Query Optimization in Inductive Logic
Programming by Reordering Literals

Jan Struyf and Hendrik Blockeel

Katholieke Universiteit Leuven, Dept. of Computer Science,
Celestijnenlaan 200A, B-3001 Leuven, Belgium
{Jan.Struyf, Hendrik.Blockeel}@cs.kuleuven.ac.be

Abstract. Query optimization is used frequently in relational database
management systems. Most existing techniques are based on reordering
the relational operators, where the most selective operators are executed
first. In this work we evaluate a similar approach in the context of In-
ductive Logic Programming (ILP). There are some important differences
between relational database management systems and ILP systems. We
describe some of these differences and list the resulting requirements for
a reordering transformation suitable for ILP. We propose a transforma-
tion that meets these requirements and an algorithm for estimating the
computational cost of literals, which is required by the transformation.
Our transformation yields a significant improvement in execution time
on the Carcinogenesis data set.

1 Introduction

Many Inductive Logic Programming (ILP) systems construct a predictive or de-
scriptive model (hypothesis) for a given data set by searching a large space of
candidate hypotheses. Different techniques exist to make this search more effi-
cient. Some techniques improve efficiency by reducing the number of hypotheses
that are evaluated during the search. Examples of such techniques are language
bias specification mechanisms [10], which limit the number of valid hypotheses,
and search strategies (e.g. branch-and-bound search [9], heuristic search [12] and
stochastic search [16]), which reduce the number of hypotheses to be evaluated
by cutting away branches in the search.

Evaluating a candidate hypothesis can also be made more efficient. In ILP
each hypothesis is represented by a number of clauses in first order logic. For
example, in an ILP rule learner such as Progol [9] or FOIL [12], the condition
of each rule r is a first order logic query ¢g. Rules are generated and evaluated
one by one. In order to evaluate the performance of a rule, the query ¢ has to
be executed on each example in the data set.

Many techniques designed for efficiently executing relational queries (e.g.
SQL) in a relational database management system [4] can, after some modific-
ations, also be used for efficiently executing first order queries. An example of
this is index structures (e.g., hash-tables), which are used to efficiently retrieve
tuples from a relational database given the value of some attribute. Most ILP

systems provide a similar kind of indexing [7,3] on the datalog facts that are
commonly used to describe the examples.

Query optimization [4, 5] is another technique that is frequently used in rela-
tional database management systems. Query optimizers transform queries into
a different form, which is more efficient to execute. Also in ILP, techniques have
been introduced for optimizing first order queries (see [13] for an overview). One
specific approach that is popular in relational database management systems is
to reorder the relational operators such that the most selective ones are executed
first. A similar approach has not yet been evaluated in the context of ILP. In
this work we introduce a query transformation that optimizes first order queries
by reordering literals. The basic idea is that also first order queries become more
efficient to execute if “selective” literals are placed first.

This paper is organized as follows. In Section 2 we present a motivating ex-
ample that illustrates the amount of efficiency that can be gained by a reordering
transformation in ILP. In Section 3 we list three important requirements for such
a transformation and point out some significant differences with query optimiz-
ation in relational databases. In Section 4 we introduce a reordering transform-
ation for optimizing first order queries in ILP. We also describe an extension
able to handle queries that are the output of the cut-transform [13]. Section 5
presents experiments that evaluate the performance of the transformation on
the Carcinogenesis data set. Section 6 concludes the paper.

2 A Motivating Example

We start with a motivating example that illustrates the amount of efficiency that
can be gained by reordering the literals of a first order query. In this example we
use the Carcinogenesis data set [14], which stores structural information about
330 molecules. Each molecule is described by a number of atom/4' and bond/4
facts.

Consider the following query:

atom(M,A1,h,3) ,atom(M,A2,c,16) ,bond(M,A2,A1,1).

This query succeeds for a molecule M that contains a hydrogen atom A1 of type 3
that is bound to a carbon atom A2 of type 16 by a single bond. We execute each
possible reordering (i.e., permutation) of the query on each example molecule.
Table 1 lists all permutations sorted by average execution time.

As can be seen from Table 1, the most efficient permutation is 6 times faster
than the original query ¢4 and 9 times faster than the least efficient one. This
can be explained by looking at the size of the SLD-tree [8] that is generated
when the ILP system executes the permutation on a given example.

Given a query ¢ =l ...[l, and example e, the SLD-tree will contain at level
i different nodes v; ; that correspond to calls to literal /; with input substitution
0;.;. The input substitution for the root node 6; ; binds the key variable of the

! We have omitted the atom charge to simplify the presentation.

Table 1. Averaged execution times (ms/example) for the 6 permutations of an example
query. The queries were executed using the YAP Prolog system version 4.4.2 on an Intel
P4 1.8GHz with 512MB RAM running Linux.

