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Summary. The paper describes the application of topological methods to the visualization
of vortical flow patterns that arise in simulations from Computational Fluid Dynamics. Two
techniques are presented: the first is concerned with the exploration of complicated, instanta-
neous flow structures while the second one permits the visualization of their temporal evolu-
tion in large-scale transient simulations. In both cases the mathematical framework is derived
from the notion of parametric topology. This yields a unified formalism that permits to effi-
ciently address the challenges raised by typical flow problems. The benefits of this approach
are demonstrated in the analysis and visualization of transient vortical flows that undergo the
phenomenon of vortex breakdown.

1.1 Introduction

Scientific computing is an important tool for the development of new prototypes in
the design of modern aircrafts. While the basic theoretical principles of aerodynam-
ics are well established, they are applicable to large scale problems only and do not
describe the increasingly important details on small scales. The quality of numerical
models has risen to a point where simulations can fill this gap. As the demand for
faster aircrafts and improved security is high, they have established themselves as
an extremely valuable alternative to physical experiments. Aside from the validation
of prototypes, simulations can help to increase our understanding of the dynamics
of some of the more complex flow patterns that keep appearing in aviation-related
problems.

A prominent example is vortex breakdown. This phenomenon has stood in the
way of a wide application of delta-wing type aircrafts as it limits the controllabil-
ity in critical flight situations and causes damage to the aircraft through the induced
pressure differences. In order to understand the origin of this phenomenon and avoid
its occurrence in future designs, it has been reproduced and is now investigated in
numerical simulations. In this case like in Computational Fluid Dynamics problems
in general, these simulations facilitate complicated flow experiments and provide ac-
curate measurements of multiple quantities over the whole 3D domain considered.
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However, this comes along with a hindrance for analysis at the post-processing stage.
Since detailed models require fine resolutions, the amount of generated data is enor-
mous which is especially true for time-dependent problems. This obstacle must be
properly addressed by visualization methods, as they are essential to assist and im-
prove the evaluation of the resulting numerical data sets.

For the analysis of planar flows, flow topology has proven valuable in distilling
a complete structural picture of the prevalent structures by an analysis of the critical
points and separatrices of the flow vector field. Parametric topology has extended
this methodology to time-dependent flows. The resulting visualization is expressive,
while the algorithms are efficient. Therefore, planar flow topology can be regarded
as mostly complete as a flow analysis tool. Unfortunately, the extension to three di-
mensions is far from having achieved the same quality of visualization. This can be
in part attributed to the fact that the elements involved (e.g. separating surfaces) are
inherently 3D. A full display of non-trivial 3D topology is very complicated at best
and suffers frommutual obstruction of the corresponding primitives. Approaches ex-
ist for simplified depictions of 3D topology, however, they remain rather unsatisfying
in comparison to their 2D counterparts. Therefore the aim of this work is to provide a
visualization approach for complex 3D flows that inherits the appealing properties of
planar flow topology. In that way we are able to complement well established feature
extraction methods in a unified framework built upon rigorousmathematical notions.

More precisely, the key idea behind the visualization methods introduced in this
paper is the notion of parametric topology. Depending on the considered application
the corresponding parameter can be interpreted as the time underlying a transient
evolution or as the distance reached along a particular curve that traverses a region
of interest. Practically, to obtain accurate and intuitive depictions of intricate flow
structures we transform traditional cutting planes into flexible and powerful tools for
exploring flow volumes in a continuous way. These moving cutting planes smoothly
travel along trajectories that can be either obtained automatically by standard fea-
ture extraction schemes or directly provided by the user to explore a particular re-
gion.We accurately track the parametric vector field topology captured on the cutting
planes. This allows us to dissect the 3D flow, detect and visualize essential proper-
ties of the flow, especially for recirculation bubbles which are key features of vortex
breakdown.While understanding of this phenomenon is still incomplete, it is known
that it is characterized by the appearance of stagnation points (critical points of the
flow velocity field) on the vortical axis. To gain insight from the temporal behav-
ior of the stagnation points, the critical point tracking from 2D parametric topology
is extended to 3D vector fields defined over tetrahedral grids. For visualization, the
four-dimensional trajectories are reduced to two dimensions by using the symmetry
inherent to the vortical structures. To further enhance the understanding of the full
3D flow pattern, we also incorporate stream surfaces into the representation.

The paper is structured as follows. Section 1.2 summarizes previous and related
work. In Section 1.3, we recall essential theoretical notions of steady and parametric
flow topology. In this context we also provide a detailed discussion of the Poincaré
index. The tracking of vector field critical points with respect to a parameter change
is discussed in Section 1.4 along with the corresponding algorithm. Next, Section 1.5



1 Topological Methods for Visualizing Vortical Flows 3

introduces the moving cutting plane approach. We complete our presentation with
our visualization results for two CFD data sets in Section 1.6 and conclude in Sec-
tion 1.7.

