
R2O, an Extensible and Semantically Based Database-
to-ontology Mapping Language

Jesús Barrasa, Óscar Corcho, Asunción Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial,
Facultad de Informática, Universidad Politécnica de Madrid, Spain
jbarrasa@eui.upm.es, {ocorcho,asun}@fi.upm.es

Abstract. We present R2O, an extensible and declarative language to describe
mappings between relational DB schemas and ontologies implemented in
RDF(S) or OWL. R2O provides an extensible set of primitives with well-
defined semantics. This language has been conceived expressive enough to
cope with complex mapping cases arisen from situations of low similarity
between the ontology and the DB models.

1 Introduction and Motivations

There is a large quantity of data on Web pages generated from relational DBs. This
information is often referred to as the Deep Web [2] as opposed to the surface Web
comprising all static Web pages. In this paper we face the problem of “upgrading”
this large amount of existing content into Semantic Web content.

Let us set the following scenario: we have a legacy DB and we want to generate
Semantic Web content from it. Until now, three approaches have been reported. The
first one, described in [11,12] is based in the semi-automatic generation of an
ontology from our DB’s relational model. Then mappings are defined between the
DB and the generated ontology. Because the level of similarity between both is very
high, mappings will be quite direct and complex mapping situations do not usually
appear. This approach does not allow the population of an existing ontology, which is
a big limitation. A second approach [6], proposes the manual annotation of dynamic
Web pages which publish DB content, with information about the underlying DB and
how each content item in a page is extracted from the DB. This approach does not
deal neither with complex mapping situations and assumes we want to make our
database schema public, which is not always the case. The third approach is the one
proposed in this paper. It tries to map an existing DB to an appropriate existing
ontology implemented in RDF(S) or OWL. The term appropriate may mean,
depending on the situation: The one whose domain has a higher coverage of the
domain modeled in the DB, the one whose domain best covers the specific part of the
DB to be migrated to the Semantic Web or the one that maximizes the extraction of
information according to a particular metric, among others.

The literature references very few languages for expressing mappings between
ontologies and DBs. Recent approaches like D2R MAP [4] and extended D2R [1]

have tackled this problem but they lack of expressiveness for writing complex
mapping transformations and are not fully declarative. The language presented in this
paper is intended to extend and enhance the mapping description capabilities of these
two ones.

Complementary approaches to this work can be also found in the Intelligent
Information Integration area, in which data from existing heterogeneous DBs are
extracted according to ontologies and then combined. The main differences with
respect to our approach is that in these systems the mapping between the ontologies
and the DBs from which the ontology instances are extracted are not created
declaratively but with ad-hoc software implementations. Examples of such systems
are Observer [8] and Picsel [5], among others.

The most important aspect of our approach is that we will use the DB and the
ontology “as they are” and we will just define a declarative specification of the
mappings between their modeling components. That is the reason why the R2O
(Relational to Ontology) language which is the base of our approach, has been
conceived expressive enough to cope with complex mapping situations arisen from
low similarity between the ontology and the DB model (one of them is richer, more
generic or specific, better structured, etc., than the other).

This paper is organized as follows: Section 2 describes the main features of the
R2O language. Section 3 enumerates a set of significant mapping situations covered
by the R2O language. Section 4 provides an informal description of R2O, together
with representative examples of mappings expressed in this language. Section 5
draws some conclusions and gives a glimpse of future trends. The appendix provides
the R2O language grammar in BNF notation.

2 Main Features of R2O

In this section we present the rationale we followed for defining the R2O language.
We present what is R2O, what is not R2O and how to use it.

2.1 The Problem to Be Solved

Our objective is to facilitate the upgrade and extraction of DB content into instances
of an RDF(S) or OWL ontology under the assumption that DB and ontology models
are possibly different and both pre-exist and are not created specifically for this
purpose. The approach taken consists of creating a mapping description document
using R2O with all the correspondences between the components of the DB’s SQL
schema and those of the ontology. Such mappings are processed automatically by the
ODEMapster mapping processor to populate the ontology. The grey area in figure 1
shows the results of the mapping definition and execution.

