Lecture Notes in Computer Science

3402

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

New York University, NY, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michel Daydé Jack J. Dongarra Vicente Hernández José M.L.M. Palma (Eds.)

High Performance Computing for Computational Science – VECPAR 2004

6th International Conference Valencia, Spain, June 28-30, 2004 Revised Selected and Invited Papers

Volume Editors

Michel Daydé ENSEEIHT

2, Rue Camichel, 31071 Toulouse Cedex 7, France

E-mail: dayde@enseeiht.fr

Jack J. Dongarra

University of Tennessee, TN 37996-1301, USA

E-mail: dongarra@cs.utk.edu

Vicente Hernández Universidad Politecnica de Valencia Camino de Vera, s/n, 46022 Valencia, Spain

E-mail: vhernand@dsic.upv.es

José M.L.M. Palma Universidade do Porto Faculdade de Engenharia Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal E-mail: j.palma@fe.up.pt

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D, F, C.2, G, J.2, J.3

ISSN 0302-9743

ISBN-10 3-540-25424-2 Springer Berlin Heidelberg New YorkISBN-13 978-3-540-25424-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 11403937 06/3142 5 4 3 2 1 0

Preface

VECPAR is a series of international conferences dedicated to the promotion and advancement of all aspects of high-performance computing for computational science, as an industrial technique and academic discipline, extending the frontier of both the state of the art and the state of practice. The audience for and participants in VECPAR are seen as researchers in academic departments, government laboratories and industrial organizations. There is now a permanent website for the series, http://vecpar.fe.up.pt, where the history of the conferences is described.

The sixth edition of VECPAR was the first time the conference was celebrated outside Porto – at the Universitad Politecnica de Valencia (Spain), June 28–30, 2004. The whole conference programme consisted of 6 invited talks, 61 papers and 26 posters, out of 130 contributions that were initially submitted. The major themes were divided into large-scale numerical and non-numerical simulations, parallel and grid computing, biosciences, numerical algorithms, data mining and visualization.

This postconference book includes the best 48 papers and 5 invited talks presented during the three days of the conference. The book is organized into 6 chapters, with a prominent position reserved for the invited talks and the Best Student Paper. As a whole it appeals to a wide research community, from those involved in the engineering applications to those interested in the actual details of the hardware or software implementations, in line with what, in these days, tends to be considered as computational science and engineering (CSE).

Chapter 1 is concerned with large-scale computations; the first paper in the chapter, and in the book, was also the opening talk at the conference. Tetsuya Sato gives an overview of the greatest computations being performed on the Earth Simulator in Japan, followed by a series of 7 papers on equally large problems. Patrick Valduriez authors an invited talk on data management in large P2P systems; the companion to 4 more papers put together in Chapter 2.

The Grid technology in the roughly 5 years since it emerged has become one of the major driving forces in computer and also computational science and engineering. Fabrizio Gagliardi and Vincent Breton in the two first papers (invited talks) in chapter 3 present, respectively, the EGEE European Grid Infrastructure and applications of the Grid technology in medical applications. The 8 remaining papers in the chapter are a further example of the impact that the Grid is making in many areas of application.

Chapter 4 is the largest of all and the 12 papers in this chapter are an indication of the importance of cluster computing. Parallel and distributed computing is the title of chapter 5, which, despite its similarity with the previous chapter, includes papers where the emphasis has been put on the physical modelling and not so much on the strictly computing aspects of the simulations. The invited

VI Preface

talk by Michael Heath opens chapter 5 and is a good example of how complex the computer simulation of real-life engineering systems can be. Since its early editions, linear algebra has occupied a relatively large proportion of the conference programme; linear algebra was the topic we chose to bring this book to a closure – Chapter 6.

Best Student Paper

There were 10 papers of high quality registered for the Best Student Paper competition. The laureate of the prize was German Molto for the paper:

 Three-Dimensional Cardiac Electrical Activity Simulation on Cluster and Grid Platforms, by German Molto, and also co-authored by Jose M. Alonso, Jose M. Ferrero, Vicente Hernandez, Marta Monserrat and Javier Saiz, all at Universidad Politecnica de Valencia.

To conclude, we would like to state in writing our gratitude to all the members of the Scientific Committee and the additional referees. Their opinions and comments were essential in the preparation of this book and the conference programme. We hope that the knowledge and the experience of many contributors to this book can be useful to a large number of readers.

December 2004

Michel Daydé, Jack Dongarra, Vicente Hernández, José M.L.M. Palma

VECPAR is a series of conferences organized by the Faculty of Engineering of Porto (FEUP) since 1993

Acknowledgments

The sixth edition of the VECPAR conference brought new organizational challenges. The work was split between people in different countries. While the conference was held in Valencia (Spain), both the Web-based submission systems and the conference page were maintained at the Faculty of Engineering of the University of Porto (Portugal). Vitor Carvalho, once again, was responsible for the conference webpage and did an excellent job. Miguel Caballer, Gemma Cabrelles and Gabriel Garcia at the University of Valencia, under the guidance of Vicente Hernandez, did invaluable work on the Organizing Committee.