1.2 Related Work

The importance of topology for depicting flow fields was first recognized by Helman
and Hesselink [7] and resulted in a 2D visualization method. Complete 3D topology
has not been attempted yet, however there are authors that examine subsets, such as
Globus et al. [6] and Theisel et al. [17] using saddle connectors. Tricoche et al. [18]
describe how the time-tracking of singularities and the corresponding topological
variations can be investigated for instationary 2D vector fields. Theisel and Seidel
also propose a method for the tracking of critical points in more general settings by
integrating streamlines of the derived feature flow field [16]. However, the construc-
tion of this field is prohibitively expensive for large data sets.

Concerning the temporal variation of features, there are approaches that detect
features in several time steps and perform a matching procedure to extract their evo-
lution (e.g. Silver and Wang [14] and Samtaney et al. [12]). Making explicit use of
the temporal interpolation, Weigle and Banks [19] extract features in the form of
four-dimensional isosurfaces. A similar course is followed by Bauer and Peikert [2].
They incorporate a scale-space approach into their method for the tracking of vortex
cores. As to the interrelations among multiple features over time, Silver et al. [3]
have developed the Feature Tree that is remotely related to the much simpler struc-
tural graph we establish here.

In our development of a critical point tracking algorithm on tetrahedral grids, we
make use of the Poincaré Index concept, which was described earlier by Mann and
Rockwood [9]. They explain its basic premise and show how it can be applied to the
study of critical points and other types of singularities. Their work is however limited
to the study of analytical vector fields and is not directly applicable to our work.

From the viewpoint of fluid mechanics, vortex breakdown (or vortex burst) has
concerned many authors due to its relevance for a large number of applications (see
e.g. [10]). In the field of visualization, Kenwright and Haimes [8] were among few
to write about the detection and visualization of vortex breakdown. They already
emphasized its importance in aeronautics. However, their interpretation of vortex
breakdown is not in accordance with modern theories.

1.3 Theoretical Aspects of (Parametric) Topology

We introduce in this section basic notions of vector field topology both in the 2D
and 3D settings as required by the visualization methods discussed in the paper. The
emphasis is put on linear structures induced by piecewise linear interpolation over
simplicial grids. This choice is justified by the fact that arbitrary grid types can be
decomposed into simplices.
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1.3.1 Phase Portrait, Limit Sets and Separatrices

The essential idea behind topology analysis in the steady case is to characterize the
nature of a flow with respect to the asymptotic behavior of its streamlines. For that
purpose, one associates the domain of definition of the flow with its phase portrait
that consists of the set of all streamlines. This corresponds to introducing an equiv-
alence relation that groups all the points located on the path of the same streamline
into a single class.

The topological structure of the flow is essentially a subdivision of the phase por-
trait into regions where all streamlines are asymptotically equivalent, thus forming
a uniform flow. More specifically, all streamlines belonging to such a region con-
verge toward the same so-called limit sets both forward and backward. Limit sets
have a general mathematical definition but for the needs of this presentation we are
only interested in critical points and closed orbits. The boundaries of the different
topological regions are called separatrices and can be either streamlines or stream
surfaces.

1.3.2 Critical Points

The critical points (or singular points) of a vector field are the positions where the
field magnitude is zero. These points play a fundamental role in the field structure
because they are the only locations where streamlines can meet. In the linear case the
classification of critical points is based on the eigenvalues of the Jacobian matrix.

In planar fields, depending on the real and imaginary parts of these eigenvalues,
there exist several basic configurations, some of which are shown in Fig. 1.1. The
saddle points are of particular interest since the separatrices start or end at their
location along the eigenvectors. Note that for every other critical point type, the sign
of the real parts of both eigenvalues is either positive or negative, corresponding
to a repelling (source) or an attracting (sink) nature, respectively. Thus separatrices
emanate from saddle points and end at sources or sinks.

Fig. 1.1. Linear critical points in the plane

In the 3D case, the Jacobian matrix has three eigenvalues, and more combina-
tions exist. If all eigenvalues have a positive (resp. negative) real part the corre-
sponding critical point is a source (resp. a sink). Other cases correspond to different
types of saddle points. As in the 2D setting, separatrices of the topology start origi-
nate 3D saddle points along their eigenvectors. However these separatrices are either
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one-dimensional (streamlines) or two-dimensional (stream surfaces). The latter are
spanned by both eigenvectors associated with the eigenvalues whose real parts have
same sign. The various cases are illustrated in Fig. 1.2.

Fig. 1.2. Linear critical points in three dimensions

1.3.3 Poincaré Index

Definition and Properties

A fundamental concept in planar vector field topology is the so-called Poincaré in-
dex of a simple (i.e. non self-intersecting) closed curve. It measures the number of
rotations of the vector field while traveling along the curve in positive direction (also
called winding number). In a more mathematical way, one gets the following defini-
tion for the index of a simple curve γ:

indγ =
1
2π

∮

γ
dφ , where φ = arctan

vy
vx

.

