Lecture Notes
in Computational Science
and Engineering

Editors

Timothy J. Barth, Moffett Field, CA
Michael Griebel, Bonn

David E. Keyes, New York

Risto M. Nieminen, Espoo

Dirk Roose, Leuven

Tamar Schlick, New York

42

Alfred Schmidt
Kunibert G. Siebert

Design of Adaptive
Finite Element Software

The Finite Element Toolbox ALBERTA

With 30 Figures

@ Springer

Alfred Schmidt

Zentrum fiir Technomathematik
Fachbereich Mathematik/Informatik
Universitidt Bremen

Bibliothekstr. 2

28359 Bremen, Germany

e-mail: schmidt@math.uni-bremen.de

Kunibert G. Siebert

Institut fiir Mathematik

Universitdt Augsburg
Universitétsstrafle 14

86159 Augsburg, Germany

e-mail: siebert@math.uni-augsburg.de

Library of Congress Control Number: 2004113298

Mathematics Subject Classification (2000):
65M50, 65M60, 65N22, 65N30, 65N50, 65Y99, 68U20

ISSN 1439-7358
ISBN 3-540-22842-X Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

The publisher and the authors accept no legal responsibility for any damage caused by improper use
of the instructions and programs contained in this book and the CD-ROM. Although the software
has been tested with extreme care, errors in the software cannot be excluded.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: Friedhelm Steinen-Broo, Estudio Calamar, Spain

Cover production: design & production, Heidelberg

Typeset by the authors using a Springer TgX macro package

Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig

Printed on acid-free paper 46/3142/YL-543210

Preface

During the last years, scientific computing has become an important research
branch located between applied mathematics and applied sciences and engi-
neering. Nowadays, in numerical mathematics not only simple model problems
are treated, but modern and well-founded mathematical algorithms are ap-
plied to solve complex problems of real life applications. Such applications are
demanding for computational realization and need suitable and robust tools
for a flexible and efficient implementation. Modularity and abstract concepts
allow for an easy transfer of methods to different applications.

Inspired by and parallel to the investigation of real life applications, nu-
merical mathematics has built and improved many modern algorithms which
are now standard tools in scientific computing. Examples are adaptive meth-
ods, higher order discretizations, fast linear and non-linear iterative solvers,
multi-level algorithms, etc. These mathematical tools are able to reduce com-
puting times tremendously and for many applications a simulation can only
be realized in a reasonable time frame using such highly efficient algorithms.

A very flexible software is needed when working in both fields of scientific
computing and numerical mathematics. We developed the toolbox ALBERTA!
for meeting these requirements. Our intention in the design of ALBERTA is
threefold: First, it is a toolbox for fast and flexible implementation of efficient
software for real life applications, based on the modern algorithms mentioned
above. Secondly, in an interplay with mathematical analysis, ALBERTA is an
environment for improving existent, or developing new numerical methods.
And finally, it allows the direct integration of such new or improved methods
in existing simulation software.

Before having ALBERTA, we worked with a variety of solvers, each designed
for the solution of one single application. Most of them were based on data
structures specifically designed for one single application. A combination of
different solvers or exchanging modules between programs was hard to do.

The original name of the toolbox was ALBERT. Due to copyright reasons, we
had to rename it and we have chosen ALBERTA.

VI Preface

Facing these problems, we wanted to develop a general adaptive finite element
environment, open for implementing a large class of applications, where an
exchange of modules and a coupling of different solvers is easy to realize.

Such a toolbox has to be based on a solid concept which is still open for ex-
tensions as science develops. Such a solid concept can be derived from a math-
ematical abstraction of problem classes, numerical methods, and solvers. Our
mathematical view of numerical algorithms, especially finite element methods,
is based on our education and scientific research in the departments for applied
mathematics at the universities of Bonn and Freiburg. This view point has
greatly inspired the abstract concepts of ALBERTA as well as their practical
realization, reflected in the main data structures. The robustness and flexible
extensibility of our concept was approved in various applications from physics
and engineering, like computational fluid dynamics, structural mechanics, in-
dustrial crystal growth, etc. as well as by the validation of new mathematical
methods.

ALBERTA is a library with data structures and functions for adaptive fi-
nite element simulations in one, two, and three space dimension, written in the
programming language ANSI-C. Shortly after finishing the implementation of
the first version of ALBERTA and using it for first scientific applications, we
confronted students with it in a course about finite element methods. The
idea was to work on more interesting projects in the course and providing a
strong foundation for an upcoming diploma thesis. Using ALBERTA in edu-
cation then required a documentation of data structures and functions. The
numerical course tutorials were the basis for a description of the background
and concepts of adaptive finite elements.

The combination of the abstract and concrete description resulted in a
manual for ALBERTA and made it possible that it is now used world wide in
universities and research centers. The interest from other scientists motivated
a further polishing of the manual as well as the toolbox itself, and resulted in
this book.

These notes are organized as follows: In Chapter 1 we describe the con-
cepts of adaptive finite element methods and its ingredients like the domain
discretization, finite element basis functions and degrees of freedom, numeri-
cal integration via quadrature formulas for the assemblage of discrete systems,
and adaptive algorithms.