Fig. 1. R2O mapping architecture

2.2 What Is R2O and What Is Not

R2O is an extensible, fully declarative language to describe mappings between
relational DB schemas and ontologies. It is intended to be expressive enough to
describe the semantics of these mappings. R2O is a RDBMS independent high level
language that works with any DB implementing the SQL standard. Its main features
are:
1. A R2O mapping defines how to create instances in the ontology in terms of the

data stored in the DB. A R2O mapping definition can be used to automatically
populate an ontology with instances extracted from the DB content. So the
intended flow of data is from the DB to the ontology. This can be done as a batch
process of massive instance creation or on demand via query translation.

2. R2O can be used to express mappings generated by existing automatic mapping
discovery tools like Cupid [7,10].

3. A R2O mapping definition can be used for self verification. Due to its fully
declarative nature, inconsistencies and ambiguities in the definition of a mapping
can be automatically detected.

4. A R2O mapping definition can also be used to verify the integrity of parts of a DB
according to an ontology, applying the ontology’s axioms to the DB’s elements.

5. A R2O mapping definition can be used to automatically characterize data sources
to allow dynamic query distribution in intelligent information integration
approaches.
In general, mappings defined in R2O language are to be generated and exploited by

tools, middleware, APIs, etc., that can carry out tasks like the preceding ones. In this
paper we will focus only on functionality number 1.

What follows is instead out of the scope of the R2O language.
1. R2O does not aim at defining degrees of similarity between DB elements and

ontology components. It only states under which conditions and after what
transformations the DB elements are equivalent to the ontology components.

2. R2O does not define bi-directional transformation functions. The DB elements are
transformed to ontology components but not vice versa.

3. Mapping definitions in R2O are not intended to be short nor compact, nor are they
intended to be read by humans.

4. Mapping documents in R2O are not intended to be generated manually. Graphical
user interfaces are to be provided for both browsing and editing R2O mapping
documents.

3 The Mapping Cases

This section presents different mapping situations arising from Database-to-ontology
mapping scenarios which are intended to be covered by the R2O language.

A Database-to-ontology mapping can be defined as a set of correspondences (aka
mapping elements) that relate the vocabulary of a relational DB schema with that of
an ontology. That is, we want to relate a DB’s tables, columns, primary and foreign
keys, etc., with an ontology’s concepts, relations, attributes, etc.

According to the level of overlap in the domains covered by the DB and the
ontology, we distinguish the three cases presented graphically in figure 2.

Fig. 2. Levels of overlap between the domains covered by the DB and the ontology

Because domains do not always coincide and because the design modeling criteria
used for building the DB are different from those used for ontology creation, the
correspondences between their corresponding elements will be sometimes
straightforward, sometimes tricky. If we have a look at how components of the DB
schema map ontology concepts, we can distinguish, as shown graphically in figure 3,
the following cases:
− Case 1. One DB table maps one concept in the ontology. In this case the columns

of the table map the attributes and/or relations of the concept, and with each DB
table record we generate an instance of the concept. With the data of the record we
fill in the attribute values on the instance.

− Case 2. One DB table is used to instantiate more than one concept in the ontology,
but only one instance per concept. In this case each column of the table maps the
attributes and/or relations of the same or different concepts, and with each DB
table record we generate an instance of each concept. With the data of the record
we fill in the attribute values on each instance.

− Case 3. One DB table is used to instantiate more than one concept in the ontology,
but multiple instances of the ontology can be generated. In this case each column
of the table maps the attributes and/or relations of the same or different concepts,
and with each DB table record we generate one or more instances of each concept.
With the data of the record we fill in the attribute values of the instances.