(φ is the angle coordinate of the vector field v(vx,vy).) Remark that the index is
always an integer.

Similarly one defines the index of a critical point as the index of a simple closed
curve around the critical point enclosing no other singular point. For linear critical
points, the possible index values are +1 and -1. A saddle point has index -1 whereas
every other critical point has index +1. Following properties of the Poincaré index
are essential in practice [1].

1. A simple closed curve that encloses no critical point has index 0.
2. The index of a simple closed curve that encloses several critical points is the sum
of the respective indices of those critical points.

This notion can be generalized to 3D vector fields. First, one defines the winding
number #x(S) of a closed surface S with respect to a point x as

#x(S) :=
1
4π

∫

S

y− x
|y− x|3

dS(y).
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It is an integral value as in the planar case and corresponds to the number of times
S wraps around x. For example, the x-centered sphere Sε(x) of radius ε > 0 has the
canonical winding number 1. Now, to define the index of a closed surface S with
respect to a three-dimensional vector field, one introduces the notion of Gauss map

γ : IR3\{0}→ S2,x #→
x

||x||
,

that maps any non-zero vector to its (normalized) direction. The index of a closed
surface S is then defined as the number of times the vector field directions on S cover
the origin as we move around all of S. In other words, it is the winding number of the
Gauss map of v restricted to S with respect to the origin. Mathematically speaking,
we have

4π indS = #0(γ(v|S)) =
∫

S
γ(v(x))dS(γ(v(x))). (1.1)

Note that the winding number can be read as an oriented area integral of γ(v|S).
Hence, the sign of indS depends on the orientation of S relative to IR3. We are able
to define indz(v) of a singularity z via

indz(v) := lim
ε→0

#0(γ(v|Sε (z))). (1.2)

The propertiesmentioned previously for the planar case hold in the three-dimensional
case too. Let S be a closed surface that encloses the vector field singularities zi. Then

∑
i
indzi(v) = #0(γ(v|S)).

As in the 2D case positive orientation is assumed for all closed surfaces under consid-
eration. From the last equation, we find that the index vanishes if S does not enclose
any singularity in its interior. Observe that the converse holds only in the linear case.

Computation

In the piecewise linear setting the critical points that may be encountered in the
interior domain of each linearly interpolated triangle or tetrahedron cell are of first
order and have therefore either index +1 or -1. We consider 3D critical points first
and show how the 2D setting can be seen as a special case. To compute the index
of an isolated linear 3D critical point z we can use a simple approach that is based
on the Jacobian J of the corresponding linear vector field. Indeed, assuming a non-
degenerate case, J has full rank which implies that |indz(v)| = 1. Hence, the index is
+1 if J is orientation-preserving and 1 otherwise. In other words, the index of a linear
critical point is determined by the sign of its determinant. Therefore, if we consider
the types of linear critical points mentioned previously, a source has index +1 and
a sink has index -1. Concerning saddle points, their index depends on the particular
type. If the dimension associated with the 1D separatrix corresponds to a source, the
index is +1, otherwise -1. Refer to Figure 1.2. If we now consider two dimensional
critical points, we easily see that a similar result applies: sink and sources correspond
to two eigenvalues of same sign and both types have index +1 while saddle points
have index -1, see Figure 1.1.
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1.3.4 Parameter Dependent Topology

In the case of a parameter-dependent (e.g. instationary) flow, parameter changes en-
tail transformations of the topology. Despite the unlimited variety of such transfor-
mations they always preserve qualitative consistency. In particular, the Poincaré in-
dex acts as a topological invariant.

For the needs of our method we only mention two types of local bifurcations in
the 2D case and derive a similar example for the 3D case. The first local bifurcation
in 2D involves pairs of critical points, namely a saddle point and a sink or a source.
When both critical points become progressively closer, merge and eventually vanish
the bifurcation is a pairwise annihilation. The reverse phenomenon is called pair-
wise creation. The common terminology for both evolutions is fold bifurcations. The
second type of planar bifurcation affects a single spiral critical point, either a sink
or a source, and is known as Hopf bifurcation. The corresponding evolution for a
planar field is pictured in Figure 1.3. The corresponding critical point (a center) is an

Fig. 1.3. Hopf bifurcation

unstable configuration and any change in the parameter value will transform it into a
source surrounded by a closed orbit that behaves as a sink. The reverse evolution is
possible too, as well as swapped roles for sinks and sources. Similar transformations
occur in the 3D case. A simple example can be obtained by adding a one-dimensional
source behavior to a saddle point and a source involved in a fold bifurcation. This
creates two 3D saddle points that merge and vanish in the very same way. An illustra-
tion is proposed in Figure 1.4. Observe that as in the 2D case the basic ingredient of

Fig. 1.4. Three-dimensional fold bifurcation

this fold bifurcation is the fact that the overall index of both critical points is 0 (two
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saddle points of opposite indices) which corresponds to a neighborhood without sin-
gularity. Consequently, the local value of the Poincaré index is preserved throughout
the corresponding transformation. This remark also explains why a fold bifurcation
in 3D can concern a source (index +1) and a sink (index -1).