Time Permutation
q1 0.010 atom(M,A2,c,16) ,bond(M,A2,A1,1) ,atom(M,A1,h,3).
q2 0.023 atom(M,A2,c,16) ,atom(M,A1,h,3) ,bond(M,A2,A1,1).
gqs 0.052 bond(M,A2,A1,1) ,atom(M,A2,c,16) ,atom(M,A1,h,3).
qs 0.061 atom(M,A1,h,3),atom(M,A2,c,16) ,bond(M,A2,A1,1).
g5 0.081 atom(M,A1,h,3) ,bond(M,A2,A1,1) ,atom(M,A2,c,16).
gs 0.091 bond(M,A2,A1,1) ,atom(M,A1,h,3) ,atom(M,A2,c,16).

query (M in the example) to the identifier of example e. The children of a node
v;,5 correspond to the solutions of [;0; ;. The size of the SLD-tree thus depends
on the length of the query, which is the maximum depth of the tree, and the
number of children of each node.

We will call this number of children the non-determinacy of a literal given the
corresponding input substitution (Definition 1). Because the non-determinacy of
a literal depends on the input substitution, it also depends on the position of
the literal in the SLD-tree and hence also on its position in the query.

Definition 1. (Non-determinacy) The non-determinacy nondet(l,0) of a literal
I given an input substitution 0 is the number of solutions or answer substitutions
that are obtained by calling 16.

Ezxample 1. We continue the Carcinogenesis example. The non-determinacy of
atom(M,A1,h,3) given {M/m1} is equal to the number of hydrogen atoms of
type 3 in molecule m1. If we consider {M/m1,A1/a1} then the non-determinacy
is either 1 if al is a hydrogen atom of type 3 or 0 if it is another kind of atom.

Non-determinacy as defined above is always associated with one specific
call, i.e., with one literal and input substitution. The notion of average non-
determinacy (Definition 2) is useful to make more general statements about the
number of solutions of a literal.

Definition 2. (Average non-determinacy) Consider a distribution over possible
input substitutions D. We define the average non-determinacy of a literal [with
respect to D as:

nondet(l, D) = Z P - nondet (I, 0y,)
(0,p), €D

with py the probability of 0y, given D.

Ezample 2. Consider all N molecules in the Carcinogenesis domain and let D be
a uniform distribution over the input substitutions that ground the key argument
of a literal to one of the molecule identifiers. The average non-determinacy of

bond (M,A1,A2,N) with respect to D is about 20, which is the average number
of bonds that occurs in a molecule. Whenever D is not specified in the future it
refers to the same distribution as is defined in this example.

Consider again the fastest (¢1) and slowest (gg) permutation from Table 1. In
permutation ¢; the average non-determinacy of /; is low because few molecules
contain carbon atoms of type 16. The non-determinacy of Iy, given an input
substitution, is at most 4 because carbon atoms can have at most 4 bonds. The
non-determinacy of [3 is either zero or one because Al is ground at that point.
Since only few molecules contain carbon atoms of type 16, the average SLD-tree
size will be small for ¢;. In permutation g the bond/4 literal is executed first.
Because both A1 and A2 are free at that point, the non-determinacy of this call
will be equal to the number of bonds in the molecule (about 20 on average).
The non-determinacies of Il and I3 will be either zero or one. The SLD-trees
for g¢ will be much bigger on average and hence the execution time, which is
proportional to the average SLD-tree size, will also be longer.

3 Requirements

We start by listing a number of requirements for a reordering transformation for
first order queries in the context of ILP.

R1 (Correctness) The reordering transformation should be correct, i.e. the trans-
formed query should succeed (fail) for the same examples as the original
query succeeds (fails).

R2 (Optimality) The reordering transformation should approximate the optimal
transformation, which replaces the original query by the permutation that
has the shortest average execution time.

R3 (Efficiency) The reordering transformation itself should be efficient. The time
for performing the transformation should be smaller than the efficiency dif-
ference that can be obtained by executing the transformed query instead of
the original one.

If all predicates are defined by sets of facts, then the order of the literals does
not influence the result of the query (cf. the switching lemma [8]) and the cor-
rectness requirement (R1) is met. If some predicates have input arguments that
should be ground (e.g., background predicates that perform a certain computa-
tion), then it is possible that a given permutation is invalid because it breaks
this constraint. The reordering transformation must make sure not to select such
a permutation.

The efficiency requirement (R3) can be easily met in the context of a rela-
tional database where executing a query typically involves (slow) disk access. In
ILP, query execution is much faster. In many applications the entire data set
resides in main memory. Even if the data set does not fit completely in main
memory at once, ILP systems can still use efficient caching mechanisms that
load examples one by one [1,15] to speed up query execution. When queries

are executed fast, transformation time becomes more important. ILP systems
also consider different subsets of the data during the refinement process. Some
queries are executed on very small sets of examples. If a query is executed on
a smaller set, it will be executed faster, which again makes R3 more difficult to
achieve.