João Correia Lopes took care of the VECPAR databases and the Web-based submission systems; his collaboration was precious.

Committees

Organizing Committee

Vicente Hernandez (Chairman)

Antonio Vidal Vicente Vidal Victor García Enrique Ramos Ignacio Blanquer Jose Roman

Jose Miguel Alonso Fernando Alvarruiz

Jesus Peinado Pedro Alonso

João Correia Lopes (Webchair)

Steering Committee

José Laginha Palma (Chairman), Universidade do Porto, Portugal

Jack Dongarra, University of Tennessee, USA

José Fortes, University of Purdue, USA

Álvaro Coutinho, Universidade Federal do Rio de Janeiro, Brazil

Lionel Ni, Hong Kong University of Science and Technology, Hong Kong, China

Scientific Committee

M. Daydé (Chairman) ENSEEIHT-IRIT, France

O. Coulaud INRIA, France

J.C. Cunha Univ. Nova de Lisboa, Portugal

I.S. Duff Rutherford Appleton Lab., UK and CERFACS,

France

N. Ebecken Univ. Federal do Rio de Janeiro, Brazil

W. Gentzsch SUN, USA

A. George Univ. of Florida, USA
L. Giraud CERFACS, France
R. Guivarch ENSEEIHT-IRIT, France
D. Knight Rutgers Univ., USA

J. Koster Bergen Center for Comp. Science, Norway

V. Kumar Univ. of Minnesota, USA R. Lohner George Mason Univ., USA

O. Marques Lawrence Berkeley National Laboratory, USA

X Committees

A. Nachbin Inst. Matemática Pura e Aplicada, Brazil

A. Padilha Univ. do Porto, Portugal

B. Plateau Lab. Informatique et Distribution, France

T. Priol
R. Ralha
H. Ruskin
E. Seidel
IRISA/INRIA, France
Univ. do Minho, Portugal
Dublin City Univ., Ireland
Louisiana State University, USA

A. Sousa Univ. do Porto, Portugal M. Stadtherr Univ. of Notre Dame, USA

F. Tirado Univ. Complutense de Madrid, Spain
B. Tourancheau École Normale Supérieure de Lyon, France
M. Valero Univ. Politécnica de Catalunya, Spain

E. Zapata Univ. de Malaga, Spain

Invited Lecturers

- Tetsuya Sato Earth Simulator Center, Japan

- Patrick Valduriez
 INRIA and IRIN, Nantes, France
- Fabrizio Gagliardi
 EGEE, CERN, Switzerland
- Vincent Breton
 LPC Clermont-Ferrand, CNRS-IN2p3, France
- Michael T. Heath
 Computational Science and Engineering
 University of Illinois at Urbana-Champaign, USA

Sponsoring Organizations

The Organizing Committee is very grateful to the following organizations for their support:

UPV - Universidad Politécnica de Valencia

UP - Universidade do Porto

FEUP - Faculdade de Engenharia da Universidade do Porto

 $\operatorname{GVA}\;$ - Generalitat Valenciana Conselleria de Empresa, Universidad y Ciencia

Additional Referees

Alberto Pascual

Albino dos Anjos Aveleda Aleksandar Lazarevic Alfredo Bautista B. Uygar Oztekin Boniface Nkonga Bruno Carpentieri Byung Il Koh

Carlos Silva Santos Christian Perez Christine Morin Congduc Pham Daniel Ruiz David Bueno Eric Eilertson Eric Grobelny

Carlos Balsa

Enc Groberny
Eugenius Kaszkurewicz
Fernando Alvarruiz
Gabriel Antoniu
Gaël Utard
Germán Moltó
Gerson Zaverucha
Gregory Mounie
Guillaume Huard
Gérard Padiou
Helge Avlesen
Hui Xiong
Hung-Hsun Su
Ian A. Troxel
Ignacio Blanquer

J. Magalhães Cruz J.M. Nlong

Jan-Frode Myklebust Jean-Baptiste Caillau Jean-Louis Pazat

Inês de Castro Dutra

Jorge Barbosa Jose M. Cela Jose Roman Joseph Gergaud José Carlos Alves José L.D. Alves José Miguel Alonso João Manuel Tavares João Tomé Saraiva

K. Park Kil Seok Cho Luis F. Romero Luis Piñuel

Miguel Pimenta Monteiro

M.C. Counilh

Manuel Prieto Matias

Manuel Próspero dos Santos

Marc Pantel
Marchand Corine
Matt Radlinski
Michael Steinbach
Myrian C.A. Costa
Nicolas Chepurnyi
Nuno Correia
Olivier Richard
Pascal Henon
Paulo Lopes
Pedro Medeiros
Pierre Ramet
Ragnhild Blikberg