1.4 Topology Tracking

In the following we describe a simple algorithmic solution to track the continuous
evolution of the topology and detect the associated bifurcations. The method was
originally designed for time-dependent 2D vector fields [18] and has been recently
extended to the 3D case [5]. We focus the description hereafter on the latter case,
which is in essence very similar to the planar case. In particular, bifurcations on the
common boundary of two neighboring cells, tracking through successive entry and
exit points, as well as the ability to filter out insignificant details or interpolation
artifacts in post-processing are common features of both the 2D and 3D implemen-
tation. Section 1.5.1 explains how the 2D method can be applied to steady 3D vector
fields. Observe that in both cases, and in contrast to the original method, we do not
explicitly track the separatrices of the topology.

Setting

The objective is to determine the paths of isolated critical points of a time-dependent
piecewise-linear vector field, given on a tetrahedral grid. Let pi ∈ IR3 be a set of
points and v ji the vector values associated with the pi at discrete times t j ∈ IR. Let Tk
be a set of tetrahedra defined on the points pi. Then every tetrahedron Tk gives rise
to a vector field v(x,t) that is linear in both space and time: if x ∈ Tk and t ∈ [t j,t j+1],
then set

v(x,t) =
3

∑
l=0

βl(x)
(

t− t j
t j+1− t j

v j+1l +
t j+1− t
t j+1− t j

v jl

)

,

where βl are the barycentric coordinates w.r.t. Tk and l refers to the vertices of Tk.
We will next examine the paths of singularities in a single tetrahedron Tk.

Bifurcations

Due to the inherent limitations imposed on the singularities by the piecewise linear
nature of the vector field, we can conclude that fold bifurcations that involve two
critical points can only occur on the common face of two neighboring tetrahedra.
Bifurcations on an edge or a vertex are special cases that are numerically highly
unstable. Therefore there are not addressed here.

Assume we have two tetrahedra T1 and T2 that share a common face on which
we find a bifurcation at some time t. Since the field is linear in both tetrahedra, from
the two singularities involved, one is located in T1 and the other in T2. Moreover, due
to index conservation, the overall index must be zer. Hence the indices of the critical
points must be +1 and −1, respectively.
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Paths in a single cell

We first consider a single tetrahedron T and determine what possibilities exist for the
path of a singularity z. To simplify the notations, we assume that the vector field in
T is given in the form

v(x) =
3

∑
i=0

βl(x)((1− t)ui+ tvi)) , x ∈ T,t ∈ [0,1]

and that v is non-degenerate, i.e. it contains exactly one isolated zero at all times.
For fixed t we can solve for the position of the singularity of this field in barycentric
coordinates. For example, with wi(t) = (1− t)ui+ tvi we write (omitting the param-
eters)

v= w0+β1(w1−w0)+β2(w2−w0)+β3(w3−w0)

and apply Cramer’s rule to find

β1(t) =
det(−w0, w2−w0, w3−w0)

det(w1−w0, w2−w0, w3−w0)
=:

b1(t)
q(t)

.

The same can be done for all βi. Brief computation shows that the resulting bi(t)
and q(t) are polynomials of degree 3 in t. We required that v be non-degenerate, this
reflects in q(t) %= 0 for all t ∈ [0,1]. Naturally, if βi(t) < 0 for some i, the singularity
of v is outside the tetrahedron for this specific t. In other words, we have found an
explicit representation for the location of z. Taking a closer look at bi, we find that the
zeros of these polynomials allow us to determine when z crosses one of T ’s faces. If
for t̂ ∈ [0,1]we find βi(t̂) = 0 and β j(t̂) >= 0 for j %= i, then the singularity is located
on the face of T opposite the vertex pi (its barycentric coordinate is zero). For this
case, by evaluating the sign of the derivative

β ′
i (t̂) =

(

bi
q

)′

(t̂) =
b′i(t̂)
q(t̂)

(since bi(t̂) = 0)

we can tell if the singularity enters or leaves the tetrahedron at t̂. We will say that
T has an entrance/exit on face F at t̂. This information is important to determine in
which neighboring tetrahedron (if one exists for F) the singularity path continues.

For fixed t ∈ [0,1] there can be at most one singularity inside T , hence we can
conclude that if there is a singularity in T at some t ∈ (0,1), it must either have
entered T at an earlier time 0 < t̂ < t or remained in T since t = 0 (in this case we
will say that z enters at t = 0). In complete analogy, it must either exit T at t < t̃ < 1
or remain in T until t = 1 (read z exits at t = 1). In other words, a singularity path
always connects an entrance to an exit, and exits and entrances always come in pairs.
Moreover an entrance is always connected to the closest exit (in time).

