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Preface

During the last years, scientific computing has become an important research
branch located between applied mathematics and applied sciences and engi-
neering. Nowadays, in numerical mathematics not only simple model problems
are treated, but modern and well-founded mathematical algorithms are ap-
plied to solve complex problems of real life applications. Such applications are
demanding for computational realization and need suitable and robust tools
for a flexible and efficient implementation. Modularity and abstract concepts
allow for an easy transfer of methods to different applications.

Inspired by and parallel to the investigation of real life applications, nu-
merical mathematics has built and improved many modern algorithms which
are now standard tools in scientific computing. Examples are adaptive meth-
ods, higher order discretizations, fast linear and non-linear iterative solvers,
multi-level algorithms, etc. These mathematical tools are able to reduce com-
puting times tremendously and for many applications a simulation can only
be realized in a reasonable time frame using such highly efficient algorithms.

A very flexible software is needed when working in both fields of scientific
computing and numerical mathematics. We developed the toolbox ALBERTA!
for meeting these requirements. Our intention in the design of ALBERTA is
threefold: First, it is a toolbox for fast and flexible implementation of efficient
software for real life applications, based on the modern algorithms mentioned
above. Secondly, in an interplay with mathematical analysis, ALBERTA is an
environment for improving existent, or developing new numerical methods.
And finally, it allows the direct integration of such new or improved methods
in existing simulation software.

Before having ALBERTA, we worked with a variety of solvers, each designed
for the solution of one single application. Most of them were based on data
structures specifically designed for one single application. A combination of
different solvers or exchanging modules between programs was hard to do.

The original name of the toolbox was ALBERT. Due to copyright reasons, we
had to rename it and we have chosen ALBERTA.
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Facing these problems, we wanted to develop a general adaptive finite element
environment, open for implementing a large class of applications, where an
exchange of modules and a coupling of different solvers is easy to realize.

Such a toolbox has to be based on a solid concept which is still open for ex-
tensions as science develops. Such a solid concept can be derived from a math-
ematical abstraction of problem classes, numerical methods, and solvers. Our
mathematical view of numerical algorithms, especially finite element methods,
is based on our education and scientific research in the departments for applied
mathematics at the universities of Bonn and Freiburg. This view point has
greatly inspired the abstract concepts of ALBERTA as well as their practical
realization, reflected in the main data structures. The robustness and flexible
extensibility of our concept was approved in various applications from physics
and engineering, like computational fluid dynamics, structural mechanics, in-
dustrial crystal growth, etc. as well as by the validation of new mathematical
methods.

ALBERTA is a library with data structures and functions for adaptive fi-
nite element simulations in one, two, and three space dimension, written in the
programming language ANSI-C. Shortly after finishing the implementation of
the first version of ALBERTA and using it for first scientific applications, we
confronted students with it in a course about finite element methods. The
idea was to work on more interesting projects in the course and providing a
strong foundation for an upcoming diploma thesis. Using ALBERTA in edu-
cation then required a documentation of data structures and functions. The
numerical course tutorials were the basis for a description of the background
and concepts of adaptive finite elements.

The combination of the abstract and concrete description resulted in a
manual for ALBERTA and made it possible that it is now used world wide in
universities and research centers. The interest from other scientists motivated
a further polishing of the manual as well as the toolbox itself, and resulted in
this book.

These notes are organized as follows: In Chapter 1 we describe the con-
cepts of adaptive finite element methods and its ingredients like the domain
discretization, finite element basis functions and degrees of freedom, numeri-
cal integration via quadrature formulas for the assemblage of discrete systems,
and adaptive algorithms.

The second chapter is a tutorial for using ALBERTA without giving much
details about data structures and functions. The implementation of three
model problems is presented and explained. We start with the easy and
straight forward implementation of the Poisson problem to learn about the
basics of ALBERTA. The examples with the implementation of a nonlinear
reaction-diffusion problem and the time dependent heat equation are more
involved and show the tools of ALBERTA for attacking more complex prob-
lems. The chapter is closed with a short introduction to the installation of the
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ALBERTA distribution enclosed to this book in a UNIX/Linux environment.
Visit the ALBERTA web site

http://www.alberta-fem.de/

for updates, more information, FAQ, contributions, pictures from different
projects, etc.

The realization of data structures and functions in ALBERTA is based on
the abstract concepts presented in Chapter 1. A detailed description of all
data structures and functions of ALBERTA is given in Chapter 3. The book
closes with separate lists of all data types, symbolic constants, functions, and
macros.

The cover picture of this book shows the ALBERTA logo, combined with
a locally refined cogwheel mesh [17], and the norm of the velocity from a
calculation of edge tones in a flute [4].

Starting first as a two-men-project, ALBERTA is evolving and now there
are more people maintaining and extending it. We are grateful for a lot of
substantial contributions coming from: Michael Fried, who was the first brave
man besides us to use ALBERT, Claus-Justus Heine, Daniel Koster, and Oliver
Kriessl. Daniel and Claus in particular set up the GNU configure tools for an
easy, platform-independent installation of the software.

We are indebted to the authors of the gltools, especially Jiirgen Fuhrmann,
and also to the developers of GRAPE, especially Bernard Haasdonk, Robert
Klotkorn, Mario Ohlberger, and Martin Rumpf.

We want to thank the Department of Mathematics at the University of
Maryland (USA), in particular Ricardo H. Nochetto, where part of the docu-
mentation was written during a visit of the second author. We appreciate the
invitation of the Isaac Newton Institute in Cambridge (UK) where we could
meet and work intensively on the revision of the manual for three weeks.

We thank our friends, distributed all over the world, who have pointed
out a lot of typos in the manual and suggested several improvements for
ALBERTA.

Last but not least, ALBERTA would not have come into being without
the stimulating atmosphere in the group in Freiburg, which was the perfect
environment for working on this project. We want to express our gratitude to
all former colleagues, especially Gerhard Dziuk.

Bremen and Augsburg, October 2004
Alfred Schmidt and Kunibert G. Siebert
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