
Categories for Software Engineering



Jose Luiz Fiadeiro

Categories for
Software Engineering

fyj Springer



Jose Luiz Fiadeiro
University of Leicester
Department of Computer Science
University Road
Leicester LEi 7RH
United Kingdom

Library of Congress Control Number: 2004113132

ACM Computing Classification (1998):
D.2.11,R3.1,D.2.1,D.2.4,D.1.3

ISBN 3-540-20909-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9,1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KunkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vockler GbR, Leipzig
Typesetting by the author
Printed on acid-free paper 45/3142/YL - 5 4 3 210



From a loving father



Preface

Why Another Book on Category Theory?

In the past ten years, several books have been published on category the-
ory either by computer scientists or having computer scientists as a target
audience (e.g. [6, 12, 22, 89, 105], to which a precious collection of little
gems [90] and the chapter cum book [91] should be added). Isn't the
working computer scientist spoilt with choice?

Although each of the above mentioned books presents an approach of its
own, there is one aspect in common in their view of computer science: the
analogy between arrows (morphisms) and (classes of) computations. This
"type-theoretic" or "functional" approach corresponds to a view of com-
puter science as a science of computation, i.e. a discipline concerned with
the study of computational phenomena where the focus is on the nature
and organisation of computations.

However, there is another view of computer science where the focus is,
instead, on the development of computer programs or systems. This is the
approach that supports, for instance, software engineering. From this point
of view, arrows do not capture computational phenomena, or abstractions
thereof, but instead relationships between programs, or abstractions of
programs, that arise in the development of computer systems, for instance,
refinement of higher-level specifications into executable programs [100,
104], and superposition of new features over existing systems [72].

Not surprisingly, this same difference in the points of view can be found
when logic is taken as a mathematical domain for formalising aspects of
computer science. The "computations as proofs" paradigm is the one that
corresponds to the "classical" application of category theory. Terms of the
logic correspond to objects in a category of programs whose morphisms
capture (partial) computations. From a logical point of view, the perspec-
tive that we take in this book is not centred on terms but on theories as
system specifications. Morphisms then capture what in logic is known as
"interpretations between theories", the cornerstone for the formalisation of
refinement in program development and other operations on specifications
and system designs [17, 82, 103, 104].

Category theory can also be presented as the branch of mathematics
that, par excellence, addresses "structure". As the introduction will try to



VIII Preface

explain, this is because category theory causes structure to emerge from
relationships between objects as captured by arrows, and not extensionally
as in set theory. Indeed, the term morphism, often used for arrow in cate-
gory theory, has in its etymology the notion of preservation of form. What
these structures are, or mean, is up to the "user". Hence, in the "classical"
approach, we find applications of category theory that address the structure
of computations. In the approach that is taken in this book, the structures
that are addressed are those that capture modularisation principles in soft-
ware development, in particular, those that have been used for constructing
distributed systems (e.g. as in [81]) and, more recently, emerging in the
guise of what has become known as software architectures [50].

The practical difference between the two approaches in what concerns
category theory in general, and this book in particular, is that the reader
will not find as many references to algebraic topology or related fields of
mathematics as applied, for instance, to domain theory. Although this
book is still "mathematical", the software engineer will find the mathe-
matics applied to objects of its day-to-day concerns: programs, object
classes, specifications, designs, and so on.

This approach can be also situated as belonging to the class of applica-
tions of category theory to general systems theory, namely in the tradition
initiated in [52, 53, 64], an area of science that, as the name indicates and
the introduction elucidates, encompasses more than computational systems
in the traditional sense. Through books aimed at wider audiences like
[71], a unifying view of complex systems as they arise in disparate areas
like physics, biology, social sciences, economics and, yes, informatics, has
started to emerge (pun intended), which is a clear indication of new levels
of maturity in science in general and informatics in particular. Hence, one
of the purposes of this book is to help computing scientists and software
engineers acquire formal tools that will enable them to follow and partici-
pate in this "new" culture.

A trait that is common to all these areas is a view of complex systems as
communities of interacting, simpler, autonomous entities. Whereas, in ar-
eas like biology or social sciences, the notion of "community" is intrinsic,
its use in areas like software engineering is more artificial and is normally
identified with methods and development techniques that, in the past few
years, have attempted to tackle complexity by borrowing the organisa-
tional principles that can be recognised in such "natural" communities.
Object-oriented modelling, agent-based programming and component-
based development all make use, in one way or another and with different
emphasis, of this analogy. This brings us to the application area covered
in the third part of this book.

Community is the name of a language for parallel program design that
is similar to Unity [19] but adopts instead an interaction model that places
it in the realm of these more general and unifying approaches to systems.



Preface IX

It addresses in particular the most recent trend, service-oriented software
development, an (r)evolution of the popular object-oriented modelling
techniques for the "Internet-age" or what is becoming known as the "real-
time" or "now" economy. The distinctive feature of this new trend is in
the emphasis that it puts in the externalisation and explicit modelling of
interactions as first-class citizens so that systems can be more easily recon-
figured, in run-time, and without interruption of vital services. These
characteristics match, precisely, features that are intrinsic to category the-
ory, namely those that distinguish it from set theory.