When z passes from T to a neighbor T ′ through the face F at t̂, there is a singular-
ity on F in both T and T ′ at t̂. Two possibilities exist: either we find an exit/entrance
combination in T and T , in which case the path continues in T , or we find an exit/exit
or entrance/entrance combination. In the latter case, the vector field has a fold bifur-
cation on F at t̂, and the paths of both singularities involved start or end on F .
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1.4.1 Tracking algorithm

Using previous results, we give in the following a simple scheme for tracking a sin-
gularity between two time steps t = 0 and t = 1. It works by simply connecting
entrance/exit path segments over tetrahedron boundaries. Observe that the iterative
nature of our scheme allows to restrict to two consecutive time steps the amount of
data that is needed at once for processing.

Assume that a singularity z is present in T at t ∈ (0,1). Then, to compute the path
forward in time

1. compute the bi and q for T , and determine entrances and exits
2. if there is no exit later than t, z exits T at t = 1; the path is complete
3. if there are exits in T , then z leaves T at the earliest exit later than t; determine
the neighbor tetrahedron T ′ corresponding to the exit face F and compute b′i, q′
for T ′

4. if T ′ has an exit on F corresponding to the exit on T (→ bifurcation), the path of
z ends on F

5. otherwise, T ′ has an entrance on F corresponding to the exit on T ; z is now in
T ′. Set T = T ′ and restart at 1.

Following the path of z backwards in time can be achieved in a completely anal-
ogous manner. Both directions are completely equivalent. We use this procedure as a
building block for computing the paths of all singularities present in two given time
steps between t = 0 and t = 1:

1. find the sets of tetrahedra S0 and S1 that contain a singularity at t = 0 and t = 1
respectively. Let B= {} be the set of bifurcations encountered in between t = 0
and t = 1.

2. for every T ∈ S0: follow the path of z forward in time
a) if it ends in T ′ at t = 1, eliminate T ′ from S1.
b) if it ends at a bifurcation, add it to B.

3. for every T ∈ S1 (singularities not reached by paths from t = 0): follow the path
of z backward in time
a) it must end at a bifurcation; add it to B

4. for all bifurcations in B: check if B has two paths connecting to it; if it does not,
there must be another singularity involved. Follow its path forward or backward
in time depending on whether the bifurcation is a creation of singularities or an
annihilation.
a) the path must end at a bifurcation; add it to B; goto 4.

The algorithm avoids multiple tracing of the same path by using the equivalence
between forward and backward tracing (i.e. if a path extends from t = 0 to t = 1,
we only need to trace it forward). The test in step 4 is required because non-intuitive
situations can occur (see Figure 1.5). The final result is a set of paths that completely
describe the continuous structural variation of the vector field between the two time
steps. Going to several time steps from here is easy as it only involves connecting
the paths from different time steps according to which singularity they start/end at.
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Fig. 1.5. Special cases of cell-wise singularity tracking

Observe that some cases are not covered by the given algorithm. If two bifur-
cations that create and annihilate a pair of singularities lie between two time steps,
neither of the singularities will show up in either time step, and hence their paths
will not be discovered by the algorithm (see Figure 1.5). However they do not in-
teract with other singularities and therefore they do not play an important role in
understanding the structural changes in between the time steps. Moreover, it is often
desirable to ignore small-scale local behavior.

1.4.2 Structural Graph Filtering

To obtain a complete picture of the structural evolution of a given dataset, the interac-
tion of the various singularities form a structural graph with bifurcations as vertices
and paths as edges (see Fig. 1.7 for an example). We describe here how this graph
can be manipulated at the post-processing stage.

The method described above is restricted to tetrahedra which implies that arbi-
trary input data sets must be tetrahedrized before application. Although the track-
ing algorithm could be extended to non-tetrahedral grid cells, this would result in a
number of special cases that complicate the simple structure of the algorithm. In its
present form, implementation is straightforward and fast. However, the price to pay
is that tetrahedrization of arbitrary grids can result in the creation of singularities that
are not in the original dataset. It is possible that a cell of index 0 is split up such that
the resulting tetrahedra have non-zero indices. These artificial singularities are not
an issue since they are always created pair-wise and typically only last for a short
period of time.

Numerical data sets are often subject to noise, especially if the computations
involve some kind of differentiation. It is common practice to apply smoothing op-
erators to data sets in order to account for this limitation. Numerical noise usually
reflects in short-lived pairs of artificial singularities that exist in isolation and are not
part of the data sets structural evolution over time. It can also occur that a path is in-
terrupted by a pair of artificial bifurcations that enclose a path segment of very short
duration (Figure 1.5 (left) gives an example).

What seems a drawback at first can be turned into an advantage: instead of
smoothing the dataset we filter the resulting set of singularity paths by removing
paths that last less than e.g. one time step. Filtering can be applied on the structural
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graph directly and can be implemented in an efficient way by first removing edges
that represent paths with short duration and successively removing all isolated ver-
tices. In our experiments, we found this method to be very effective in treating noisy
data sets. It must be mentioned here that conventional smoothing does not signifi-
cantly reduce the number of artificial singularities. Moreover it affects the structure
of the dataset in such a way that the structural evolution is obscured or changed (this
is especially true for minimum/maximum tracking as described in the next para-
graph). Consequently a filtering based directly on the topological structure of the
flow offers a much more accurate control over the complexity of the structural infor-
mation.