Case 1

Case 2

Case 3

Fig. 3. Mapping cases classification for concepts

It is important to mention that sometimes all the columns in a table map properties
of the concepts but sometimes only a few of them are needed. The same happens for
records. In both cases, before generating ontology instances, some standard relational
algebraic operations (projection, selection, etc.) should be executed. We distinguish
the cases presented in figure 4.

− Direct Mapping. A DB table directly maps a concept in the ontology. Every record
of the table will correspond to an instance of an ontology concept.

− Join/Union. A set of DB tables map a concept in the ontology when they are
joined. Every join record of the joined tables correspond to an instance of an
ontology concept.

− Projection. It appears when a subset of the columns of a DB table are needed to
map a concept in the ontology.

− Selection. A subset of the rows of a DB table map a concept in the ontology.

− Any combination of them are also possible.

Direct Mapping

Join/Union

Projection

Selection

Fig. 4. Mapping cases classification for concepts

The values of the attributes and relations can be filled in directly from the values of
the fields in a DB record or after the application of a transformation function. The
function can affect more than one data field. Figure 5 presents these ideas.

Fig. 5. Mapping cases classification for attributes and relations

Although SQL relational algebra operations covers many cases, there are situations
in which some additional transformations might be needed. Examples are more
complex operations like natural language processing techniques over text data fields,
regular expression matching for dates, URL or email extractions, etc. The R2O
language provides means for specifying declaratively such selections and
transformations.

4 The R2O Language

This section gives an informal description of the R2O language. To improve
readability we use a compact pseudo XML syntax where opening tags are indicated
by bold text, grouping of sub-content is indicated by indentation and closing tags are
omitted. A mapping description in R2O is a structure made up of several components,
some of which may themselves be structures, some are optional, and some may be
repeated. We will write component? if it is an optional component, component+ if it

is a component that may be repeated one or more times (i.e., that must occur at least
once) and component* if it is a component that may be repeated zero or more times
(i.e., that may be completely omitted). We provide as well examples of the language
use.

4.1 A Mapping Description Specified in R2O

A mapping description in R2O consist of the following components: A set of instance
URIs to be added to the instance set extracted from the DB (import?), a description of
the DB’s schema (dbschema-description*), one or more ontology URIs for which
instances will be generated when executing the R2O mapping (ontology+), and the
list of mapping definitions (conceptmapping-definition+) between the components
of the DB schema and the ontology.

Table 1. Example of use of a R2O mapping description

Example of mapping description
import http://www.instancesets.net/instance1
import http://www.instancesets.net/instance2
dbschema-desc <dbschema-description>
dbschema-desc <dbschema-description>
ontology http://www.ontologies.net/onto1#
ontology http://www.ontologies.net/onto2#

4.2 Description of DB Schemas

A DB schema description (dbschema-desc) provides a copy of the main structural
elements in the DB’s SQL schema. It can be extracted automatically from the source
DB and the only elements that need to be added manually are the implicit references.
The DB schema definition is a “sort of internal” representation of a DB and will be
needed to restrict the domain and range of the components of a mapping definition as
will be seen later. Some technical information about the DB (url, port, user/pwd, etc.)
necessary for implementation is omitted for the sake of clarity. Table 2 presents an
example of use of a DB schema description.

A dbschema-desc consists the name of the DB (name), a NL description of the
schema (documentation?), and one or more table descriptions (hasTable+) where
each DB table is described by means of (table-desc).

A table description (table-desc) provides a description of a DB table. A table-desc
consists of a name of the table (name), the type of the table (tableType) that can be
either system table, user table or view, its NL description (documentation?), and a
set of column descriptions (column-description+).

A column description (column-description) can be either a key column (keycol-
desc), a foreign key column (forkeycol-desc) or a non key column (nonkeycol-desc).
Any of them consist of a name for the column (name), a type for the data it contains

(ColumnType), its natural language (NL) description (documentation?), and the
key column referred (refers-to?) if it is a foreign key forkeycol-desc.