That is why, even if a substantial part of this book is illustrated with ex-
amples borrowed from software engineering practice, we decided to de-
vote three chapters to the application of category theory to Community
and its relationship to software architectures. This material will provide an
opportunity for the reader to see concepts and techniques of category the-
ory applied in an integrated and systematic way. At the same time, the
reader will be able to appreciate how far one can go in formalising soft-
ware development methods and techniques in mathematical frameworks,
which is essential for a mature engineering discipline and, in my opinion,
is our responsibility as computing scientists.

This Book and Its Many Authors

Mentioning the connections between category theory and general systems
theory is a good opportunity to give due credit to Joseph Goguen for the
profound inspiration that his work has instilled, a sentiment that I know is
shared by many other researchers in computing science. He has expressed
his own views on the applications of category theory to computing in sev-
eral publications, most notably in [57], which include detailed summaries
of technical results that we all have found very useful when categorical
approaches were still regarded, at best, as "exotic" [60, 61, 66, 102]. All
of us regret that this material has never found its way to a textbook. Be-
cause it is not our aim to fill this gap, the reader is strongly encouraged to
consult this rich legacy at his or her own pace, bearing in mind that the list
of references that is provided at the end is far from being complete.

Completeness is, in fact, a concern that has remained largely alien to my
research agenda. (This observation is intended to make some readers
smile, but you can take it literally.) This book is more about a personal
experience than the output of a rational process of identifying "the" or "a"
complete categorical kernel that software engineers can use as a toolbox.
The only justification for the inclusion of many concepts and constructions
is that they were of help to me, either technically or aesthetically, making
it likely that they will be directly useful for other people "like me". The



X Preface

exclusion of many other, even very basic concepts,1 can be justified by the
officious disclaimer that "the line has to be drawn somewhere", but, most
of the time, the reason is that I never stumbled upon them in my daily rou-
tine or simply that I have not developed an understanding about them that
is deep enough to add any value to what can be found in other books.

This personal experience has gone through well identifiable periods,
each of which is associated with a different focus of interest in computing
and a group of people with whom I worked directly and whose contribu-
tions I would like to acknowledge. My first contact with category theory
was when I was studying mathematics as an undergraduate at the Univer-
sity of Lisbon, and Prof. Furtado Coelho challenged the wrath of my fel-
low students, and his fellow staff, by including this most exotic, difficult
and useless of subjects in the curriculum of Algebra II. Applications to
computing science came a year later through the study of Goguen and
Burstall's Theory of Institutions as a means of formalising conceptual
modelling and knowledge representation approaches, under the supervi-
sion and in collaboration with Amilcar and Cristina Sernadas [46]. This is
when things started to get serious.

In 1988, I started what has been a very rewarding collaboration with
Tom Maibaum. During the three years I spent at Imperial College, we de-
veloped a categorical approach to object-oriented development based on
temporal logic specifications [39], a marriage between my previous work
with institutions and the ideas of Tom Maibaum and Paulo Veloso on the
nature of specifications in system development [103]. Their contribution
permeates the material that is exposed in a way that cannot be referenced
in the same way as a technical result. I have been very fortunate to be able
to keep exchanging ideas and experiences with them; there are always hid-
den subtleties that only come to the surface when you are challenged by
people like them and required to scratch the innermost levels of your un-
derstanding to satisfy their curiosity.

During this same time, Felix Costa explored the categorical semantics of
objects from the point of view of algebraic models of concurrency [21]. In
1992, we brought it all together [32]! My collaboration with Felix pro-
vided much of the inspiration that led to my own understanding of the ap-
plication of category theory to systems modelling. Although specific con-
tributions are acknowledged with references to his work, it would be unfair
to reduce his contribution to this book to those occasions.

The next phase is devoted to the (then) emerging field of software ar-
chitecture. It is centred on a language - Community - that I developed
together with Georg Reichwein and Tom Maibaum in an initial period, and
later on with my students Antonia Lopes and Michel Wermelinger. It

1 Yes, I know that I will not be forgiven for having left out "must-haves" such as
the Yoneda lemma, Cartesian-closed categories, topoi, monads, and so on.



Preface XI

started as a proof of concept, showing that Goguen's categorical approach
could be applied to parallel program design in the style of Unity [19] and
Interacting Processes [48]. Later, it evolved into a prototype language for
architectural modelling [34], a process that led me to understand many
concepts that, until then, were blurred by the poor expressive power of the
formalisms with which we had been working: non-determinism versus un-
der-specification [77], refinement versus composition [78], and the role of
"signatures" in separating computation and coordination [35]. Some of
this is revealed in Part III of this book, but you will have to wait for an-
other book to have the full story!