1.4.3 Algorithm performance

The tracking algorithm itself is of linear complexity in both the number of sin-
gularities and the number of time steps. The most time-intensive part is the pre-
computation of all singularities in a time step, for which each cell has to be consid-
ered individually. This is not a drawback of our algorithm but rather a limitation in-
herent in this class of tracking algorithms (cf. [18, 16]) If this information is assumed
given, the running times for our examples are on the order of very few seconds. Since
the algorithm only needs two successive time steps to do its work, it is possible to in-
tegrate it directly into the CFD simulation. The structural graph for all time steps can
then be completed in post-processing. This would also allow for online supervision
of simulations that are still in progress.

1.5 Planar Topology Tracking for Volume Exploration

As mentioned previously the approach developed in this section consists in using the
framework of planar topology tracking to explore steady 3D flow structures. More
precisely, the 3D (steady) flow is now investigated through the parametric topology
of its 2D projection onto a plane that is swept along a given curve across the volume
of interest. In other words, the curve provides the third dimension and is interpreted
as the parameter space for topology tracking. Essential algorithmic aspects of this
method are discussed next.

1.5.1 Moving Cutting Planes

Trajectories

By definition, the choice of a particular trajectory to explore a flow volume is es-
sential to ensure the quality and the usefulness of the extracted topology and must
therefore be care- fully chosen with respect to the considered application. The gen-
eral idea followed in our implementation is to use any inherent symmetry of the data
set to yield a natural way to split the physical space. Since the application of our
technique is focused on vortical flows and vortex breakdown we selected the curves
described next. Refer to Figure 1.6 for an illustration.
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Fig. 1.6. Different types of moving cutting planes

• Vortex Core Lines are a natural choice to explore vortical regions. We extract
them using an implementation of the standard method by Sujudi and Haimes [15]
based on the Parallel Operator [11]. A smoothing step applied in preprocessing
permits to improve the results.

• Straight Line across the grid are a straightforward alternative. They are mainly
used to explore large structures whose overall orientation is known.

• Recirculation Bubble Axis: to explore the recirculation bubbles induced by vortex
breakdown, the medium axis usually exhibited by these structures can be used.
More specifically, as mentioned previously a recirculation bubble is delimited by
two stagnation points and the line connecting them plays the role of a rotation
axis in our method.

Cutting Plane Orientation

A robust computation of the cutting plane orientation is mandatory for our flow ex-
ploration technique. It can be seen on Figure 1.6 that choosing the recirculation bub-
ble axis as exploratory curve fully determines the plane orientation. Similarly we
also used the straight line as plane normal when it is selected to capture large-scale
features. On the contrary, when dealing with a vortex core line the inaccuracy of the
extraction method results in an approximated position of the actual vortex core which
can have a negative impact on the resulting normal value. The same holds true when
approximating the curved, possibly complex path of a vortex by a straight line seg-
ment. In both cases we need an automatic way to compute a suitable normal at each
point along the discrete path according to the local flow orientation. Practically, the
quality of a normal is evaluated with respect to the amount of flow crossing the plane
over a small region around the considered point. We use a simple iterative scheme to
maximize this quantity which consists in assigning in every step the mean direction
of crossing flow to the current approximation of the normal.

Planar Resampling

The remaining task consists in resampling the 3D vector field on the cutting plane
while ensuring consistency of the coordinate frames between consecutive positions
along the followed curve. This is mandatory to obtain meaningful results during the
topology tracking procedure. To do so, it is sufficient to assign a single basis vector to
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each plane, the second one being readily obtained by cross product with the normal.
Practically we select an arbitrary vector in the first plane and we iteratively transport
this vector from one plane to the next by successive projections and normalization,
similar to e.g. [13]. Once provided with the grid resolution (i.e. sampling rate) we
only need to control the spatial extent of the sampled region around the curve on the
plane. This is to ensure that the sampling will not include data points corresponding
to positions lying outside the structure of interest. Practically we either assume a
constant size of the feature or we apply the technique described in a recent paper [4]
to determine the boundary of the vortex core region.