Sometimes implicit references exist between columns that are not explicitly
declared as such in the DB schema, in this case we will also have the referred column
(implicitlyrefers-to?). If a DB is correctly defined it should not be necessary. We
provide this as a solution for badly designed DB schemas.

Table 2. Example of use of a DB schema description

Example of a DB schema description
dbschema-desc
 name FISUB
 has-table
 name FundingOpps

 documentation “Stores funding info”
 keycol-desc
 name FundingOpps.FundId
 columnType integer
 documentation “Identifies a f.o.”
 nonkeycol-desc
 name FundingOpps.FundTitle
 columnType string
 forkeycol-desc
 name FundingOpps.FundSector
 columnType integer
 refers-to Sector.Id
 documentation “Points at Sector”

 has-table
 name Sector

 documentation “Productive sectors.”
 keycol-desc
 name Sector. Id

 columnType integer

4.3 Definition of Concept Mappings

This section presents how to define using R2O the concepts of the ontology in terms
of the DB elements. A concept mapping definition (conceptmap-def) is equivalent to
a basic mapping expression as defined in [9]. A concept mapping definition
associates the name of a class in the ontology with a description of how to obtain it
from the DB. A conceptmap-def, as presented in table 3, consists of the following
components.

Table 3. Example of use of a concept mapping definition. The concept mapping is identified
by a single DB column (transformation and cond-expr are described later)

Example of concept mapping definition
conceptmap-def

 name Customer
 identified-by Users.userID
 uri-as

<transformation>
 applies-if

 <cond-expr>
 documentation Select all rows from table Users with ‘true’ in column isPreferential.

− The identifier of a concept (URI of the class) in the target ontology (name)
− NL description of the rationale behind the concept mapping (documentation?).
− One or more columns that identify (identified-by+) the concept uniquely in the

DB. Each column is described with the column-desc element previously defined.
− A pattern expressed in terms of transformations (see transformation elements in

section 4.5) describing how URIs (uri-as+) for the new instances extracted from
the DB will be generated. URIs will normally be obtained from the key columns
after application of some transformations. The absence of this element will
generate anonymous instances.

− A concept in the ontology is described (described-by*) by a set of attributes and
relations. As we will see in section 4.6 property mapping definition
(propertymap-def) associates the name of an attribute and/or relation in the
ontology with a description of how to obtain them from the DB columns along
with the transformations (transformation) needed. The URI extraction described
in the preceding point is actually a particular case of this.

− A mapping will only be applied under certain conditions. The element applies-if?
contains a conditional expression (see cond-expr in section 4.4) describing these
conditions. In other words, it specifies the subset of values from the DB that will
be transformed to populate this concept.

− Sometimes more than one table will be implied in the definition of a concept
mapping, and join operations will be needed. The optional (joins-via?) element
describes how these tables are joined in case they use “implicit joins”. If this
information can be obtained from the DB schema description (only foreign keys
are used for joins) the joins-via? element will be omitted. The rationale behind this
element is that the mapping designer might want to specify a particular join, not
valid in all cases but useful in the context of a particular concept mapping (sort of
a “specific local join”). The information in the joins-via? element can overwrite
that in the DB schema definition or be added to it. It will contain a join-list which
consists of a group of one or more join elements, each of them describing a pair of
columns (hasJoin+) and a flag (overwrites) indicating if the join list is to be used
together with the ones defined in the DB schema description or if we want them to
be overwritten. Columns are not necessarily key nor foreign key columns.

4.4 Describing Conditions and Conditional Expressions

As described in section 3 not all the records in a table generate instances of the
concepts in the ontology so we will need to describe under which conditions the
mapping takes place. A conditional expression (cond-expr) can be either a single
condition (condition), or a boolean combination of multiple ones using the operators
AND, OR and NOT as presented in table 4.