To meet the optimality requirement (R2), query optimizers in relational data-
base management systems place selection operators with a high selectivity, joins
that are expected to return a small number of tuples, and projections that select
few attributes, as early as possible. Similarly, a reordering transformation for
first order queries should place literals with a low average non-determinacy first
in order to avoid unnecessary backtracking.

An important difference between relational database management systems
and ILP systems is that relational database management systems execute queries
bottom-up instead of top-down. The user is always interested in obtaining all
solutions for a given query. In ILP, query execution stops after finding the first
solution (success). This is because the ILP system only needs to know for a
given example whether a given query succeeds or not. In this context, a top-
down execution strategy is more efficient.

A consequence of the top-down strategy is that a query optimizer for first or-
der queries should place literals that ground many variables as early as possible.
Grounding variables decreases the non-determinacy of the literals that follow,
which decreases execution time.

Typical for ILP applications are predicates that have a long execution time
(e.g., background predicates that compute aggregates). Such predicates should
be placed after fast predicates with a low non-determinacy and before predic-
ates with a high non-determinacy. Due to the top-down strategy, the expensive
predicate is not executed if the low non-determinacy predicate fails and may be
executed several times if the high non-determinacy predicate has several solu-
tions for a given example.

A last difference is that in relational database systems queries are mostly
generated directly by humans and not by a refinement operator p as is the case
for ILP systems. In ILP systems the efficiency of the original query (as it is
generated by p) depends (much) on the definition of p and on the language bias
specification that is used.

4 Reordering Transformation

4.1 Reordering Dependent Literals

In this section we introduce a possible reordering transformation for first order
queries suitable to be implemented in ILP systems. We will introduce two ver-
sions of this transformation. In this section we describe the first version T7. The
second version, which extends T4, will be discussed in Section 4.2.

Given a query ¢, the optimal reordering transformation 77 should return the
permutation Tj(¢) that has the shortest average execution time. More formally,

we can define T} as follows (cost(q) represents the average execution time of ¢
and perms(q) the set of all permutations of ¢).

Tl(q) = aI‘gnﬁnqku’:‘}')erms(q) COSt(Qk)

Of course, cost(qk) can not be computed without executing permutation ¢ on
all examples. Therefore, we will try to approximate T3 by replacing the average
execution time by an estimate. We call the resulting approximate transformation
T.

Tl(Q) - argminqkepcrms(q) COSt(Qk)

We will now explain how the estimated average execution time cost(q) of a
query ¢ can be computed.

The average execution time of a query ¢ depends on the individual execution
times of its literals. The execution time and average execution time of a literal
can be defined in the same way as non-determinacy and average non-determinacy
where defined in Section 2.

Definition 3. (Cost) The execution time cost(l,0) of a literal | given an input
substitution 6 is defined as the time necessary to compute all solutions to the call
10 (i.e., the execution time of the Prolog query ‘2= 10, fail.’).

Definition 4. (Average cost) Consider a distribution over possible input substi-
tutions D. We define the average execution time of a literal | with respect to D
as:

cost(l, D) = Z pi - cost(l,)
(6,p), €D

with pi the probability of 0;. given D.

Using the definitions of average non-determinacy and average execution time
of literals we can compute the average execution time of a query ¢ as follows.

cost(q) = sz -cost(l;, D;) (1)

i—1 i—1
wy = 1.0; w; = Hnondet(lj,ﬁj) ~ H nondet(l;, D;), i > 2
j=1 j=1

Equation (1) computes the average execution time by summing the average
execution times of all individual literals. Each term is weighted with a weight
w; which is the average number of calls to this literal in a SLD-tree generated
by the ILP system. The correct value of w; is the average of the product of
the non-determinacies of the preceding literals. For transformation T; we will
approximate this value by the product of average non-determinacies as shown
above.

Each literal in a given query will be called with different instantiations for
its arguments (one for each occurrence of the literal in the SLD-tree for a given
example). We average over these different instantiations by considering for each
literal I;, a distribution of input substitutions D;.

Ezample 3. Consider the query ¢ = 1;(X),12(X) and suppose that [; has non-
determinacy 2 and execution time 2ms. Literal l5 has average non-determinacy
0.5 and average execution time lms with respect to Ds. Distribution Dy is a
distribution over the answer substitutions for X of [;. The average execution
time of ¢ is cost(¢g) = 1 X 2ms + 2 x 1ms = 4ms because [; will be called once,
which takes 2ms, and I will be called twice (once for each solution to 1), which
also takes 2ms.

In order to perform T\l(q) we need to estimate the average execution time
of each permutation gr. We compute &);t(qk) with (1) where the average non-
determinacy and execution time are replaced by estimates, which we compute
based on the data.