1.5.2 Topology Tracking

The previous step collects the successive values of the projected vector field as the
cutting plane moves through the volume. As mentioned previously we can now ab-
stract these data from their original embedding in three-space and treat them as the
successive states of a parameter-dependent planar vector field. In that way we can
apply the two-dimensional tracking scheme proposed in [18] and whose extension
to three dimensions was discussed in the previous section. In essence the setting of
the original method corresponds here to the computational space. One difference is
that the results obtained (singularity paths, bifurcations) must be mapped back into
physical space after tracking for visualization and interpretation. Moreover we need
to account for the lack of smoothness of the vector field projected on the moving
cutting plane along a curve. Specifically this may cause spiraling critical points to
oscillate between sink and source behavior, creating numerous Hopf bifurcations.
We correct this effect by filtering out small-scale features like pairs of critical points
vanishing shortly after their creation or type swap between sources and sinks. The
latter is handled by assigning the type center to the critical point. Although this is an
unstable structure in planar topology, this may be monitored in cutting plane topol-
ogy when inspecting a vortex whose spiraling flow neither converges nor diverges
with respect to its core line.

1.6 Results

We now show the results of both topology tracking methods applied to two CFD
simulations specifically designed to investigate the impact of vortex breakdown on a
vortical flow.

1.6.1 Data sets

Delta wing: This simulation describes a sharp-edged delta wing at subsonic speed
(0.2 mach) with the characteristic vortical systems above the wing. The angle of at-
tack increases over time, eventually leading to vortex breakdown in later time steps.
The viscous simulation of the full configuration was performed with- out the as-
sumption of symmetry and was carried out using the DLR Tau Code solver. The grid
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Fig. 1.7. Left: Structural graph of the can dataset. The green paths represent the stagnation
points in the velocity field. Primary and secondary breakdown each create a pair of stagnation
points. Around time step 1888, the two phenomena join, only to re-split at time step 2458
and successively decay. The blue and orange paths belong to helicity minima and acceleration
zeros. Note the strong interrelation between the three quantities.Middle and right: Two snap-
shots from the can dataset. Separation stream surfaces are started at the singularity positions.
Time step 1700 shows both breakdowns, whereas the second breakdown has already vanished
in time step 4000 and the first breakdown shows the typical “mushroom” structure.

consists of 11.1 million unstructured grid cells based on about 3 million vertices.
At these, a number of variables is given (velocity, pressure, kinetic energy, etc.) for
each of the 90 time steps. Among the significant physical features are secondary and
tertiary vortices on the wing and corresponding separation and attachment structures.
Can data set: The aim behind this simulation of a cylindrical container filled with
an incompressible and highly viscous liquid was to study vortex breakdown under
ideal conditions, created by the viscosity of the fluid and the high symmetry in the
problem that lead to numerically very accurate and smooth data. The bottom cylinder
cap rotates, creating a vortex on the symmetry axis of the cylinder. A variation in the
rotation speed leads to the appearance and successive vanishing of vortex breakdown
during the 500 time steps. The dataset is given in the same form as the delta wing
dataset, with the grid containing approx. 750.000 elements.

1.6.2 3D Critical point tracking

We have employed the critical-point tracking described in Section 1.4.1 for the anal-
ysis of both data sets. It is already known that vortex breakdown is associated with
the occurrence of (pairwise) stagnation points, therefore we have applied the track-
ing algorithm to the velocity fields first. Furthermore, there are speculations that
both acceleration and signed helicity (i.e. dot product of velocity and vorticity) play
an important role in this context. We have computed these fields for those data sets
and applied tracking to them as well, in the case of signed helicity minimum track-
ing was performed. Since these computations involve derivative computation, we ob-
serve strong numerical noise in both helicity and acceleration yielding many artificial
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Fig. 1.8. Left: Overview of the delta wing dataset with its two primary vortices above the
wings. Stream surfaces wrap around the vortices and are eventually distorted by vortex break-
down. Note the asymmetrical breakdown structure. Middle and right: Structural graphs for
right and left breakdown. Again a connection between various quantities involved in vortex
breakdown can be observed for the right breakdown. In the left breakdown, several oscillating
breakdown structures are visible in the later time steps.

singularities. Using structural graph filtering we are still able to obtain meaningful
results.

For the can dataset, the results are of almost analytical quality (see Figure 1.7).
The simulation actually shows two occurrences of vortex breakdown (and two cor-
responding pairs of stagnation points) and it is interesting to observe how primary
and secondary vortex breakdown successively merge and split again. Acceleration
zeros and helicity minima show a strong correlation with the onset of the breakdown
process and the bifurcation that creates the two stagnation points. It is also obvious
that the structural graph helps locate interesting time steps quickly.

