Lecture Notes in Computer Science

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich. Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos New York University, NY, USA Doug Tygar University of California, Berkeley, CA, USA Moshe Y. Vardi Rice University, Houston, TX, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany

Embedded Systems Design

The ARTIST Roadmap for Research and Development

Volume Editors

Bruno Bouyssounouse ARTIST Technical Coordinator Joseph Sifakis ARTIST Scientific Coordinator Verimag Laboratory Centre Equation, 2 avenue de Vignate, 38610 Gieres, France E-mail: {Bruno.Bouyssounouse,Joseph.Sifakis}@imag.fr

Library of Congress Control Number: 2005921510

CR Subject Classification (1998): C.3, C.2, D.2, D.3, D.4, K.6

ISSN 0302-9743 ISBN 3-540-25107-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg Printed on acid-free paper SPIN: 11400707 06/3142 5 4 3 2 1 0

Preface

Embedded systems now include a very large proportion of the advanced products designed in the world, spanning transport (avionics, space, automotive, trains), electrical and electronic appliances (cameras, toys, televisions, home appliances, audio systems, and cellular phones), process control (energy production and distribution, factory automation and optimization), telecommunications (satellites, mobile phones and telecom networks), and security (e-commerce, smart cards), etc. The extensive and increasing use of embedded systems and their integration in everyday products marks a significant evolution in information science and technology. We expect that within a short timeframe embedded systems will be a part of nearly all equipment designed or manufactured in Europe, the USA, and Asia.

There is now a strategic shift in emphasis for embedded systems designers: from simply achieving feasibility, to achieving optimality. Optimal design of embedded systems means targeting a given market segment at the lowest cost and delivery time possible. Optimality implies seamless integration with the physical and electronic environment while respecting real-world constraints such as hard deadlines, reliability, availability, robustness, power consumption, and cost. In our view, optimality can only be achieved through the emergence of embedded systems as a discipline in its own right.

Embedded systems are of strategic importance in modern economies. They are used in mass-market products and services, where value is created by supplying either functionality or quality. Europe currently has a strong position in sectors where embedded technologies play a central role. It has a lead in civil avionics where fly-bywire technology provides an overwhelming competitive advantage in the cost of operating aircraft. Europe is also well positioned in the space sector, specifically for launch vehicles and satellites. In the automotive industry, European manufacturers and their suppliers enjoy a leading technological advantage for engine control, and emerging technologies such as brake-by-wire and drive-by-wire. Railway signalling in Europe relies on embedded systems, and allows faster, safer, and heavier traffic. Embedded applications will be extensively used to make energy distribution more flexible, especially in view of the coming market liberalization. Embedded technologies are strategic for the European telecommunications sector. Finally, Europe is also well positioned for e-services (e-banking, e-health, e-training), based on the leading edge in smart-card related technologies.

Embedded systems design raises challenging problems for research, including:

• Security Economic, citizenship, and societal activities in Europe rely increasingly on embedded applications. Widespread acceptance and reliance on these will depend on the availability of seamless solutions for securing rights and privacy.

• Reliable, mobile, embedded services Electronic commerce and e-services in a wireless world will need provably correct foundations to ensure further growth.

- · Large-scale heterogeneous distributed systems
- Applications such as automated highways, advanced air traffic control, or nextgeneration factory automation require full-scale, industry-ready paradigms, methodologies, and advanced prototypes. These need to integrate heterogeneous elements from different, perhaps competing providers, in evolving embedded environments.
- Adaptive embedded systems Tomorrow's resource-constrained applications, such as image processing, telecommunications, and industrial automation, are expected to see drastic advances in performance and dependability, with the ability to adapt to dynamic changes in resource needs, including power/energy, bandwidth, memory, and computing power.
- Component-based design, validation, and tool-based certification Development costs and time-to-market could be vastly reduced, by enabling the incremental design and formal validation of arbitrarily complex systems.

This roadmap was written by the IST-2001-34820 ARTIST FP5 Accompanying Measure on Advanced Real-Time Systems, funded by the European Commission, and which started April 1st, 2002 and ended March 31st 2005.

The ARTIST FP5 workplan includes, in addition to providing this roadmap, advancing the state of the art and structuring research on embedded systems in Europe. It gathered together 28 leading European research institutions, as well as many top researchers in the area.

The aim of ARTIST FP5 was to coordinate the R&D effort in the area, to improve awareness of academics and industry, especially about existing innovative results and technologies, standards, and regulations, and to define innovative and relevant work directions, identify obstacles to scientific and technological progress, and propose adequate strategies for circumventing them.

ARTIST FP5 was implemented as a set of four coordinated actions, each centred on a high-priority thematic area of research on embedded systems. Correspondingly, the roadmap is organised into four parts.