In practice, it is not feasible to obtain for each literal in each query an
estimate for the corresponding distribution D; and associated cost(l;, D;) and
nondet(l;, D;). Therefore, we will use an approximate uniform distribution to
estimate average cost and non-determinacy. An algorithm for constructing such
an approximate distribution is discussed in Section 4.3. In order to select the
appropriate approximate distribution we will use the following constraint that
holds on D; and that must also hold for reasonable approximate distributions.

Each input substitution in D; must assign a value to the input variables of [;
that are grounded by calls to preceding literals. Consider again ¢ = 1;(X), l2(X),
and assume that [; grounds X. Then all input substitutions in Dy must also
ground X . More formally,

i1
Y(0,p)r € D; : vars(0) D | vars(l;) N U groundvars(l;)

Jj=1

with pi the probability of) given D;, vars(6y) the variables grounded by input
substitution 6y, vars(l;) the set of (input) variables of I; and groundvars(l;) the
set of variables that is grounded by calling [;.

Note that (1) computes the execution time for generating a complete SLD-
tree, which may have several succeeding paths. As said before, most ILP systems
stop execution after finding the first success. Having said that, we will (for simpli-
city reasons) still use (1) to estimate the average execution time of the different
permutations.

In order to meet R1 (correctness), the transformation must rule out quer-
ies that call background predicates p with free variables for arguments that are
required to be ground. This is accomplished by setting (f)?u(p, D) = oo for dis-
tributions D that do not ground all these variables.

Because the transformation requires computing all permutations of ¢, it has
an exponential time complexity in the number of literals n. For large values of

n it may become difficult to meet requirement R3 with such a transformation.
However, in our experiments, where query lengths varied from 1 to 6, this was
not a problem.

4.2 Reordering Sets of Literals

Some queries can be split in several independent sets of literals [13, 6]. Consider
for example the following query.

atm(M,A1,n,38) ,bond(M,A1,A2,2) ,atm(M,A3,0,40).

This query succeeds if a given molecule contains a nitrogen atom of type 38 with
one double bond and an oxygen atom of type 40. If [; and ls succeed, but [5 fails,
then alternative solutions for [y and Iy will be tried. However, this is useless if
I3 does not depend on {1 and Is, i.e. if it does not share variables with {; and [5.
The cut-transformation proposed in [13] avoids this unnecessary backtracking,
by putting cuts between the independent sets of literals.

atm(M,A1,n,38) ,bond(M,A1,A2,2),!,atm(M,A3,0,40).

If S; and S, are independent sets of literals, then the execution time of S,
will not depend on the execution time of S;. This implies that S; and Sz can
be transformed by our reordering transformation 7; independently. Once Sy
and S5 have been transformed the question remains whether we should execute
S1,1,85 or S9,!,51. The efficiency of both permutations of the sets may be
different because the set after the cut does not need to be executed if the first
set fails for a given example. The following equation defines transformation 75,
which extends 77, for reordering a query that is a conjunction of independent
sets separated by cuts.

Ta(S1,1, 82,1, ..., Sm) = argming, cperms(sy, 1,85, 1 ,....8,,) €0St(qx)
We approximate the average execution time of Sy, !, S5, !,...,S,, as follows.
m
cost(S1, 1,592, 1,...,8,) = sz - cost(S;)
i=1

i—1
w1 = 1.0; w; = H PsucceedS(Sj)7 i>2
j=1

with w; the probability that S; will be executed and Pgyceeeds(:S;) the probability
that S; succeeds. We estimate Pgycceeds(Si) in the following, rather ad-hoc way.

Psucceeds(S) = min <1.0 , H nondet(li,Di)> (2)

;€S

The motivation for (2) is that if a set has a low non-determinacy (e.g., if
it has on average 0.3 solutions) then we can use this value as an estimate for
Pgucceeds(Si). If the non-determinacy is high (e.g., if the set has on average 5
solutions) then we assign a probability of 1.0.

In order to transform a query that contains several independent sets of lit-
erals, we first transform each of these sets separately using T1 and after that
reorder the sets using T2 Both T1 and Tg require estimates for nondet(l;, D;)
and cost(l;, D;). We will show how these can be obtained from the training ex-
amples in the following section.

4.3 Estimating the Cost and Non-determinacy of a Literal

The average non-determinacy and execution time of a literal depend both on the
constants that occur as arguments of the literal and on the relevant distribution
of input substitutions D. In this section we describe an algorithm that automat-
ically estimates average non-determinacy and execution time for each possible
combination of constants and for different uniform distributions D (with differ-
ent groundness constraints for the arguments). The algorithm takes as input a
set of predicate type definitions. Consider the following type definitions from the
Carcinogenesis example.

type(atom(mol:key,atom:any,element:const,atype:const,charge:any) .
type (bond (mol:key,atom:any,atom:any,btype:const) .

Each argument of a type definition is of the form a:b with a the type of
the argument and b its tag. Arguments marked with tag key are grounded to
the example key by each substitution in D. Arguments marked with const will
always occur with one of the possible constants for the corresponding type filled
in. Arguments with tag any can be free or can be ground depending on D. The
algorithm works as follows.