The second chapter is a tutorial for using ALBERTA without giving much
details about data structures and functions. The implementation of three
model problems is presented and explained. We start with the easy and
straight forward implementation of the Poisson problem to learn about the
basics of ALBERTA. The examples with the implementation of a nonlinear
reaction-diffusion problem and the time dependent heat equation are more
involved and show the tools of ALBERTA for attacking more complex prob-
lems. The chapter is closed with a short introduction to the installation of the

Preface VII

ALBERTA distribution enclosed to this book in a UNIX/Linux environment.
Visit the ALBERTA web site

http://www.alberta-fem.de/

for updates, more information, FAQ, contributions, pictures from different
projects, etc.

The realization of data structures and functions in ALBERTA is based on
the abstract concepts presented in Chapter 1. A detailed description of all
data structures and functions of ALBERTA is given in Chapter 3. The book
closes with separate lists of all data types, symbolic constants, functions, and
macros.

The cover picture of this book shows the ALBERTA logo, combined with
a locally refined cogwheel mesh [17], and the norm of the velocity from a
calculation of edge tones in a flute [4].

Starting first as a two-men-project, ALBERTA is evolving and now there
are more people maintaining and extending it. We are grateful for a lot of
substantial contributions coming from: Michael Fried, who was the first brave
man besides us to use ALBERT, Claus-Justus Heine, Daniel Koster, and Oliver
Kriessl. Daniel and Claus in particular set up the GNU configure tools for an
easy, platform-independent installation of the software.

We are indebted to the authors of the gltools, especially Jiirgen Fuhrmann,
and also to the developers of GRAPE, especially Bernard Haasdonk, Robert
Klotkorn, Mario Ohlberger, and Martin Rumpf.

We want to thank the Department of Mathematics at the University of
Maryland (USA), in particular Ricardo H. Nochetto, where part of the docu-
mentation was written during a visit of the second author. We appreciate the
invitation of the Isaac Newton Institute in Cambridge (UK) where we could
meet and work intensively on the revision of the manual for three weeks.

We thank our friends, distributed all over the world, who have pointed
out a lot of typos in the manual and suggested several improvements for
ALBERTA.

Last but not least, ALBERTA would not have come into being without
the stimulating atmosphere in the group in Freiburg, which was the perfect
environment for working on this project. We want to express our gratitude to
all former colleagues, especially Gerhard Dziuk.

Bremen and Augsburg, October 2004
Alfred Schmidt and Kunibert G. Siebert

Contents

Introduction 1
1 Concepts and abstract algorithms 9
1.1 Mesh refinement and coarsening 9
1.1.1 Refinement algorithms for simplicial meshes 12
1.1.2 Coarsening algorithm for simplicial meshes 18
1.1.3 Operations during refinement and coarsening 20
1.2 The hierarchical mesh 22
1.3 Degrees of freedom i 24
1.4 Finite element spaces and finite element discretization........ 25
1.4.1 Barycentric coordinates 26
1.4.2 Finite element spacescoiuiiii.. 29
1.4.3 Evaluation of finite element functions 29
1.4.4 Interpolation and restriction during refinement and
COATSENING .« .ttt et ettt 32
1.4.5 Discretization of 2nd order problems 35
1.4.6 Numerical quadrature.........., 38
1.4.7 Finite element discretization of 2nd order problems ... 39
1.5 Adaptive Methods 42
1.5.1 Adaptive method for stationary problems............. 42
1.5.2 Mesh refinement strategies................. 43
1.5.3 Coarsening strategies 47
1.5.4 Adaptive methods for time dependent problems 49
2 Implementation of model problems 55
2.1 Poisson equation 56
2.1.1 Include file and global variables 56
2.1.2 The main program for the Poisson equation........... 57
2.1.3 The parameter file for the Poisson equation 59
2.1.4 Initialization of the finite element space 60

2.1.5 Functions for leafdata 60

Contents

2.1.6 Data of the differential equation..................... 62
2.1.7 The assemblage of the discrete system 63
2.1.8 The solution of the discrete system 65
2.1.9 Errorestimation 66
2.2 Nonlinear reaction—diffusion equation 68
2.2.1 Program organization and header file 69
2.2.2 Global variables i 71
2.2.3 The main program for the nonlinear reaction—diffusion
eqUAtION ... 71
2.2.4 Initialization of the finite element space and leaf data . 72
2.2.5 The build routine 72
2.26 Thesolveroutine........... 73
2.2.7 The estimator for the nonlinear problem 73
2.2.8 Initialization of problem dependent data 75
2.2.9 The parameter file for the nonlinear reaction—diffusion
eqUAtION ... 79
2.2.10 Implementation of the nonlinear solver 80
2.3 Heatequation.......... i i, 93
2.3.1 Global variables i 93
2.3.2 The main program for the heat equation 94
2.3.3 The parameter file for the heat equation.............. 96
2.3.4 Functions for leaf data 98
2.3.5 Data of the differential equation..................... 99
2.3.6 Time discretization i .. 100
2.3.7 Initial data interpolation L. 100
2.3.8 The assemblage of the discrete system 101
2.3.9 Errorestimation 105
2.3.10 Time Steps . ..o vt vt 107
2.4 Installation of ALBERTA and file organization............... 111
2.4.1 Installation 111
2.4.2 File organization o L. 111
Data structures and implementation..................... .. 113
3.1 Basic types, utilities, and parameter handling 113
3.1.1 BasiC types .« oot 113
3.1.2 MeSSage MACTOS -« v v v vttt e e e 114
3.1.3 Memory allocation and deallocation 118
3.1.4 Parameters and parameter files................ 122
3.1.5 Parameters used by the utilities 127
3.1.6 Generating filenames for meshes and finite element
data 127
3.2 Data structures for the hierarchical mesh 128
3.2.1 Constants describing the dimension of the mesh 128
3.2.2 Constants describing the elements of the mesh 129