Rajagopal Subramaniyan Ramesh Balasubramanian

Sarp Oral Uygar Oztekin Yves Denneulin Yvon Jégou

Table of Contents

Chapter 1: Large Scale Computations

Large Scale Simulations Sato Tetsuya	1
Development and Integration of Parallel Multidisciplinary Computational Software for Modeling a Modern Manufacturing Process Brian J. Henz, Dale R. Shires, Ram V. Mohan	10
Automatically Tuned FFTs for BlueGene/L's Double FPU Franz Franchetti, Stefan Kral, Juergen Lorenz, Markus Püschel, Christoph W. Ueberhuber	23
A Survey of High-Quality Computational Libraries and Their Impact in Science and Engineering Applications Leroy A. Drummond, Vicente Hernandez, Osni Marques, Jose E. Roman, Vicente Vidal	37
A Performance Evaluation of the Cray X1 for Scientific Applications Leonid Oliker, Rupak Biswas, Julian Borrill, Andrew Canning, Jonathan Carter, M. Jahed Djomehri, Hongzhang Shan, David Skinner	51
Modelling Overhead of Tuple Spaces with Design of Experiments Frederic Hancke, Tom Dhaene, Jan Broeckhove	66
Analysis of the Interaction of Electromagnetic Signals with Thin-Wire Structures. Multiprocessing Issues for an Iterative Method Ester Martín Garzón, Siham Tabik, Amelia Rubio Bretones, Inmaculada García	78
A Performance Prediction Model for Tomographic Reconstruction in Structural Biology Paula Cecilia Fritzsche, José-Jesús Fernández, Ana Ripoll, Inmaculada García, Emilio Luque	90
Chapter 2: Data Management and Data Mining	
Data Management in Large-Scale P2P Systems Patrick Valduriez, Esther Pacitti	104

A High Performance System for Processing Queries on Distributed Geospatial Data Sets Mahdi Abdelguerfi, Venkata Mahadevan, Nicolas Challier, Maik Flanagin, Kevin Shaw, Jay Ratcliff	119
Parallel Implementation of Information Retrieval Clustering Models Daniel Jiménez, Vicente Vidal	129
Distributed Processing of Large BioMedical 3D Images Konstantinos Liakos, Albert Burger, Richard Baldock	142
Developing Distributed Data Mining Applications in the Knowledge Grid Framework Giuseppe Bueti, Antonio Congiusta, Domenico Talia	156
Scaling Up the Preventive Replication of Autonomous Databases in Cluster Systems Cédric Coulon, Esther Pacitti, Patrick Valduriez	170
Parallel Implementation of a Fuzzy Rule Based Classifier Alexandre G. Evsukoff, Myrian C.A. Costa, Nelson F.F. Ebecken	184
Chapter 3: Grid Computing Infrastructure	
The EGEE European Grid Infrastructure Project Fabrizio Gagliardi	194
Grid Technology to Biomedical Applications Vincent Breton, Christophe Blanchet, Yannick Legré, Lydia Maigne, Johan Montagnat	204
Three-Dimensional Cardiac Electrical Activity Simulation on Cluster and Grid Platforms Jose M. Alonso, Jose M. Ferrero (Jr.), Vicente Hernández, Germán Moltó, Marta Monserrat, Javier Saiz	219
2DRMP-G: Migrating a Large-Scale Numerical Mathematical Application to a Grid Environment Terry Harmer, N. Stan Scott, Virginia Faro-Maza, M. Penny Scott,	
Phil G. Burke, Andrew Carson, P. Preston Design of an OGSA-Compliant Grid Information Service Using .NET	233
Technologies Ranieri Baraglia, Domenico Laforenza, Angelo Gaeta, Pierluigi Ritrovato, Matteo Gaeta	247

A Web-Based Application Service Provision Architecture for Enabling High-Performance Image Processing	
Carlos Alfonso, Ignacio Blanquer, Vicente Hernandez, Damià Segrelles	260
Influence of Grid Economic Factors on Scheduling and Migration Rafael Moreno-Vozmediano, Ana Belen Alonso-Conde	274
Extended Membership Problem for Open Groups: Specification and Solution Mari-Carmen Bañuls, Pablo Galdámez	288
Asynchronous Iterative Algorithms for Computational Science on the Grid: Three Case Studies Jacques Bahi, Raphaël Couturier, Philippe Vuillemin	302
Security Mechanism for Medical Image Information on PACS Using Invisible Watermark Guan-tack Oh, Yun-Bae Lee, Soon-ja Yeom	
Chapter 4: Cluster Computing	
Parallel Generalized Finite Element Method for Magnetic Multiparticle Problems Achim Basermann, Igor Tsukerman	325
Parallel Model Reduction of Large Linear Descriptor Systems via Balanced Truncation Peter Benner, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí	340
A Parallel Algorithm for Automatic Particle Identification in Electron Micrographs Vivek Singh, Yongchang Ji, Dan C. Marinescu	354
Parallel Resolution of the Two-Group Time Dependent Neutron Diffusion Equation with Public Domain ODE Codes. Víctor M. García, Vicente Vidal, G. Verdu, Juan Garayoa, Rafael Miró	368
FPGA Implementations of the RNR Cellular Automata to Model Electrostatic Field Joaquín Cerdá-Boluda, Oscar Amoraga-Lechiguero, Ruben Torres-Curado, Rafael Gadea-Gironés, Angel Sebastià-Cortés	382

