
Lecture Notes in Computer Science 3389
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Peter Van Roy (Ed.)

Multiparadigm
Programming
in Mozart/Oz

Second International Conference, MOZ 2004
Charleroi, Belgium, October 7-8, 2004
Revised Selected and Invited Papers

13

Volume Editor

Peter Van Roy
Université catholique de Louvain
Department of Computing Science and Engineering
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium
E-mail: pvr@info.ucl.ac.be

Library of Congress Control Number: 2005921638

CR Subject Classification (1998): D.3, F.3, D.2, D.1, D.4

ISSN 0302-9743
ISBN 3-540-25079-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11398158 06/3142 5 4 3 2 1 0

Foreword

To many readers, Mozart/Oz represents a new addition to the pantheon of pro-
gramming systems. One way of evaluating a newcomer is through the eyes of the
classics, for example Kernighan and Pike’s “The Practice of Programming,” a
book that concludes with six “lasting concepts”: simplicity and clarity, generality,
evolution, interfaces, automation, and notation. Kernighan and Pike concentrate
on using standard languages such as C and Java to implement these concepts,
but it is instructive to see how a multiparadigm language such as Oz changes
the outlook.

Oz’s concurrency model yields simplicity and clarity (because Oz makes it
easier to express complex programs with many interacting components), gen-
erality, and better interfaces (because the dataflow model automatically makes
interfaces more lightweight).

Constraint programming in Oz again yields simplicity and clarity (because
the programmer can express what needs to be true rather than the more complex
issue of how to make it true), and offers a powerful mathematical notation that
is difficult to implement on top of languages that do not support it natively.

Mozart’s distributed computing model makes for improved interfaces and
eases the evolution of systems. In my own work, one of the most important
concerns is to be able to quickly scale up a prototype implementation into a large-
scale service that can run reliably on thousands of computers, serving millions
of users. The field of computer science needs more research to discover the best
ways of facilitating this, but Mozart provides one powerful approach.

Altogether, Mozart/Oz helps with all the lasting concepts except automation,
and it plays a particularly strong role in notation, which Kernighan and Pike
point out is an underappreciated area. I believe that providing the right notation
is the most important of the six concepts, one that supports all the others. Multi-
paradigm systems such as Oz provide more choices for notation than single-
paradigm languages.

Going beyond Kernighan and Pike’s six concerns, I recognize three more
concerns that I think are important, and cannot be added on to a language by
writing functions and classes; they must be inherent to the language itself.

The first is the ability to separate concerns, to describe separate aspects of
a program separately. Mozart supports separation of fault tolerance and dis-
tributed computation allocation in an admirable way.

My second concern is security. Sure, you can eliminate a large class of security
holes by replacing the char* datatype with string, but strong security cannot
be guaranteed in a language that is not itself secure.

My third concern is performance. David Moon once said, in words more pithy
than I can recall, that you can abstract anything except performance. That is,
you can add abstraction layers, but you can’t get back sufficient speed if the
underlying language implementation doesn’t provide it. Mozart/Oz has a 10-year

VI Foreword

history of making choices that provide for better performance, thereby making
the system a platform that will rarely run up against fundamental performance
problems.

We all look for tools and ideas to help us become better programmers. Some-
times the most fundamental idea is to pick the right programming environment.

Peter Norvig
Director of Search Quality, Google, Inc.

Coauthor, Artificial Intelligence: A Modern Approach

Preface

Multiparadigm programming, when done well, brings together the best parts of
different programming paradigms in a simple and powerful whole. This allows
the programmer to choose the right concepts for each problem to be solved. This
book gives a snapshot of the work being done with Mozart/Oz, one of today’s
most comprehensive multiparadigm programming systems. Mozart/Oz has been
under development since the early 1990s as a vehicle to support research in pro-
gramming languages, constraint programming, and distributed programming.1

Since then, Mozart/Oz has matured into a production-quality system with an ac-
tive user community. Mozart/Oz consists of the Oz programming language and
its implementation, Mozart. Oz combines the concepts of all major program-
ming paradigms in a simple and harmonious whole. Mozart is a high-quality
open source implementation of Oz that exists for different versions of Windows,
Unix/Linux/Solaris, and Mac OS X.2

This book is an extended version of the proceedings of the 2nd International
Mozart/Oz Conference (MOZ 2004), which was held in Charleroi, Belgium on
October 7 and 8, 2004. MOZ 2004 consisted of 23 technical talks, four tutorials,
and invited talks by Gert Smolka and Mark S. Miller. The slides of all talks
and tutorials are available for downloading at the conference website.3 This
book contains all 23 papers presented at the conference, supplemented with
two invited papers written especially for the book. The conference papers were
selected from 28 submissions after a rigorous reviewing process in which most
papers were reviewed by three members of the Program Committee. We were
pleasantly surprised by the high average quality of the submissions.