Table 4. Example of use of a condition expression. The condition is true if the value of column
period is “Contemporary” or if the date is after “01/01/1999”

R2O condition expression example
OR
 equals
 arg-restriction
 on-param value1
 has-column Paintings.period
 arg-restriction
 on-param value2
 has-value string “Contemporary”
 date-after
 arg-restriction
 on-param date1
 has-column Paintings.date
 arg-restriction
 on-param date2
 has-value date “01/01/1999”

A condition (condition) describes an invocation to a single conditional operation

defined with the primitives (primitive-condition) provided by R2O and assigns
argument values (arg-restriction*) to each of the parameters required by the
particular conditional operation. The core list of R2O primitive conditional functions
is: numerical and string equality (equals, equals_str), numerically and
alphanumerically lower than (lo_than, lo_than_str), numerically and
alphanumerically higher than (hi_than, hi_than_str), the keyword is contained in the
string (in_keyword), numerically and alphanumerically into a range (between,
between_str), a date precedes, succeeds or is equal to another one (date_before,
date_after, date_equal). For each condition R2O defines: its parameters and their
domain types, indicating whether they are needed or optional, as well as descriptions
of their use. The complete list of primitive conditional functions is available at
http://www.esperonto.net/r2o. An excerpt of this information appears in table 5:

Table 5. Excerpt of the R2O condition set.

Condition Params Domain Needed Condition description
value1 float U decimal U double Yes Lo_than
value2 float U decimal U double default=0

Compares two values
numerically. Returns
value1<value2

As we mentioned before, arg-restriction* is used for assigning values and their
types to arguments. Values can be taken typically from a DB table column, issued by
a transformation or in the simplest case, be constant values. So, an arg-restriction
element is defined by means of a parameter name (on-param) and the type of
argument we want to assign to the parameter. R2O distinguishes the following types:
constants (has-value?), a DB table column (has-column?), and a transformation
(has-transform?). So has-value? contains a constant value for the parameter, whose
type are XML Schema Datatypes; has-column? contains a column (previously
described as column-desc) indicating that values for this formal parameter will be
taken dynamically for each row from this DB table column; has-transform? contains
a transformation (see section 4.5) to allow composition of transformations and the
use of transformations’ results as an input to conditions.

4.5 Describing Transformations

As mentioned in section 3, the mapping between DB field values and ontology
properties and relations is not always direct. We will need to specify the necessary
transformations to be applied to them. A transformation (transformation) describes
an invocation to a single primitive transformation defined with the primitive
(primitive-transformation) provided by R2O and assigns argument values (arg-
restriction*) to each of the parameters required by the particular transformation.
Table 6 presents an example of use of a transformation. Note that the arg-
restriction* element is already defined in previous section.

Table 6. Example of use of a transformation. The transformation concatenates a constant string
with the content of two columns(name and IATA)

R2O transformation example
concat
 arg-restriction
 on-param string1
 has-value string “Coordinates correspond to airport “
 arg-restriction
 on-param string2
 has-transform
 concat
 arg-restriction
 on-param string1
 has-column Airports.name
 arg-restriction
 on-param string2
 has-column Airports.IATA

The core list of R2O primitive transformation (primitive-transformation) is: get

character at position n (get_nth_char), get the string delimited by a particular
character (get_delimited), get the substring between an upper and a lower limit
(get_substring), concatenate strings (concat), add, subtract, multiply or divide

numbers (add,subtract,multiply,divide), a constant value (constant). In table 7 we
define an R2O transformation by giving the type returned, a list of parameters and
their domain types indicating whether they are needed or optional, as well as a
description of their use. A complete list can be found at http://www.esperonto.net/r2o.

Arbitrarily complex expressions can be formed through the composition of
multiple transformations. This is done by using them as arguments inside other
transformations. For instance the expression concat(get_delimited(‘#’,t1.c1),
concat(‘ -> ’, get_nth_word(‘3’,t2.c3))) gets for each row of table t1 the substring
delimited by ‘#’ and ‘#’ in column c1, then gets the third word in column c3 of the
same table and then concatenates both results mediating the string ‘ -> ’.