PerWiz: A What-If Prediction Tool for Tuning Message Passing	
Programs Fumihiko Ino, Yuki Kanbe, Masao Okita, Kenichi Hagihara	396
Maintaining Cache Coherency for B+ Tree Indexes in a Shared Disks Cluster	
Kyungoh Ohn, Haengrae Cho	410
Message Strip-Mining Heuristics for High Speed Networks Costin Iancu, Parry Husbands, Wei Chen	424
Analysis of the Abortion Rate on Lazy Replication Protocols Luis Irún-Briz, Francesc D. Muñoz-Escoí, Josep M. Bernabéu-Aubán	438
protoRAID: A User-Level RAID Emulator for Fast Prototyping in Fibre Channel SAN Environment Dohun Kim, Chanik Park	454
Parallel Computational Model with Dynamic Load Balancing in PC Clusters Ricardo V. Dorneles, Rogério L. Rizzi, André L. Martinotto, Delcino Picinin Jr., Philippe O.A. Navaux, Tiarajú A. Diverio	468
Dynamically Adaptive Binomial Trees for Broadcasting in Heterogeneous Networks of Workstations Silvia M. Figueira, Christine Mendes	480
Chapter 5: Parallel and Distributed Computing	
Parallel Simulation of Multicomponent Systems Michael T. Heath, Xiangmin Jiao	496
Parallel Boundary Elements: A Portable 3-D Elastostatic Implementation for Shared Memory Systems Manoel T.F. Cunha, José C.F. Telles, Alvaro L.G.A. Coutinho	514
On Dependence Analysis for SIMD Enhanced Processors Patricio Bulić, Veselko Guštin	527
A Preliminary Nested-Parallel Framework to Efficiently Implement Scientific Applications Arturo González Escribano, Arjan J.C. van Gemund, Valentín Cardeñoso-Payo, Raúl Portales-Fernández, Jose A. Caminero-Grania	541
Jose A. Caminero-Granja	041

Exploiting Multilevel Parallelism Within Modern Microprocessors: DWT as a Case Study Christian Tenllado, Carlos Garcia, Manuel Prieto, Luis Piñuel,	
Francisco Tirado	556
Domain Decomposition Methods for PDE Constrained Optimization Problems Ernesto Prudencio, Richard Byrd, Xiao-Chuan Cai	569
Parallelism in Bioinformatics Workflows Luiz A.V.C. Meyer, Shaila C. Rössle, Paulo M. Bisch, Marta Mattoso	583
Complete Pattern Matching: Recursivity Versus Multi-threading Nadia Nedjah, Luiza de Macedo Mourelle	598
Probabilistic Program Analysis for Parallelizing Compilers Iain M. Forsythe, Peter Milligan, Paul P. Sage	610
Chapter 6: Linear and Non-Linear Algebra	
Parallel Acceleration of Krylov Solvers by Factorized Approximate Inverse Preconditioners Luca Bergamaschi, Ángeles Martínez	623
Krylov and Polynomial Iterative Solvers Combined with Partial Spectral Factorization for SPD Linear Systems Luc Giraud, Daniel Ruiz, Ahmed Touhami	637
Three Parallel Algorithms for Solving Nonlinear Systems and Optimization Problems Jesús Peinado, Antonio M. Vidal	657
Numerical Integration of Differential Riccati Equation: A High Performance Computing Approach Enrique Arias, Vicente Hernández	671
An Efficient and Stable Parallel Solution for Non-symmetric Toeplitz Linear Systems Pedro Alonso, José M. Badía, Antonio M. Vidal	685
Partial Spectral Information from Linear Systems to Speed-Up Numerical Simulations in Computational Fluid Dynamics. Carlos Balsa, José M. Laginha M. Palma, Daniel Ruiz	699

XVIII Table of Contents

Parallel Newton Iterative Methods Based on Incomplete LU	
Factorizations for Solving Nonlinear Systems	
Josep Arnal, Héctor Migallón, Violeta Migallón, Jose Penadés	716
Author Index	731