Mozart/Oz research and development started in the early 1990s as part of
the ACCLAIM project, funded by the European Union. This project led to the
Mozart Consortium, an informal but intense collaboration that initially con-
sisted of the Programming Systems Lab at Saarland University in Saarbrücken,
Germany, the Swedish Institute of Computer Science in Kista, Sweden, and the
Université catholique de Louvain in Louvain-la-Neuve, Belgium. Several other
institutions have since joined this collaboration. Since the publication in March
2004 of the textbook Concepts, Techniques, and Models of Computer Program-
ming by MIT Press, the Mozart/Oz community has grown significantly. As a
result, we are reorganizing the Mozart Consortium to make it more open.

Security and Concurrency

Two important themes in this book are security and concurrency. The book
includes two invited papers on language-based computer security. Computer secu-

1 In the early days before the Mozart Consortium the system was called DFKI Oz.
2 See www.mozart-oz.org.
3 See www.cetic.be/moz2004.

VIII Preface

rity is a major preoccupation today both in the computer science community and
in general society. While there are many short-term solutions to security problems,
a good long-term solution requires rethinking our programming languages and op-
erating systems. One crucial idea is that languages and operating systems should
thoroughly support the principle of least authority. This support starts from the
user interface andgoes all thewaydowntobasic object invocations.With such thor-
ough support, many security problems that are considered difficult today become
much simpler. For example, the so-called trade-off between security and usability
largely goes away. We can have security without compromising usability. The two
invited papers are the beginning of what we hope will become a significant effort
from the Mozart/Oz community to address these issues and propose solutions.

The second important theme of this book is concurrent programming. We
have built Mozart/Oz so that concurrency is both easy to program with and
efficient in execution. Many papers in the book exploit this concurrency sup-
port. Several papers use a multiagent architecture based on message passing.
Other papers use constraint programming, which is implemented with light-
weight threads and declarative concurrency. We find that both message-passing
concurrency and declarative concurrency are much easier to program with than
shared-state concurrency. The same conclusion has been reached independently
by others. Joe Armstrong, the main designer of the Erlang language, has found
that using message-passing concurrency greatly simplifies building software that
does not crash. Doug Barnes and Mark S. Miller, the main designers of the E
language, have found that message-passing concurrency greatly simplifies build-
ing secure distributed systems. E is discussed in both of the invited papers in
this book.

Joe Armstrong has coined the phrase concurrency-oriented programming for
languages like Oz and Erlang that make concurrency both easy and efficient.
We conclude that concurrency-oriented programming will become increasingly
important in the future. This is not just because concurrency is useful for multi-
agent systems and constraint programming. It is really because concurrency
makes it easier to build software that is reliable and secure.

Diversity and Synergy

Classifying the papers in this book according to subject area gives an idea of
the diversity of work going on under the Mozart banner: security and language
design, computer science education, software engineering, human-computer in-
terfaces and the Web, distributed programming, grammars and natural language,
constraint research, and constraint applications. Constraints in Mozart are used
to implement games (Oz Minesweeper), to solve practical problems (reconfigura-
tion of electrical power networks, aircraft sequencing at an airport, timetabling,
etc.), and to do complex symbolic calculation (such as natural language process-
ing and music composition). If you start reading the book knowing only some
of these areas, then I hope that it will encourage you to get involved with the
others. Please do not hesitate to contact the authors of the papers to ask for
software and advice.