1. For each type definition typedef,, collect in a set C} the possible combin-
ations of constant values that occur in the data for the arguments marked
with const.

2. For each type type; that occurs with tag any, collect for each example e; in
a set D; ; the constants that occur for arguments of type; in e; for any of
the predicates that has at least one such argument.

3. Run for each type definition typedef, the algorithm shown in Fig. 1.

The algorithm from Fig. 1 computes for a given type definition, for each
possible combination of constants C' and for different input substitution distri-
butions D the average execution time and non-determinacy with respect to D for
a literal [with name and arity as given by the type definition and the constants
from C filled in.

The first loop of the algorithm is over the different combinations of con-
stants and the second loop over the different distributions. For each distribu-
tion, a different subset I of the arguments with tag any will be ground. For the

function compute_avg-nondet_and_cost(typedef,,)
I, = set of all arguments from typedef, that have tag any
for each C € Cj,
for each I € 27
create literal | (name/arity as in typedef,, constants from C filled in)
cost = 0; nondet = 0; count = 0
for each example e;
0; = substitution that replaces key variable by identifier e;
if I = () then
nondet = nondet + nondet(l,0;); cost = cost + cost(l, 6;)
count = count + 1
else
P = the set of all possible combinations of constants for the
attributes in I (constructed using D; ;)
for each combination of constants P € P
o = 0; U substitution for each constant in P
nondet = nondet + nondet(l, o); cost = cost + cost(l, o)
count = count + 1
cost[typedef,, DY), C] = cost / count
nc;laet[typedefk,DU),C] = nondet / count

Fig. 1. An algorithm for estimating average non-determinacy and execution time.

bond(M,A1,A1,T) type definition, there are two arguments with tag any. The
first distribution D™ that the algorithm considers will leave both atom argu-
ments free. Consecutive iterations will consider D) with A1 ground, D) with
A2 ground and finally for D*) with both A1 and A2 ground.

The part inside the double loop computes for literal [the average execution
time and non-determinacy with respect to DU). The first instructions construct
[based on the type definition and constants in C. If all arguments with tag
any are free (i.e., I = ()), then D) becomes a distribution of substitutions that
unify the key argument with one of the example identifiers. The average cost
and non-determinacy for such a distribution can be estimated by averaging over
all examples e; (cf. the then branch in Fig 1). If some of the arguments with tag
any are ground in D), then constructing a uniform distribution over possible
input substitutions is more complex (cf. the else branch in Fig 1). In that case,
the averages have to be computed over each possible combination of relevant
constants (from D, ;).

Ezxample 4. We will illustrate the algorithm for the bond/4 type definition. The
first step is to collect constants in C. For bond/4, there is only one argument
tagged const: the bondtype. The corresponding constants are {1,2,3,7} (7 rep-
resenting an aromatic bond). Type atom is the only type tagged any. We collect
for each example e; in set Daom,; all constants of type atom that occur, i.e., for
each example the set of atom identifiers. The next step is to run the algorithm
of Fig. 1. It will compute the average non-determinacy and execution time for

bond/4 with different constant combinations from C}, filled in and for different
subsets of its two tag any arguments ground. A subset of the results is shown in
Table 2.

Table 2. Average non-determinacy and execution time for bond(M,A1,A2,T) with
different constant combinations filled in and for different subsets of its two tag any
arguments ground. The results were obtained with YAP Prolog version 4.4.2. Only the
relative values of the costs are important.

Al A2 T nondet(l, D) cost(l, D)

free free 1 204 0.0081
free ground 1 0.74 0.0034
ground free 1 0.74 0.0016
ground ground 1 0.017 0.0022
free free 2 1.36 0.0074

Note that our algorithm uses uniform distributions over the possible identi-
fiers to estimate average non-determinacy and execution time. If a literal occurs
somewhere in the middle of a conjunction, the distribution over input substi-
tutions will probably not be uniform. Using the estimates based on uniform
distributions is an approximation.

The computational complexity of the algorithm is O(2//¥!|Cy|), i.e., expo-
nential in the number of variables that occur in a type definition. In practice,
the arity of predicates is usually relatively small, so that this approach is not
problematic. Moreover, the computation needs to happen only once, not once for
each query to be transformed; so the requirement that the query transformation
must be efficiently computable, remains fulfilled.

In those cases where the complexity of the algorithm is nevertheless pro-
hibitive, other techniques for estimating the selectivity of literals could be used
instead of this straightforward method; see for instance [11].