In treating the delta wing dataset, we focus on two regions that correspond to
breakdown on both sides of the wing. After a coordinate transformation consisting
in a projection onto the vortical axis, the structural graph of the right region (cf.
Figure 1.8) clearly shows the evolution of the stagnation points as they move to-
wards the wing. Again, acceleration zeros and a helicity minimum seem to play a
role in formation of breakdown, although the correlation is not as obvious as in the
can dataset. This is, in part to be blamed upon the lack of resolution and numeri-
cal noise. Filtering of the structural graph for the helicity gradient field reduces the
number of meaningful paths from roughly 1.000 to 4, effectively eliminating all ar-
tificial singularities. The left region is even more complex, and it is clearly visible
how the stagnation points begin to oscillate and disappear around time step 730, to
be followed by what appears to be a sequence of short-lasting vortex breakdowns
in different places. In this case, the structural graph makes identification of multiple
breakdown bubbles possible by grouping the velocity field singularities according to
their common origin in a bifurcation. The stream surfaces shown are separation sur-
faces originating in the separation planes of the (saddle) stagnation points. Although
this picture conveys the basic structure of the breakdown bubbles, for an accurate
interpretation the structural graph is necessary.
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1.6.3 Moving cutting planes

Fig. 1.9. Left: An overview of the can dataset. Right: Parametric topology shows the es-
sentials of vortex breakdown including the recirculation ring (blue) and a secondary vortex
breakdown. To show that the separatrices accurately model the flow behavior, the breakdown
bubbles are surrounded with transparent stream surfaces [4] (light blue/light red) originating
at the upstream stagnation points that are reproduced as saddle points in the topology of the
planes (red).

Fig. 1.10. Left: An overview of the delta wing dataset: parametric topology visualizes the
primary vortices. The planes are computed along the symmetry axis of the wing and are par-
allel. Each planes shows two sinks/sources (primary vortices) and a number of saddle points
(separation from the wing). Note how the separatrices end in cycles. This indicates very weak
attracting/repelling behavior of the vortices. Right: Primary, secondary and tertiary vortices
visualized by planar topology. Here, the planes are on the primary vortex core and oriented
to the flow. Note how plane orientation affects the resulting structures. Green arrows indicate
the three vortices in the top image. The red arrow shows the separation sheet between primary
and secondary vortex. The primary separation at the wing edge is indicated by the blue arrow.
All three vortices are present as expected.
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The moving cutting planes scheme from Section 1.5 was applied to both data
sets with the aim of investigating the flow structures obtained by the simulations.
For the delta wing dataset, the reproduction of primary, secondary and tertiary vor-
tices is crucial. Figure 1.10 left gives an overview of the wing created with parallel
cutting planes along the wing symmetry axis. The primary vortices are presented
prominently, and the vortex axis results from the tracking of the corresponding sin-
gularities. Using the cutting plane orientation scheme described in Section 1.5.1 with
the vortex core as input curve for the plane generation, both secondary and tertiary
vortices are visible. Moreover, the planar cut reveals interactions between the three
vortices that are hard to determine by other means. This includes the separation sur-
face between the primary and secondary vortices and the so-called primary separa-
tion, i.e. the flow sheet that emanates from the wing edge and divides the flow above
the wing from the surrounding flow. Both appear as a separatrix in the plane.

The dataset had been examined for the presence of the vortical system before,
using the method of Sujudi and Haimes [15]. However, this scheme requires careful
computation of derivatives and involves smoothing. The result is a set of discon-
nected line segments and is hard to interpret. In comparison, the approach employed
here was easily applied. This can be attributed in part to the fact that the approximate
location of the sought features was a priori known, which is usually the case in the
verification of data sets.

Application of the planar topology to the can dataset has revealed a peculiarity.
The simulation exhibits vortex breakdown, hence a so-called breakdown bubble is
visible. Over time, this bubble grows, merges and successively re-splits with a second
bubble, and shrinks until it vanishes as the breakdown is resolved.

Fig. 1.11. Enlargement of the right recirculation bubble in the delta wing data set. Continuous
tracking on the projected topology onto a plane rotating around the axis connected the 3D
stagnation points. The resulting parametric topology exhibits numerous Hopf bifurcations that
are smoothed out to yield the center type critical point (yellow) corresponding to the typical
closed vortex core.
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Aside from the strict validation of data sets, parametric planar topology can also
serve as a feature extraction method for vortex core lines under limited circum-
stances. For example, the primary vortex axes in the delta wing dataset can be ex-
tracted in this manner (cf. Figure 1.10). Although it is in this case equivalent to other
algorithms, it excels in the extraction of recirculation cores. As the vortex breakdown
bubble encloses a mostly rotation symmetric region of recirculation, there is essen-
tially a bent vortex inside the bubble. Its core appears as a singularity in the section
planes revolving around the original vortex axis. Then, tracking provides a connec-
tion between different planes and thus constructs the core of the recirculation vortex.
Figures 1.9 and 1.11 show these recirculation rings.

1.7 Conclusion

We have introduced a unified algorithmic framework to address the challenging task
of analyzing and visualizing the flow structures exhibited by typical CFD simulations
of complex vortical flows. Building upon the central idea of parametric topology
we investigate 3D flow patterns like vortical systems and recirculation bubbles to
yield intuitive and accurate representations. Moreover we extend a topology tracking
scheme originally designed for 2D transient vector fields to the three-dimensional
setting and show how to leverage it to efficiently explore large time-dependent data
sets and understand the temporal evolution of features of interest. The corresponding
algorithms are easily implemented and suitable for the processing of typical CFD
data sets, both online during numerical simulations and at the post-processing stage.
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