3.2.3 Neighbour information 129

3.3

3.4

3.5

3.6

3.7

Contents XI

3.24 Element indices i 130
3.2.5 The BOUNDARY data structure 130
3.2.6 The local indexing on elements 132
3.2.7 The MACRO EL data structure........................ 132
3.2.8 The EL data structure............... 134
3.2.9 The EL INFO data structure.............. 135
3.2.10 The NEIGH, OPP VERTEX and EL TYPE macros.......... 137
3.2.11 The INDEX MACTO . « . vt vttt e et e e e e 137
3.2.12 The LEAF DATA INFO data structure 138
3.2.13 The RC LIST EL data structure...................... 140
3.2.14 The MESH data structure 141
3.2.15 Initialization of meshes 143
3.2.16 Reading macro triangulations 144
3.2.17 Writing macro triangulations 150
3.2.18 Tmport and export of macro triangulations from/to

other formats 151
3.2.19 Mesh traversal routines 153
Administration of degrees of freedom....................... 161
3.3.1 The DOF ADMIN data structure 162
3.3.2 Vectors indexed by DOFs: The DOF * VEC data

structures 164
3.3.3 Interpolation and restriction of DOF vectors during

mesh refinement and coarsening 167
3.3.4 The DOF MATRIX data structure 168
3.3.5 Access to global DOFs: Macros for iterations using

DOF indices ... 170
3.3.6 Access to local DOFs on elements 171
3.3.7 BLAS routines for DOF vectors and matrices 173
3.3.8 Reading and writing of meshes and vectors 173
The refinement and coarsening implementation 176
3.4.1 The refinement routinesouun..... 176
3.4.2 The coarsening routines 182
Implementation of basis functions 183
3.5.1 Data structures for basis functions................... 184
3.5.2 Lagrange finite elements............... 190
3.5.3 Piecewise constant finite elements 191
3.5.4 Piecewise linear finite elements 191
3.5.5 Piecewise quadratic finite elements 195
3.5.6 Piecewise cubic finite elements 200
3.5.7 Piecewise quartic finite elements..................... 204
3.5.8 Access to Lagrange elements 206
Implementation of finite element spaces 206
3.6.1 The finite element space data structure 206
3.6.2 Access to finite element spaces 207

Routines for barycentric coordinates 208

XII Contents

3.8 Data structures for numerical quadrature 210
3.8.1 The QUAD data structure 210
3.8.2 The QUAD FAST data structure 212
3.8.3 Integration over sub—simplices (edges/faces) 215

3.9 Functions for the evaluation of finite elements 216

3.10 Calculation of norms for finite element functions............. 221

3.11 Calculation of errors of finite element approximations 222

3.12 Tools for the assemblage of linear systems 224
3.12.1 Assembling matrices and right hand sides 224
3.12.2 Data structures and function for matrix assemblage . ..227
3.12.3 Data structures for storing pre—computed integrals of

basis functions 236
3.12.4 Data structures and functions for vector update 243
3.12.5 Dirichlet boundary conditions....................... 247
3.12.6 Interpolation into finite element spaces 248

3.13 Data structures and procedures for adaptive methods 249
3.13.1 ALBERTA adaptive method for stationary problems ...249
3.13.2 Standard ALBERTA marking routine 255
3.13.3 ALBERTA adaptive method for time dependent

problems ... 256
3.13.4 Initialization of data structures for adaptive methods .. 260

3.14 Implementation of error estimators 263
3.14.1 Error estimator for elliptic problems 263
3.14.2 Error estimator for parabolic problems 266

3.15 Solver for linear and nonlinear systems 268
3.15.1 General linear solvers, 268
3.15.2 Linear solvers for DOF matrices and vectors 272
3.15.3 Access of functions for matrix—vector multiplication. . .. 274
3.15.4 Access of functions for preconditioning 275
3.15.5 Multigrid solvers i 277
3.15.6 Nonlinear solverscoiiiiiiien... 282

3.16 Graphics output 285
3.16.1 One and two dimensional graphics subroutines 286
3.16.2 gltools interface L i 290
3.16.3 GRAPE interface.......... i 293

References. 295
Index 301
Data types, symbolic constants, functions, and macros......... 311

Data types . ..o 311

Symbolic constants 311

Functions o e 312

MaCTOS oo 315