5 Experimental Evaluation

5.1 Aims

The aim of our experiments is to obtain more insight in the behavior of the
reordering transformation, both with and without the reordering of independent
sets. e

A first experiment compares for a given query ¢ the efficiency of T7(q) and
@(q) with the efficiency of the original query and that of the most efficient
permutations T7(q) and T»(q). It also provides more insight in the influence of the
query length on the obtainable efficiency gain. A second experiment compares the

efficiency of running the ILP system Aleph without a reordering transformation
with its efficiency when using 77 and 75. In each experiment we use the average
non-determinacies and execution times estimated as described in Section 4.3 to
perform 77 and T5 (see also Table 2).

5.2 Materials

All experiments are performed on the Carcinogenesis data set [14], which is the
same data set that has been used as running example throughout this paper. As
Prolog system we use YAP Prolog? version 4.4.2 on an Intel P4 1.8GHz system
with 512MB RAM running Linux. We also use the ILP system Aleph® version
4 (13 Nov 2002) which implements a version of Progol [9] and runs under YAP.
Aleph uses the cut and theta transformations as defined in [13]. The language bias
we use in the experiments only contains modes for the atom and bond predicates
and is defined as follows.

:— mode (*,bond (+drug,+atomid,-atomid,#integer)) .
:— mode(*,atom(+drug,-atomid,#element,#integer,-charge)) .
:- set(clauselength,7), set(nodes,50000).

We have implemented both transformations ﬁ and ﬁ as an add-on library
for Aleph. This library (written in C++) is available from the authors upon
request.

5.3 Experiment 1

ﬁ In this experiment we have sampled 45000 sets of linked literals (i.e., sets
that are separated by cuts in the queries, after they have been processed by the
cut-transform) uniformly from the queries that occur during a run of Aleph on
the Carcinogenesis data set. For each permutation of each of these queries we
estimated the average execution time over all 330 molecules. Figure 2 presents
the results. The first bar represents the average execution time of the original
queries g that are generated by the refinement operator of Aleph, the second
bar is the average execution time of the permutations that are selected by T7(q)
and the last bar the average execution time of the most efficient permutations
T1(q). Above each set of bars, N is the number of queries, Tp,ax the average
execution time of the slowest permutations, T, the average of the average
execution time over all permutations, T,of the average execution time of the
original queries, Spest the efficiency gain of T1(g) over the original query and
S¢r the efficiency gain of ﬁ(q) In some cases Tax and Ty, are marked with
a >-sign. This occurs because we have set a maximum execution time of 4s for
each permutation (in order to make the experiment feasible). When this time is
exceeded the execution of the permutation is aborted and its execution time is

2 http://yap.sourceforge.net
3 http://web.comlab.ox.ac.uk/oucl /research/areas/machlearn/Aleph/

excluded from the averages. All execution times are averaged over all queries and
examples (the first set of bars) and also averaged over all examples and queries
with a given length (the other bars). The averages shown for the long queries
have a rather large variance.

Query execution time

N 45000 31248 7738 3513 1567 689 245
Tmax 0.094 0.004 0.016 0.041 >0.42 >2.0 >11
Tag 0016 0.004 0.010 0.019 >0.092 >0.27 >0.76
Tt 0.010 0.004 0.005 0.009 0.036 0.15 0.35
Spest 2.1x 1.0x 1.0x 1.3x 4.4x% 17x% 34x
i) S 21x 1.0x 1.0x 1.3x 4.1x 15x% 20x
— 1.0 —
8
[}
=>08¢}
2 -
Jo
o 0.6
£
o4t
0.2
AVERAGE 1 2 3 4 5 6
Query length
Hl Refinement
B Transformed N = number of queries
O Best T = execution time (ms/query/example)

Fig. 2. Experiment on independent sets of literals.

The main conclusion from this experiment is that ﬁ almost always succeeds
in selecting the most efficient permutation or a permutation with execution time
close to that of the most efficient one (because S, is close to Spest). The differ-
ence is larger for longer queries, probably because the approximations made for
estimating the cost a query are less accurate in that case. Surprisingly there is
almost no gain possible for queries of length 2. This is because in that case the
refinement operator of Aleph always generates the most efficient permutation (if
compared to Ty, it is possible to gain a factor of 2 in efficiency). Aleph always
generates atom,bond instead of bond, atom. The second one is less efficient than
the first one because the highly non-determinate bond literal comes first. If we
look at longer queries we see that the transformation yields higher gains (up to
20x for queries of length 6). Comparing T,ef with Ty shows that the original
queries are already very efficient. This would probably not be the case anymore if
we would use a more naively defined language bias (e.g. one that allows adding
bonds with the two atom identifiers free): Ty would yield much higher gains.

Note also that Aleph generates much more small independent sets than larger
ones, which also reduces the average gain. This again depends on the language
bias that is used.