Table 7. Excerpt of the R2O transformation set.

Transf. Return Params Domain Needed Condition description
string str string Yes
 lo_limit string

get_substring

 hi_limit string
At least
one

Extracts the substring
between upper & lower
limit.

4.6 Attribute and Relation Mappings

A property mapping description (understanding properties as attributes and relations)
associates an attribute or a relation belonging to a concept in the target ontology with
an expression describing how to obtain it from the DB. Depending on the type of
property we deal with and how do we get its values from the DB, these kinds of
mappings can either be described with attributemap-def, relfromatt-def or
relationmap-def. The first one describes attribute mappings and the rest relation
mappings.

Fig. 6. Mapping cases classification for concepts

We will also add a new level of complexity by adding conditions at the property
level. With this, we allow multivaluation for properties as we enhance the language
expressivity. This idea is shown in figure 6 but will be explained in detail later.

An attributemap-def contains an identifier (name) of the property in the target
ontology (its URI). To generate its value, we will use zero or more DB columns
(previously described with a column-desc element) so we declare them with a use-
dbcol? element. After that, a set of “case type” elements are listed (case
[condition1:action1; condition2:action2…] end-case;). Depending on what condition
applies, different transformations are performed. This idea is represented by a
Selector? element which will contain zero or more applies-if - aftertransform pairs
(condition-action).

If the applies-if element is missing, it will be considered as true and the
transformation will be performed. If the aftertransform element is missing a direct
mapping will be applied. This situation is explained in detail along with some other
notation particularities of R2O in http://www.esperonto.net/r2o. In the applies-if?, a
cond-expr element describes under which conditions the attribute mapping is
applicable, or in other words, which is the subset of values from the DB schema that
will be mapped according to the concept matching being defined. Note that the
columns appearing in this cond-expr can belong to different tables from those stated
in the identified-by element of the concept mapping definition this property
definition belongs to. In this case two situations may arise:
1. If no extra information is provided and the tables containing the columns in the

condition are reachable without ambiguities (there is a single foreign key from one
table to the other) from those the ones specified in the identified-by of the concept
mapping description, the join is made automatically.

2. If a table restriction is provided, it will be considered as local to a property
mapping definition as opposed to these defined inside a concept mapping
definition which are global ones.
The aftertransform+ element contains the (transformation) on the DB columns

that participate in obtaining the property being defined. The structure of a
transformation is that described in the previous section.

The cases in which a data field after a transformation generates a resource would
lead to the creation of a relation rather than an attribute. These cases are represented
with the relfromatt-def element, the structure of which is identical to that of the
attributemap-def element with the extra element newObject-type? Containing the
type of the new resource generated with the transformation (if any).

A relation mapping definition (dbrelationmap-def) describes how to obtain the
target resource of a relation from its corresponding implementation in the DB.
Relations in the DB are specified through the use of foreign keys and should be
described properly in the dbschema-desc part. A dbrelationmap-def then consists of
an identifier (name) of the relation in the target ontology (its URI) and the name (to-
concept) of the concept mapping element (previously defined as such, and
consequently described in terms of some DB tables) to which this property will be a
link. This information should be enough to find out the link between tables implied in
both the definitions of the source and target concepts of the relation. Additional

information on the semantics of attribute and relation mappings and how are they
interpreted in R2O is available at http://www.esperonto.net/r2o.

The following examples show a property mapping of each type. The first one uses
the dbrelationmap-def to define a relation mapping that links a funding opportunity
to its productive sector. A link between table FundingOpps and Sectors exists
because a foreign key has been defined on column FundingOpps.sector pointing at
sectorId primary key in column Sectors. The second one uses the attributemap-def
element to rate a paper as “Interesting” if it is about ontologies and DBs. This
verification is based on keyword search on the values of rows of table Papers on field
keywords. The last one uses the relfromatt-def to create instances of relation
officiallyAnnounced. This relation links a funding opportunity to the official
publication it is published in. An official publication instance is created for each
property instance and its URI is obtained from the legalRef column in table
FundingOpportunity after a simple transformation.