Action 1: Hard Real Time. This action was led by Professor Albert Benveniste of INRIA (France), and focused on aspects of hard real-time applications, bringing together competencies from synchronous languages, time-triggered systems, and schedulers.

Action 2: Component-Based Design and Development. This action was led by Professor Bengt Jonsson of Uppsala University (Sweden), and focused on both theoretical and practical aspects of modelling complex systems with emphasis on methods (compositionality, composability) and standards (e.g. UML).

Action 3: Adaptive Real-Time Systems for QoS Management. This action was led by Professor Giorgio Buttazzo of the University of Pavia (Italy), and focused on soft real-time approaches and technology for telecommunications, large open systems, and networks. It gathered together teams with expertise in real-time operating systems and middleware.

Action 4: Execution Platforms. This action was led by Professor Lothar Thiele of the Swiss Federal Institute of Technology (ETHZ), and focused on issues at the frontier between hardware and software – and their implications for embedded systems design.

To enhance readability, each of the four parts of the roadmap follows a similar structure, although there are domain-related specificities. Also, inevitably, some topics may be treated in more than one part of the document, but the index should help the reader find the different relevant texts for a given topic.

Oversight for ARTIST FP5 was provided by the Artist Industrial Advisory Board (IAB), which reviewed the roadmap. The ARTIST IAB is chaired by Dr. Dominique Potier, Scientific Director for Software Technologies, Thalès.

We would like to thank all the contributors to the roadmap, including the engineers and researchers who participated in the various technical meetings and workshops, as well as the industrial leaders who granted interviews and/or provided information in the questionnaire. Special thanks also go to the Artist FP5 reviewers and the project officer, for constructive and stimulating comments.

The elaboration of this roadmap provided the opportunity for fertile interaction between key players in the area of embedded systems, and proved to be useful for structuring the area.

The work and the strategic orientations and conclusions of ARTIST FP5 led to the creation of the ARTIST2 FP6 Network of Excellence on Embedded Systems Design. Information about ARTIST2 is available on the web-site: http://www.artist-embedded.org/FP6.

This roadmap usefully complements other existing roadmapping work from ITEA and MEDEA+. We hope that it will be useful for both research and industry and that it will serve to advance awareness about the state of the art and provide insights on possible avenues for R&D.

Grenoble, January 2005

Bruno Bouyssounouse ARTIST Technical Coordinator Verimag Laboratory, France

Joseph Sifakis ARTIST Scientific Coordinator Verimag Laboratory, France

Editors

Verimag Laboratory, France

Bruno Bouyssounouse ARTIST Technical Coordinator Joseph Sifakis ARTIST Scientific Coordinator

Verimag Laboratory, France

Contributors

Part I: Hard Real-Time Development Environments

Coordinator: Albert Benveniste INRIA, France

Jos Baeten Eindhoven Technical University, The Netherlands Philippe Baufreton Hispano-Suiza, France INRIA, France Albert Benveniste Renault, France Samuel Boutin Verimag Laboratory, France Bruno Bouyssounouse Airbus, France Dominique Brière Verimag Laboratory, France Paul Caspi Werner Damm OFFIS, Germany **Emmerich Fuchs** Vienna Technical University, Austria Vered Gafni Israel Aircraft Industries, Israel Thierry Gautier INRIA. France Drora Goshen Israel Aircraft Industries, Israel Guenter Gruensteidl Alcatel, Austria Nicolas Halbwachs Verimag Laboratory, France Hermann Kopetz Vienna Technical University, Austria Kim Larsen Aalborg University, Denmark Hervé Le Berre Airbus, France Rainer Leupers RWTH Aachen, Germany Brian Nielsen Aalborg University, Denmark Ernst-Rüdiger Olderog OFFIS, Germany **Yiannis Papadopoulos** University of York, UK Philipp Peti Vienna Technical University, Austria Manfred Piseckv **TTTech**. France Peter Puschner Vienna Technical University, Austria Jörn Rennhack Airbus, Germany Alberto Sangiovanni-Vincentelli PARADES, Italy DaimlerChrysler, Germany Christian Scheidler Arne Skou Aalborg University, Denmark INRIA, France Yves Sorel Ulrich Virnich Siemens, Germany University of Wuppertal, Germany Birgit Vogel-Heuser Reinhard Wilhelm Saarland University, Germany Tim Willemse Eindhoven Technical University, The Netherlands

