGNMENT FOR LOW POWER

Steve Haga, Natsha Reeves, Rajeev Barua and Diana
Marculescu

Chapter 36
ENERGY-AWARE PARAMETER PASSING

M. Kandemir, I. Kolcu and W. Zhang

Chapter 37
LOW ENERGY ASSOCIATIVE DATA CACHES FOR EMBEDDED SYSTEMS

Dan Nicolaescu, Alex Veidenbaum and Alex Nicolau

Index

449

465

467

485

499

513

527



PREFACE

The evolution of electronic systems is pushing traditional silicon designers
into areas that require new domains of expertise. In addition to the design of
complex hardware, System-on-Chip (SoC) design requires software develop-
ment, operating systems and new system architectures. Future SoC designs
will resemble a miniature on-chip distributed computing system combining
many types of microprocessors, re-configurable fabrics, application-specific
hardware and memories, all communicating via an on-chip inter-connection
network. Designing good SoCs will require insight into these new types of
architectures, the embedded software, and the interaction between the
embedded software, the SoC architecture, and the applications for which the
SoC is designed.

This book collects contributions from the Embedded Software Forum of
the Design, Automation and Test in Europe Conference (DATE 03) that took
place in March 2003 in Munich, Germany. The success of the Embedded
Software Forum at DATE reflects the increasing importance of embedded
software in the design of a System-on-Chip.

Embedded Software for SoC covers all software related aspects of SoC
design

xiii

Embedded and application-domain specific operating systems, interplay
between application, operating system, and architecture.
System architecture for future SoC, application-specific architectures based
on embedded processors and requiring sophisticated hardware/software
interfaces.
Compilers and interplay between compilers and architectures.
Embedded software for applications in the domains of automotive, avionics,
multimedia, telecom, networking, . . .

This book is a must-read for SoC designers that want to broaden their
horizons to include the ever-growing embedded software content of their next
SoC design. In addition the book will provide embedded software designers
invaluable insights into the constraints imposed by the use of embedded
software in a SoC context.

Diederik Verkest
IMEC
Leuven, Belgium

Norbert Wehn
University of Kaiserslautern
Germany



INTRODUCTION

Embedded software is becoming more and more important in system-on-chip
(SoC) design. According to the ITRS 2001, “embedded software design has
emerged as the most critical challenge to SoC” and “Software now routinely
accounts for 80% of embedded systems development cost” [1]. This will
continue in the future. Thus, the current design productivity gap between chip
fabrication and design capacity will widen even more due to the increasing
‘embedded SoC SW implementation gap’. To overcome the gap, SoC
designers should know and master embedded software design for SoC. The
purpose of this book is to enable current SoC designers and researchers to
understand up-to-date issues and design techniques on embedded software for
SoC.

One of characteristics of embedded software is that it is heavily depen-
dent on the underlying hardware. The reason of the dependency is that
embedded software needs to be designed in an application-specific way. To
reduce the system design cost, e.g. code size, energy consumption, etc.,
embedded software needs to be optimized exploiting the characteristics of
underlying hardware.

Embedded software design is not a novel topic. Then, why do people
consider that embedded software design is more and more important for SoC
these days? A simple, maybe not yet complete, answer is that we are more
and more dealing with platform-based design for SoC [2].

Platform-based SoC design means to design SoC with relatively fixed archi-
tectures. This is important to reduce design cycle and cost. In terms of reduc-
tion in design cycle, platform-based SoC design aims to reuse existing and
proven SoC architectures to design new SoCs. By doing that, SoC designers
can save architecture construction time that includes the design cycle of IP
(intellectual property core) selection, IP validation, IP assembly, and archi-
tecture validation/evaluation.

In platform-based SoC design, architecture design is to configure, statically
or dynamically in system runtime, the existing platforms according to new
SoC designs [3]. Since the architecture design space is relatively limited and
fixed, most of the design steps are software design. For instance, when SoC
designers need to implement a functionality that is not implemented by
hardware blocks in the platform, they need to implement it in software. As
the SoC functionality becomes more complex, software will implement more
and more functionality compared to the relatively fixed hardware. Thus, many
design optimization tasks will become embedded software optimization ones.

xv



xvi Introduction

To understand embedded software design for SoC, we need to know current
issues in embedded software design. We want to classify the issues into two
parts: software reuse for SoC integration and architecture-specific software
optimization. Architecture-specific software optimization has been studied for
decades. On the other side, software reuse for SoC integration is an impor-
tant new issue. To help readers to understand better the specific contribution
of this book, we want to address this issue more in detail in this introduction.

SW REUSE FOR SOC INTEGRATION

Due to the increased complexity of embedded software design, the design
cycle of embedded software is becoming the bottleneck to reduce time-to-
market. To shorten the design cycle, embedded software needs to be reused
over several SoC designs. However, the hardware dependency of embedded
software makes software reuse very difficult.