1/”; In this experiment we have sampled 5000 queries uniformly from the queries
that occur during a run of Aleph. Each of these queries can contain up to 6
independent sets of linked literals. We estimated for each permutation of the sets
and for each permutation of the literals in each set the average execution time
over all examples. Figure 3 presents the results. The first bar again corresponds
to the execution time of the original query ¢, the second bar to that of the best
possible permutation without reordering the sets (i.e., T1(g)), the third bar to
that of the permutation returned by 1/“\2 and the last one to that of T5(g). The
other quantities are defined similarly to the previous experiment. One important
difference is that here the sets of bars are averaged over queries with a given
maximum independent set size (1 - 6).

Query execution time

N 5000 1802 1621 910 427 193 47

Trmax 0.45 0.005 0.016 0.039 0.36 >2.3 >35
Tag 0049 0.005 0.009 0.016 0.068 >0.29 >2.7
Tt 0.019 0.005 0.006 0.011 0.039 0.096 0.69
Shest 3.5x 1.1x 1.1x 1.8x 5.7x 13x 78x
S 3.3x 11x 1.1x 1.6x 5.3x 11x 67x

Timerelativeto T,

AVERAGE 1 2 3 4 5 6
Max independent set size
B Refinement | B Transformed N = number of queries
O Best(rs=0) | [J Best (rs=1) T = execution time (ms/query/example)

Fig. 3. Experiment on entire clauses.

The main conclusion is that not much efficiency can be gained by reorder-
ing the sets. This is expected because reordering sets does not alter the average
non-determinacy of literals. Contrary to the previous experiment some gain can
be obtained for queries that have 6 independent literals and queries where all

independent sets have at most two literals. Transformation @ performs reas-
onably well for a low maximum set size and less good for queries with larger
independent sets. Note that, to simplify the presentation, Fig. 3 does not show
results for T7.

5.4 Experiment 2

In this experiment we compare the runtime of Aleph without any reordering
transformation, with its runtime when using 77 and T5. Table 3 presents the
results for the original Carcinogenesis data set and Table 4 for an over-sampled
version in which each molecule occurs 5 times. The total execution time is split
up in three components: the query execution time Teyec., the time used for per-
forming the reordering transformation Tyyans. and a term Topper which includes,
for example, the time for computing the bottom-clauses and the time taken by
the refinement operator.

Table 3. Runtime of Aleph (in seconds) on the Carcinogenesis data set.

Transformation Texec. Ttrans. Tother Sexeo Stotal

none 2230 / 3900 / /
Ty 1330 100 3920 1.7 1.15
T 1310 110 3850 1.7 1.16

Table 4. Runtime of Aleph (in seconds) on a 5x over-sampled version of the Carcino-
genesis data set.

Transformation Texec. Ttrans. Tothcr Sexeo Stotal

none 22720 / 14530 / /
T 13720 320 14550 1.7 1.3
T 13690 370 14570 1.7 1.3

Table 3 and Table 4 both show an efficiency gain in query execution time of
1.7 times. This is less than the average gain of 3.5 times that was obtained in the
previous experiment (Fig. 3). The difference is that in that case, each query was
executed on the entire data set. Aleph considers different subsets of the data in
each refinement step: longer queries are executed on a smaller subset. Because
longer queries yield higher gains, the average gain drops. Comparing Ty s, with
Texee. shows that the transformation introduces no significant overhead (7.5%
on the original data set and 2.3% on the over-samples version).

Recall from the previous experiment (Fig. 2 and Fig. 3) that the efficiency
gain obtained with ﬁ and i’; is close to the best possible efficiency gain (i.e., that

of Ty an Ty). This means that the rather low gain (factor 1.7) obtained in this
experiment is not caused by the fact that we use an approximate transformation,
but rather by the fact that the queries generated by the refinement operator are
already very efficient. This depends on the language bias that is used: here it is
well designed and generates efficient queries. Another reason for the low gain is
that the refinement operator generates much more small sets of linked literals
than larger ones.

6 Conclusion

We have introduced a query transformation that aims at reducing the average
execution time of queries by replacing them with one of their permutations.
Similar techniques are used in relational database management systems but there
are some important differences. ILP systems execute queries top-down instead
of bottom-up, look only for the first solution, may use expensive background
predicates, and valid permutations of queries are constrained by the modes of
the literals. Queries are also generated by the system itself and not (directly) by
humans.

We have defined two versions of the transformation. Our first version trans-
forms a query by replacing it with the permutation that has the lowest estimated
average execution time. For computing this estimate we make two important ap-
proximations. The first one is that we use an approximate formula for computing
the average execution time of a query based on the average execution times and
non-determinacies of its literals. The second one is that we use uniform dis-
tributions over input substitutions to estimate the average execution time and
non-determinacy of a literal. Such a uniform distribution will differ from the
actual distribution of input substitutions for the literal, which depends on its
position in the SLD-trees.

A second version of the transformation extends the first one and is able to
handle queries that are composed of different independent sets of linked literals,
separated by cuts. Such queries are generated by the cut-transform [13], which
is implemented in the ILP system Aleph.