Part II: Component-Based Design and Integration Platforms

Coordinator: Bengt Jonsson University of Uppsala, Sweden

Ed Brinksma Geoff Coulson Ivica Crnkovic Andy Evans Sébastien Gérard Susanne Graf Holger Hermanns Jean-Marc Jézéquel Bengt Jonsson Noël Plouzeau Anders Ravn Philippe Schnoebelen Francois Terrier Angelika Votintseva University of Twente, The Netherlands Lancaster University, UK Mälardalen University, Sweden University of York, UK CEA, France Verimag Laboratory, France Saarland University, Germany INRIA, France University of Uppsala, Sweden INRIA, France Aalborg University, Denmark LSV Laboratory, France CEA, France OFFIS, Germany

Part III: Adaptive Real-Time Systems for Quality of Service Management

Coordinator: Giorgio Buttazzo University of Pavia, Italy

Luis Almeida Alejandro Alonso Guillem Bernat Alan Burns Giorgio Buttazzo Antonio Casimiro Carlos Delgado Kloos Johan Eker Joaquim Ferreira Gerhard Fohler José Alberto Fonseca Josep Fuertes Marisol Garcia Valls Michael Gonzalez Harbour Giuseppe Lipari Lucia Lo Bello **Evangelos Markatos** Pau Marti Ernesto Martins Miguel de Miguel Laurent Pautet Paulo Pedreiras Julian Proenza Juan Antonio de la Puente

University of Aveiro, Portugal Technical University of Madrid, Spain University of York, UK University of York, UK University of Pavia, Italy University of Lisbon, Portugal University Carlos III de Madrid, Spain Ericsson. Sweden Polytechnic Institute of Castelo Branco, Portugal Mälardalen University, Sweden University of Aveiro, Portugal Technical University of Catalonia, Spain University Carlos III de Madrid, Spain University of Cantabria, Spain Scuola Superiore S. Anna of Pisa, Italy University of Catania, Italy ICS Forth. Greece Technical University of Catalonia, Spain University of Aveiro, Portugal Technical University of Madrid, Spain Telecom Paris, France University of Aveiro, Portugal University of Balearic Islands, Spain Technical University of Madrid, Spain

Daniel Simon Liesbeth Steffens Paulo Verissimo Andy Wellings Sergio Yovine INRIA, France Philips Research, The Netherlands University of Lisbon, Portugal University of York, UK Verimag Laboratory, France

Part IV: Execution Platforms

Coordinator: Lothar Thiele ETHZ, Switzerland

Luca Benini Geert Deconinck Petru Eles Rolf Ernst Murali Jayapala Jan Madsen Zebo Peng Marco Platzner Paul Pop Lothar Thiele Tom Vander Aa Kashif Virk Fabian Wolf University of Bologna, Italy K.U.Leuven, Belgium Linköping University, Sweden Technical University of Braunschweig, Germany K.U.Leuven, Belgium Technical University of Denmark, Denmark Linköping University, Sweden ETHZ, Switzerland Linköping University, Sweden ETHZ, Switzerland K.U.Leuven, Belgium Technical University of Denmark Volkswagen AG, Germany

Table of Contents

Part I: Hard Real-Time Development Environments

1	Executive Overview on Hard Real-Time Development Environments				
	1.1	Motivation and Objectives	1		
	1.2	Essential Characteristics	2		
	1.3	Role in Future Embedded Systems	3		
	1.4	Overall Challenges and Work Directions	4		
	1.5	Document Structure	9		
2	Hard Real-Time System Development				
	2.1	Brief Discussion of Current Practice: The V-Shaped Lifecycle	10		
	2.2	An Emerging Approach: Platform-Based Design	11		
3	Current Design Practice and Needs in Selected Industrial Sectors1				
	3.1	Automotive Systems	15		
	3.2	Aeronautics: A Case Study	24		
	3.3	Consumer Electronics: A Case Study			
	3.4	Automation Applications	35		
4	Tools	Tools for Requirements Capture and Exploration			
	4.1	Definitions of Hard Real-Time Dependability Features	39		
	4.2	Scientific Engineering Tools and Physical Systems Modellers	45		
	4.3	State-Based Design: Dealing with Complex Discrete Control	50		
5	Tools	s for Architecture Design and Capture	54		
6	Tools	s for Programming, Code Generation, and Design	63		
	6.1	Structure	63		
	6.2	Code Generation from Synchronous Languages	63		
	6.3	Back-End Code Generation – Below C	68		
7	Tools for Verification and Validation				
	7.1	Building Blocks for Verification and Validation	72		
	7.2	Model Checking			
	7.3	Static Program Analysis			
	7.4	Testing Embedded Systems	80		
8	Midd	lleware for Implementing Hard Real-Time Systems	85		