Preface IX

The most important strength of Mozart, in my view, is the synergy that comes
from connecting areas that are usually considered as disjoint. The synergy is
strong because the connections are done in a deep way, based on the fundamental
concepts of each area and their formal semantics. It is my hope that this book
will inspire you to build on this synergy to go beyond what has been done
before. Research and development, like many human activities, are limited by
a psychological barrier similar to that which causes sports records to advance
only gradually. It is rare that people step far beyond the boundaries of what
has been done before. One way to break this barrier is to take advantage of
the connections that Mozart offers between different areas. I hope that the wide
variety of examples shown in this book will help you to do that.

In conclusion, I would like to thank all the people who made MOZ 2004 and
this book a reality: the paper authors, the Program Committee members, the
Mozart developers, and, last but not least, the CETIC asbl, who organized the
conference in a professional manner. I thank Peter Norvig of Google, Inc., who
graciously accepted to write the Foreword for this book. And, finally, I give a
special thanks to Donatien Grolaux, the local arrangements chair, for his hard
work in handling all the practical details.

November 2004 Peter Van Roy
Louvain-la-Neuve, Belgium

Organization

MOZ 2004 was organized by CETIC in cooperation with the Université catholique
de Louvain. CETIC asbl is the Centre of Excellence in Information and Com-
munication Technologies, an applied research laboratory based in Charleroi,
Belgium.1 CETIC is focused on the fields of software engineering, distributed
computing, and electronic systems. The Université catholique de Louvain was
founded in 1425 and is located in Louvain-la-Neuve, Belgium.

Organizing Committee

Donatien Grolaux, CETIC, Belgium (local arrangements chair)
Bruno Carton, CETIC, Belgium
Pierre Guisset, director, CETIC, Belgium
Peter Van Roy, Université catholique de Louvain, Belgium

Program Committee

Per Brand, Swedish Institute of Computer Science, Sweden
Thorsten Brunklaus, Saarland University, Germany
Raphaël Collet, Université catholique de Louvain, Belgium
Juan F. Dı́az, Universidad del Valle, Cali, Colombia
Denys Duchier, INRIA Futurs, Lille, France
Sameh El-Ansary, Swedish Institute of Computer Science, Sweden
Kevin Glynn, Université catholique de Louvain, Belgium
Donatien Grolaux, CETIC, Belgium
Seif Haridi, KTH – Royal Institute of Technology, Sweden
Martin Henz, FriarTuck and the National University of Singapore
Erik Klintskog, Swedish Institute of Computer Science, Sweden
Joachim Niehren, INRIA Futurs, Lille, France
Luc Onana, KTH – Royal Institute of Technology, Sweden
Konstantin Popov, Swedish Institute of Computer Science, Sweden
Mahmoud Rafea, Central Laboratory for Agricultural Expert Systems, Egypt
Juris Reinfelds, New Mexico State University, USA
Andreas Rossberg, Saarland University, Germany
Camilo Rueda, Pontificia Universidad Javeriana, Cali, Colombia
Christian Schulte, KTH – Royal Institute of Technology, Sweden
Gert Smolka, Saarland University, Germany
Fred Spiessens, Université catholique de Louvain, Belgium
Peter Van Roy, Université catholique de Louvain, Belgium (Program Chair)

1 See www.cetic.be.

Table of Contents

Keynote Talk

The Development of Oz and Mozart
Gert Smolka . 1

Security

The Structure of Authority: Why Security Is Not a Separable Concern
Mark S. Miller, Bill Tulloh, Jonathan S. Shapiro 2

The Oz-E Project: Design Guidelines for a Secure Multiparadigm
Programming Language

Fred Spiessens, Peter Van Roy . 21

Computer Science Education

A Program Verification System Based on Oz
Isabelle Dony, Baudouin Le Charlier . 41

Higher Order Programming for Unordered Minds
Juris Reinfelds . 53

Software Engineering

Compiling Formal Specifications to Oz Programs
Tim Wahls . 66

Deriving Acceptance Tests from Goal Requirements
Jean-François Molderez, Christophe Ponsard . 78

Human-Computer Interfaces and the Web

Using Mozart for Visualizing Agent-Based Simulations
Hala Mostafa, Reem Bahgat . 89

Web Technologies for Mozart Applications
Mahmoud Rafea . 103

XIV Table of Contents

Overcoming the Multiplicity of Languages and Technologies for
Web-Based Development Using a Multi-paradigm Approach