Table 8. Example of use of a property (attribute and relation) mappings

Use of dbrelationmap-def
dbrelationmap-def
 name hasSector
 toconcept Sector

Example of use of attributemap-def Example of use of relfromatt-def
attributemap-def
 name paperRating
 selector
 applies-if
 AND
 in_keyword
 arg-restriction
 on-param string
 has-column Papers.keywords
 arg-restriction
 on-param keyword
 has-value string “ontologies“
 in_keyword
 arg-restriction
 on-param string
 has-column Papers.keywords
 arg-restriction
 on-param keyword
 has-value string “DB“
 aftertransform
 constant
 arg-restriction
 on-param const_val
 has-value string “Interesting”

relfromatt-def
 name officiallyAnnounced
 newobject-type OfficialPublication
 selector
 aftertransform
 concat
 arg-restriction
 on-param string1
 has-value string
 “http://officialPubs.com/num-“
 arg-restriction
 on-param string2
 has-transform
 get-delimited
 arg-restriction
 on-param string
 has-column
 FundingOpportunity.legalRef
 arg-restriction
 on-param start-delim
 has-value string “[“
 arg-restriction
 on-param end-delim
 has-value string “]“

5 Conclusions and Future Work

In this paper we presented R2O, a Database-to-ontology mapping language, whose
strength lies on its expressivity, its declarative nature and on its DBMS and Ontology
Language independence. With R2O we facilitate the “upgrade” of DB content into
instances of an ontology under the assumption that DB and ontology models are
different and both are existing ones and have not been created specifically for this
purpose. The ODEMapster processor presented in [1] has been enhanced to process
R2O documents, and can carry out some of the operations presented in section 2.2.

R2O has been used in the context of the ESPERONTO project, in particular for the
Fund Finder application (http://www.esperonto.net/fundfinder) which is about
migrating relational DB content about funding opportunities to the Semantic Web.
The DB containing the data was migrated and the ontology was populated with
instances extracted from the DB using R2O and ODEMapster.

Regarding the future trends of our work, intensive testing with other DBs is being
carried out and will continue as well as the development of tools, middleware, APIs,
etc, to generate and exploit R2O mapping descriptions. A graphical user interface for
both visualizing and writing R2O mapping documents is currently under
development.

References

1. Barrasa J, Corcho O, Gómez-Pérez A. FundFinder – A case study of Database-to-ontology
mapping. Semantic Integration Workshop, ISWC 2003. Sanibel Island, Florida. Sept 2003

2. Bergman MK. The Deep Web: Surfacing hidden value. White paper. Sept 2001
3. Beckett D, Grant J (2003) SWAD-Europe Deliverable 10.2: Mapping Semantic Web Data

with RDBMSes. Technical report
4. Bizer C. D2R MAP – A DB to RDF Mapping Language. 12th International World Wide

Web Conference, Budapest. May 2003
5. Goasdoué F, Lattes V, Rousset M (2000) The Use of CARIN Language and Algorithms for

Information Integration: The PICSEL Project. International Journal of Cooperative
Information Systems (IJCIS) 9(4):383–401

6. Handschuh S, Staab S, Volz R. On deep annotation. 12th International World Wide Web
Conference, Budapest. May 2003

7. Madhavan J, Bernstein P, Rahm E. Generic Schema Matching with Cupid. Proceedings of
the 27th VLDB Conference. Roma, Italy, 2001

8. Mena E, Illarramendi A, Kashyap V, Sheth AP (2000) OBSERVER: An Approach for Query
Processing in Global Information Systems based on Interoperation across Pre-existing
Ontologies. International Journal on Distributed and Parallel DBs 8(2):223–271