Although this "architectural" period is still very much alive (which does
not mean that the others are already dead), another step in this evolution
process has occurred: the realization that category theory provides a per-
fect fit to support service-oriented software development, for instance in
the sense of Web-services. But this step is so recent that, in fairness, I
cannot acknowledge/blame anybody in particular for it. Nevertheless, it is
unlikely that it would have happened so soon, or at all, if I had not ac-
cepted the challenge that Luis Andrade presented me with for working
with ATX Software SA in putting these "theories" into "practice". This
has been a very rewarding process that has given me the opportunity to
understand the implications of many of the structures and mechanisms that
are intrinsic to category theory. I hope that I have managed to permeate
this understanding in the way the material is exposed in the book.

This is probably why this book is being finalised now and only now:
during each of the periods I mentioned, a book was planned and parts were
sketched. It is only now that the work of so many people has contributed
to the contents that I can safely write it on my own without feeling guilty
for excluding anybody in particular from coauthoring it.

It so happens that the last thrust in writing this book was made during
my first year at the University of Leicester, a renowned address for re-
search in category theory and its applications to computer science. Al-
though I can honestly assure the reader that the decision to join Leicester
was not for the advantages of promoting this book, it is certainly a privi-
lege for the book to bear this affiliation!

Finally, I should thank all the colleagues and students who have trod
with me the paths that you can choose to follow in this book. The oppor-
tunity to discuss and lecture on many of the topics that are covered con-
tributed decisively in helping me reach the level of maturity that made me
decide that this book could be written. The feedback I received from tuto-
rials presented at events such as ECOOP, ETAPS, FME, OOPSLA and
TOOLS also helped me decide that this book should be written. The inter-
est and encouragement of people like Ira Forman and Desmond D'Souza
have also reassured me that the message could perfectly go beyond the
walls of academia.



XII Preface

Special Acknowledgements

Although the previous paragraphs have given me the opportunity to ac-
knowledge the contributions of a number of people and institutions, there
are some specific colleagues to whom I would like to express my deepest
gratitude for direct contributions to this book:

• Felix Costa: A significant part of the material covered in Part II was de-
veloped jointly with him as reported in [32, 33], As already mentioned,
much of my own understanding of category theory and its role in com-
puting science grew from discussions with him.

• Antonia Lopes and Michel Wermelinger: The fact that Part III of this
book was essentially extracted from [37, 79] is a good indication of how
important and extensive their contribution has been. Community as we
know it today is as much theirs as it is mine.

• Tom Maibaum: His encouragement and support in the earlier phases of
the production of the book were decisive.

• Uwe Wolter. He had the courage to follow an early draft in a course that
he gave in 2002/2003 (repeated in 2003/2004) at the University of Ber-
gen (Norway). As a result, I received precious amounts of feedback,
which was invaluable for the final tuning of the material and the way it
is now presented.

Finally, I would like to thank the EPSRC for an eight-month visiting
fellowship at King's College London in 1999, which gave me the opportu-
nity to make a significant advance in the writing of the book, to Janet Mai-
baum for her help in setting Microsoft Word up to the job1 and to the team
at Springer for their enthusiasm, support and advice.

Gesse,2 April 2004 Jose Luiz Fiadeiro

1 Yes, this book is a proof that writing about category theory is not reserved to
users of a well-known typesetting system that I will not name... And this re-
mark is not meant as a recommendation for the products developed by a com-
pany that I have already named...

2 The little village in the French Pyrenees, by the river Aude, where this book was
written and revised from 2000 until completion.



Contents

Introduction 1
1.1 The Social Life of Objects 1
1.2 Categories Versus Sets 3
1.3 Overview of Typical Application Areas 5
1.4 What Can Be Found in This Book 9

Part I Basics

2 Introducing Categories 15
2.1 Graphs 15
2.2 Categories 20
2.3 Distinguished Kinds of Morphisms 27

3 Building Categories 31
3.1 Some Elementary Operations 31
3.2 "Adding Structure" 33
3.3 Subcategories 37
3.4 Eiffel Class Specifications 43
3.5 Temporal Specifications 46
3.6 Closure Systems 53

4 Universal Constructions 57
4.1 Initial and Terminal Objects 58
4.2 Sums and Products 61
4.3 Pushouts and Pullbacks 67
4.4 Limits and Colimits 75

5 Functors 83
5.1 The Social Life of Categories 83
5.2 Universal Constructions Versus Functors 89



Part II Advanced Topics

6 Functor-Based Constructions 95
6.1 Functor-Distinguished Kinds of Categories 95
6.2 Structured Objects and Morphisms 110
6.3 Functor-Structured Categories 117
6.4 The Grothendieck Construction 124
6.5 Institutions 128

7 Adjunctions 141
7.1 The Social Life of Functors 141
7.2 Reflective Functors 145
7.3 Adjunctions 151
7.4 Adjunctions in Institutions 160
7.5 Coordinated Categories 167

Part III Applications

8 Community 177
8.1 A Language for Program Design 177
8.2 Interconnecting Designs 182
8.3 Refining Designs 191

9 Architectural Description 197
9.1 Motivation 197
9.2 Connectors in Community 199
9.3 Examples 204
9.4 An ADL-Independent Notion of Connector 211
9.5 Adding Abstraction to Connectors 214

10 An Algebra of Connectors 221
10.1 Three Operations on Connectors 223
10.2 Higher-Order Connectors 227

References 237

Index 245