Sameh El-Ansary, Donatien Grolaux, Peter Van Roy,
Mahmoud Rafea . 113

Distributed Programming

P2PS: Peer-to-Peer Development Platform for Mozart
Valentin Mesaros, Bruno Carton, Peter Van Roy 125

Thread-Based Mobility in Oz
Dragan Havelka, Christian Schulte, Per Brand, Seif Haridi 137

A Fault Tolerant Abstraction for Transparent Distributed Programming
Donatien Grolaux, Kevin Glynn, Peter Van Roy 149

Grammars and Natural Language

The CURRENT Platform: Building Conversational Agents in Oz
Torbjörn Lager, Fredrik Kronlid . 161

The Metagrammar Compiler: An NLP Application with a
Multi-paradigm Architecture

Denys Duchier, Joseph Le Roux, Yannick Parmentier 175

The XDG Grammar Development Kit
Ralph Debusmann, Denys Duchier, Joachim Niehren 188

Constraint Research

Solving CSP Including a Universal Quantification
Renaud De Landtsheer . 200

Compositional Abstractions for Search Factories
Guido Tack, Didier Le Botlan . 211

Implementing Semiring-Based Constraints Using Mozart
Alberto Delgado, Carlos Alberto Olarte, Jorge Andrés Pérez,
Camilo Rueda . 224

A Mozart Implementation of CP(BioNet)
Grégoire Dooms, Yves Deville, Pierre Dupont . 237

Table of Contents XV

Constraint Applications

Playing the Minesweeper with Constraints
Raphaël Collet . 251

Using Constraint Programming for Reconfiguration of Electrical Power
Distribution Networks

Juan Francisco Dı́az, Gustavo Gutierrez, Carlos Alberto Olarte,
Camilo Rueda . 263

Strasheela: Design and Usage of a Music Composition Environment
Based on the Oz Programming Model

Torsten Anders, Christina Anagnostopoulou, Michael Alcorn 277

Solving the Aircraft Sequencing Problem Using Concurrent Constraint
Programming

Juan Francisco Dı́az, Javier Andrés Mena . 292

The Problem of Assigning Evaluators to the Articles Submitted in
an Academic Event: A Practical Solution Incorporating Constraint
Programming and Heuristics

B. Jesús Aranda, Juan Francisco Dı́az, V. James Ort́ız 305

An Interactive Tool for the Controlled Execution of an Automated
Timetabling Constraint Engine

Alberto Delgado, Jorge Andrés Pérez, Gustavo Pabón,
Rafael Jordan, Juan Francisco Dı́az, Camilo Rueda 317

Author Index . 329

Author Index

Alcorn, Michael 277
Anagnostopoulou, Christina 277
Anders, Torsten 277
Aranda, Jesús B. 305

Bahgat, Reem 89
Brand, Per 137

Carton, Bruno 125
Collet, Raphaël 251

Debusmann, Ralph 188
De Landtsheer, Renaud 200
Delgado, Alberto 224, 317
Deville, Yves 237
Dı́az, Juan Francisco 263, 292,
305, 317

Dony, Isabelle 41
Dooms, Grégoire 237
Duchier, Denys 175, 188
Dupont, Pierre 237

El-Ansary, Sameh 113

Glynn, Kevin 149
Grolaux, Donatien 113, 149
Gutierrez, Gustavo 263

Haridi, Seif 137
Havelka, Dragan 137

Jordan, Rafael 317

Kronlid, Fredrik 161

Lager, Torbjörn 161
Le Botlan, Didier 211
Le Charlier, Baudouin 41
Le Roux, Joseph 175

Mena, Javier Andrés 292
Mesaros, Valentin 125
Miller, Mark S. 2
Molderez, Jean-François 78
Mostafa, Hala 89

Niehren, Joachim 188

Olarte, Carlos Alberto 224, 263
Ort́ız, James V. 305

Pabón, Gustavo 317
Parmentier, Yannick 175
Pérez, Jorge Andrés 224, 317
Ponsard, Christophe 78

Rafea, Mahmoud 103, 113
Reinfelds, Juris 53
Rueda, Camilo 224, 263, 317

Schulte, Christian 137
Shapiro, Jonathan 2
Smolka, Gert 1
Spiessens, Fred 21

Tack, Guido 211
Tulloh, Bill 2

Van Roy, Peter 21, 113, 125, 149

Wahls, Tim 66