Our experiments show that the two versions of the transformation both ap-
proximate the theoretical optimal transformations, which replace a query by the
permutation that has minimal average execution time, very well. The obtainable
efficiency gain of the transformation over using the original queries, as generated
by the refinement operator of the ILP system, depends much on the language
bias that is used. The language bias used in our experiments was well designed
in the sense that the efficiency of the generated queries was close to that of the
best possible permutations. Our experiments further show that the efficiency
gain increases with the length of the sets of linked literals. By reordering the
sets themselves, not much efficiency can be gained.

The time complexity of our transformation is exponential in query-length (or
independent set size) because it considers all possible permutations of a given
query. We would like to develop a different version of our transformation that

uses a greedy method to find an approximate solution in less time. In this way it
could be possible to obtain a better trade-off between the overhead introduced by
the transformation itself and the efficiency gained by executing the transformed
queries.

Kietz and Liibbe introduce in [6] an efficient subsumption algorithm which is
based on similar ideas. Their algorithm moves deterministic literals to the front
while executing a query on a given example. One important difference is that
their transformation is dynamic, because it is performed for each query and each
example. The transformation described in this work is static: a given query is
transformed once and then executed on all examples. One advantage of a static
transformation is that the possible overhead introduced by the transformation
itself decreases if the number of examples increases. Further work will include
comparing both transformations.

Another approach for improving the efficiency of query execution is the use
of query-packs [2]. The basic idea here is that sets of queries that have a common
prefix, as they are generated by the refinement operator of a typical ILP system,
can be executed more efficiently by putting them in a tree structure called a
query-pack. In further work, we intend to combine the transformations presented
here with query-packs. Combining query transformations with query-packs is
difficult because the transformation may ruin the structure of the pack. Currently
we are working on combining query-packs with the transformations described in
[13].

Because the language bias has an important influence on the efficiency gain,
we would like to try our transformation on more data sets with different types
of language bias. One interesting approach here would be to use a language bias
that generates larger sets of linked literals. Such a language bias is useful for
first order feature construction, where one is interested in predictive relational
patterns, which can be used for example, in propositional learning systems.

Acknowledgments

Jan Struyf is a research assistant and Hendrik Blockeel a post-doctoral fellow of
the Fund for Scientific Research (FWO) of Flanders.

References

1. H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling up inductive lo-
gic programming by learning from interpretations. Data Mining and Knowledge
Discovery, 3(1):59-93, 1999.

2. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Research, 2001. Submitted.

3. M. Carlsson. Freeze, indexing, and other implementation issues in the WAM. In
Jean-Louis Lassez, editor, Proceedings of the 4th International Conference on Logic
Programming (ICLP87), Series in Logic Programming, pages 40-58. MIT Press,
1987.

4.

10.

11.

12.

13.

14.

15.

16.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings, 2nd edition, 1989.

. M. Jarke and J. Koch. Query optimization in database systems. ACM Computing

Surveys, 16(2), 1984.

. J.U. Kietz and M. Liibbe. An efficient subsumption algorithm for inductive logic

programming. In Proceedings of the 11th International Conference on Machine
Learning, pages 130-138. Morgan Kaufmann, 1994.

. A. Krall. Implementation techniques for prolog. In N. Fuchs and G. Gottlob,

editors, Proceedings of the Tenth Logic Programming Workshop, WLP 94, pages
1-15, 1994.

. JJW. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition,

1987.

. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

C. Nédellec, H. Adé, F. Bergadano, and B. Tausend. Declarative bias in ILP.
In L. De Raedt, editor, Advances in Inductive Logic Programming, volume 32 of
Frontiers in Artificial Intelligence and Applications, pages 82—-103. I0S Press, 1996.
D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic mod-
els for query approximation on binary transaction data. IEEE Transactions on
Knowledge and Data Engineering, 2003. To appear.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239—
266, 1990.

V. Santos Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen, G. Janssens,
J. Struyf, H. Vandecasteele, and W. Van Laer. Query transformations for improving
the efficiency of ILP systems. Journal of Machine Learning Research, 2002. In
press.

A. Srinivasan, R.D. King, and D.W. Bristol. An assessment of ILP-assisted models
for toxicology and the PTE-3 experiment. In Proceedings of the Ninth International
Workshop on Inductive Logic Programming, volume 1634 of Lecture Notes in Ar-
tificial Intelligence, pages 291-302. Springer-Verlag, 1999.

J. Struyf, J. Ramon, and H. Blockeel. Compact representation of knowledge bases
in ILP. In Proceedings of the 12th International Conference on Inductive Logic
Programming, volume 2583 of Lecture Notes in Artificial Intelligence, pages 254—
269. Springer-Verlag, 2002.

F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may
be heavy-tailed. In S. Matwin and C. Sammut, editors, Inductive Logic Program-
ming, 12th International Conference, ILP 2002, volume 2583 of Lecture Notes in
Computer Science, pages 333-345. Springer-Verlag, 2003.