9. Mena E, Illaramendi A. Ontology-based query processing for global information systems.
Kluwer Academic Publishers. Pags:86-88. 2001

10. Rahm E, Bernstein P. A survey of approaches to automatic schema matching. The VLDB
Journal, Volume 10 , Issue 4 (December 2001) pages 334 – 350

11. Stojanovic L., Stojanovic N., Volz R. Migrating data-intensive Web Sites into the Semantic
Web Symposium on Applied Computing. Madrid, Spain, March 2002

12. Stojanovic N., Stojanovic L., Volz R. A Reverse Engineering Approach for Migrating Data-
intensive Web Sites to the Semantic Web. Intelligent Information Processing. Montreal 2002

Appendix

In this appendix we provide the BNF notation of the R2O language grammar, grouped
according to the different types of transformations that can be performed with the
language.

BNF for R 2O mapping descriptions
(1) r2o::= import? dschema-description+ conceptmapping-definition+ ontology+
(2) import::= import literal
(3) ontology::= ontology literal
(4) literal::= '<string literal>'

BNF for R 2O DB schema descriptions
(5) dschema-description::= dbschema-desc name documentation?
 (has-table table-desc)+
(6) name::= name literal
(7) documentation::= documentation literal
(8) table-desc::= name tabletype? documentation? (column-description)+
(9) tabletype::= tableType literal
(10) column-description::= (keycol-desc | forkeycol-desc | nonkeycol-desc) name
 columnType documentation? col-reference?
 implicit-col-reference?
(11) columnType::= columnType datatype
(12) col-reference::= refers-to literal
(13) implicit-col-reference ::= implicitlyrefers-to literal
(14) datatype::= string | boolean | decimal | float | double | date | integer ...
 (XML Schema Datatypes)

BNF for concept mapping definitions in R 2O
(15) conceptmapping-definition::= conceptmap-def name documentation?
 identified-by+ (uri-as transformation)?
 (described-by propertymap-def)*
 (applies-if cond-expr)? (joins-via join-list)?
(16) identified-by::= identified-by literal
(17) join-list::= documentation? (hasjoin joindesc)+ (overwrites literal)?
(18) joindesc::= (hasCol literal)+

BNF for condition expressions in R2O
(19) cond-expr::= orcond-expr | AND andcond-expr orcond-expr
(20) orcond-expr::= notcond-expr | OR orcond-expr notcond-expr
(21) notcond-expr::= condition | NOT condition
(22) condition::= primitive-condition (arg-restriction arg-restriction)*

(23) primitive-condition::= lo_than | loorequal_than | lo_than_str |
 loorequal_than_str | hi_than | hiorequal_than |
 hi_than_str | hiorequal_than_str | equals |
 equals_str | in_keyword | in_set | in_set_str |
 between | between_str | date_before | date_after |
 date_equal
(24) arg-restriction::= parameter-selector restriction
(25) parameter-selector::= on-param literal
(26) restriction::= has-value constant-value | has-column literal |
 has-transform transformation
(27) constant-value::= datatype literal

BNF for transformations in R2O
(28) transformation::= primitive-transformation (arg-restriction arg-restriction)*
(29) primitive-transformation::= get_nth_char | get _delimited | get_substring |
 concat | add_type | Subtract_type |
 Multiply_type | divide_type | constant

BNF for property mappings in R2O
(30) propertymap-def::= attributemap-def | relfromatt-def | relationmap-def
(31) attributemap-def::= attributemap-def name use-dbcol* selector*
documentation
(32) relfromatt-def::= relfromatt-def name use-dbcol* selector* newobj-type?
 documentation?
(33) relationmap-def::= relationmap-def to-concept
(34) use-dbcol::= use-dbcol literal
(35) selector::= selector (applies-if cond-expr)? (aftertransform transformation)?
(36) newobj-type::= newobject-type literal
(37) to-concept::= to-concept literal