9	Review of Some Advanced Methodologies		
	9.1	The Setta Project	.92
		The SafeAir Project	

Part II: Component-Based Design and Integration Platforms

10	Executive Overview on Component-Based Design and Integration Platforms			
	10.1	Motivation and Objectives		
	10.2	Essential Characteristics		
	10.3	Role in Future Embedded Systems		
	10.4	Overall Challenges and Work Directions		
	10.5	Document Structure	112	
11	Component-Based System Development1			
	11.1	Lifecycle of Component-Based Systems	114	
	11.2	Lifecycle of Components	117	
	11.3	Issues Specific for Embedded Systems	117	
	11.4	Summary and Conclusions		
12	Curre	nt Design Practice and Needs in Selected Industrial Sectors		
	12.1	Automotive		
	12.2	Industrial Automation		
	12.3	Consumer Electronics		
	12.4	Telecommunication Software Infrastructure	131	
	12.5	Avionics and Aerospace	134	
	12.6	Summary and Challenges		
13	Comp	ponents and Contracts	139	
	13.1	Introduction		
	13.2	Level 1 – Syntactic Interfaces	140	
	13.3	Level 2 – Functional Properties	143	
	13.4	Level 3 – Functional Properties	145	
	13.5	Level 4a – Timing Properties	147	
	13.6	Level 4b – Quality of Service	153	
	13.7	Specifying and Reasoning About Contracts: Summary and Analysis		
14	Comp	ponent Models and Integration Platforms: Landscape		
	14.1	Widely Used Component Models		
	14.2	Component Models for Embedded System Design		

	14.3	Integration Platforms for Heterogeneous System Design	181
	14.4	Hardware/Software Modelling Languages	186
	14.5	Component Models and Integration Platforms: Summary and Conclusions	187
	14.6	Component Libraries: Approaches to Component Retrieval	189
15	Stand	ardization Efforts	194
	15.1	Specification Standards	194
	15.2	Implementation Technology Standards	202
	15.3	Conclusions and Challenges	203
16	Refer	ences	204

Part III: Adaptive Real-Time Systems for Quality of Service Management

17	Executive Overview on Adaptive Real-Time Systems for Quality of Service Management				
	17.1	Motivation and Objectives	216		
	17.2	Essential Characteristics			
	17.3	Role in Future Embedded Systems	218		
	17.4	Overall Challenges and Work Directions	220		
	17.5	Document Structure	225		
18	Adap	tive Real-Time System Development	227		
19	Curre	ent Design Practice and Needs in Selected Industrial Sectors	229		
	19.1	Industrial Sector 1: Consumer Electronics in Philips	229		
	19.2	Industrial Sector 2: Industrial Automation			
	19.3	Industrial Sector 3: Consumer Electonics: Ericsson Mobile Platforms			
	19.4	Industrial Sector 4: Telecommunications – The PT-Inovação Case Study	240		
20	Real-	Time Scheduling	242		
	20.1	Landscape	242		
	20.2	Assessment	248		
	20.3	Trends	248		
	20.4	Recommendations for Research	252		
	20.5	References	254		
21	Real-	Real-Time Operating Systems			
	21.1	Landscape	259		
	21.2	Assessment	275		

	21.3	Trends			
	21.4	Recommendations for Research			
	21.5	References			
22	QoS Management				
	22.1	Landscape			
	22.2	Assessment			
	22.3	Trends			
	22.4	Recommendations for Research			
	22.5	References			
23	Real-	Time Middleware			
	23.1	Landscape			
	23.2	Assessment			
	23.3	Trends			
	23.4	Recommendations for Research			
	23.5	References			
24	Netw	orks			
	24.1	Landscape			
	24.2	Assessment			
	24.3	Trends			
	24.4	Recommendations for Research			
	24.5	References			
25	Progr	amming Languages for Real-Time Systems			
	25.1	Landscape			
	25.2	Assessment			
	25.3	Trends			
	25.4	Recommendations for Research			
	25.5	References			
26	Other	Issues			
	26.1	Power Awareness			
	26.2	Media-Processing Applications			
	26.3	Integrating Real-Time and Control Theory			
	26.4	Probabilistic Time Analysis			
	26.5	Hardware Trends			

Part IV: Execution Platforms

27	Execu	tive Overview on Execution Platforms	
	27.1	Motivation and Objectives	
	27.2	Essential Characteristics	
	27.3	Role in Future Embedded Systems	
	27.4	Overall Challenges and Work Directions	
	27.5	Document Structure	
28	Current Design Practice and Needs in Selected Sectors		
	28.1	Automotive Industry	
	28.2	Mechatronics Industry	
29	Computing Platforms		
	29.1	Multiprocessor Systems – Modelling and Simulation	
	29.2	Distributed Embedded Real-Time Systems – Analysis and	
		Exploration	
	29.3	Reconfigurable Hardware Platforms	
	29.4	Software Integration – Automotive Applications	
30	Low Power Engineering		
	30.1	Power-Aware and Energy Efficient Middleware	
	30.2	Memory Hierarchy and Low Power Embedded Processors	
Index			