A general solution to resolve this software reuse problem is to have a
multi-layer architecture for embedded software. Figure 1 illustrates such an
architecture. In the figure, a SoC consists of sub-systems connected with each
other via a communication network. Within each sub-system, embedded



Introduction xvii

software consists of several layers: application software, communication mid-
dleware (e.g. message passing interface [4]), operating system (OS), and
hardware abstraction layer (HAL)). In the architecture, each layer uses an
abstraction of the underlying ones. For instance, the OS layer is seen by upper
layers (communication middleware and application layers) as an abstraction
of the underlying architecture, in the form of OS API (application program-
ming interface), while hiding the details of OS and HAL implementation and
those of the hardware architecture.

Embedded software reuse can be done at each layer. For instance, we can
reuse an RTOS as a software component. We can also think about finer gran-
ularity of software component, e.g. task scheduler, interrupt service routine,
memory management routine, inter-process communication routine, etc. [5].

By reusing software components as well as hardware components, SoC
design becomes an integration of reused software and hardware components.
When SoC designers do SoC integration with a platform and a multi-layer
software architecture, the first question can be ‘what is the API that gives an
abstraction of my platform?’ We call the API that abstracts a platform
‘platform API’. Considering the multi-layer software architecture, the platform
API can be Communication API, OS API, or HAL API. When we limit the
platform only to the hardware architecture, the platform API can be an API
at transaction level model (TLM) [6]. We think that a general answer to this
question may not exist. The platform API may depend on designer’s plat-
forms. However, what is sure is that the platform API needs to be defined
(by designers, by standardization institutions like Virtual Socket Interface
Alliance, or by anyone) to enable platform-based SoC design by reusing
software components.

In SoC design with multi-layer software architecture, another important
problem is the validation and evaluation of reused software on the platform.
Main issues are related to software validation without the final platform and,
on the other hand, to assess the performance of the reused software on the
platform. Figure 2 shows this problem more in detail. As shown in the figure,



xviii Introduction

software can be reused at one of several abstraction levels, Communicaton
API, OS API, HAL API, or ISA (instruction set architecture) level, each of
which corresponds to software layer. The platform can also be defined with
its API. In the figure, we assume a hardware platform which can be reused
at one of the abstraction levels, message, transaction, transfer layer, or RTL
[6]. When SoC designers integrate both reused software and hardware platform
at a certain abstraction level for each, the problem is how to validate and
evaluate such integration. As more software components and hardware plat-
forms are reused, this problem will become more important.

The problem is to model the interface between reused software and
hardware components called ‘hardware/software interface’ as shown in Figure
2. Current solutions to model the HW/SW interface will be bus functional
model, BCA (bus cycle accurate) shell, etc. However, they do not consider
the different abstraction levels of software. We think that there has been little
research work covering both the abstraction levels of software and hardware
in this problem.

GUIDE TO THIS BOOK

The book is organised into 10 parts corresponding to sessions presented at the
Embedded Systems Forum at DATE’03. Both software reuse for SoC and
application specific software optimisations are covered.

The topic of Software reuse for SoC integration is explained in three parts
“Embedded Operating System for SoC”, “Embedded Software Design and
Implementation”, “Operating System Abstraction and Targeting”. The key
issues addressed are:

The layered software architecture and its design in chapters 3 and 9.
The OS layer design in chapters 1, 2, 3, and 7.
The HAL layer in chapter 1.
The problem of modelling the HW/SW interface in chapters 5 and 8.
Automatic generation of software layers, in chapters 6 and 11.
SoC integration in chapters 10, 12 and 13.

Architecture-specific software optimization problems are mainly
addressed in five parts, “Software Optimization for Embedded Systems”,
“Embedded System Architecture”, “Transformations for Real-Time Software”,
“Energy Aware Software Techniques”, and “Low Power Software”. The key
issues addressed are:

Sub-system-specific techniques in chapters 18, 19, 26, 29, 30 and 31.
Communication-aware techniques in chapters 23, 24, 27 and 28.
Architecture independent solutions which perform code transformation
to enhance performance or to reduce design cost without considering
specific target architectures are presented in chapters 17, 20, 21 and 33.



Introduction xix

Energy-aware techniques in chapters 22, 23, 24, 34, 35, 36 and 37.
Reliable embedded software design techniques in chapters 4, 25 and 32.

REFERENCES

International Technology Roadmap for Semiconductors, available at http://public.itrs.net/
Alberto Sangiovanni-Vincentelli and Grant Martin. “Platform-Based Design and Software
Design Methodology for Embedded Systems.” IEEE Design & Test of Computers,
November/December 2001.
Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly, and Lee Todd.
Surviving the SOC Revolution, A Guide to Platform-Based Design. Kluwer Academic
Publishers, 1999.
The Message Passing Interface Standard, available at http://www-unix.mcs.anl.gov/mpi/
Anthony Massa. Embedded Software Development with eCos. Prentice Hall, November 2002.
White Paper for SoC Communication Modeling, available at http://www.synopsys.com/
products/cocentric_studio/communication_wp10.pdf

1.
2.

3.

4.
5.
6.

Sungjoo Yoo
TIMA
Grenoble, France

Ahmed Amine Jerraya
TIMA
Grenoble, France


