Caromel - Henrio
A Theory of Distributed Objects

Denis Caromel - Ludovic Henrio

A Theory of
Distributed Objects

Asynchrony - Mobility - Groups - Components

Preface by Luca Cardelli

With 114 Figures and 48 Tables

@ Springer

Denis Caromel

University of Nice Sophia Antipolis
I3S CNRS - INRIA

Institut universitaire de France

2004 Rt. des Lucioles, BP 93

06902 Sophia Antipolis Cedex, France
e-mail: Denis.Caromel@inria.fr

Ludovic Henrio

University of Westminster

Harrow School of Computer Science
Watford Rd, Northwick Park
Harrow HA1 3TP, UK

e-mail: Ludovic.Henrio@m4x.org

Library of Congress Control Number: 2005923024

ISBN-10 3-540-20866-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-20866-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors using a Springer TgX macro package
Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig
Cover design: KiinkelLopka, Heidelberg

Printed on acid-free paper 45/3142/YL -543210

To Isa, Ugo, Tom,
Taken from us by the Tsunami, Sri Lanka, December 26, 2004

Isabelle, my wife, my lover, my fellow intellect, I miss you so badly.
My soul, my body, my brain, all hurt for you, all cry out for you.
Your smile, your spirit would bring joy and light to all around you.
Your plans were to do voluntary work to help humanity,

I know you would have given courage and cheer to so many.

Ugo, my 8 year old boy, you could not wait to understand the world.
You even found your own definition of infinity: God!
I will remember forever when you would call me “Papaa ? ...
with that special tone, to announce a tough question.

”

Tom, my 5 year old boy, you could fight so hard and yet be so sweet.
You were so strong, and you could be so gentle.

Your determination was impressive, but clearly becoming thoughtful.
I will remember forever when after o fight,

you would jump up on my lap and give me a sweet, loving hug.

So many years of happiness and joy,
May your spirits be with us and in me forever

Denis,
Nice hospital,
January 6, 2005

To Francoise, Marc, Laurianne and Sébastien,
and my precious friends

Ludovic,
December 10, 2004

Preface

With the advent of wide-area networks such as the Internet, distributed com-
puting has to expand from its origins in shared-memory computing and local-
area networks to a wider context. A large part of the additional complexity
is due to the need to manage asynchrony, which is an unavoidable aspect of
high-latency networks. Harnessing asynchronous communications is still an
open area of research.

This monograph studies a natural programming model for distributed
object-oriented programming. In this model, objects make asynchronous
method invocations to other objects, and then concurrently carry on until
the results of the requests are needed. Only at that point may they have to
wait for the results to be completely computed; this delayed wait is called
wait-by-necessity. Aspects of such a model have been proposed and formal-
ized in the past: futures have been built into early concurrent languages, and
various distributed object calculi have been investigated. However, this is the
first time the two features, futures and distributed objects, have been studied
formally together.

The result is a natural and disciplined programming model for asyn-
chronous computing, one worthy of study. For example, it is important to un-
derstand under which conditions asynchronous execution produces predictable
outcomes, without the usual combinatorial explosion of concurrent execution.
Even the simplest sequential program becomes highly concurrent under wait-
by-necessity execution, and yet such concurrency does not always imply that
multiple outcomes are possible. One of the main technical contributions of
the monograph, beyond the formalization of the programming model, is a
sufficient condition for deterministic evaluation (confluence) of programs.

This monograph addresses problems that have been long identified as fun-
damental stumbling blocks in writing correct distributed programs. It consti-
tutes a significant step forward, particularly in the area of formalizing and
generalizing some of the best ideas proposed so far, coming up with new tech-
niques, and providing a solid foundation for further study. The techniques
studied here also have a very practical potential.

Cambridge, 2004-11-15
Luca Cardelli

Contents

Preface by Luca Cardelli VII

Table of Contents IX

Lists of Figures, Tables, Definitions and Properties XV

Prologue XXV

Reading Path and Teaching XXIX
Part I Review

1 Analysis e 3

1.1 A Few Definitions 3

1.2 Distribution, Parallelism, Concurrency 5

1.2.1 Parallel Activities 5

1.2.2 Sharing o 6

1.2.3 Communication 6

1.2.4 Synchronization 10

1.2.5 Reactive vs. Proactive vs. Synchronous. 11

1.3 Objects e 14

1.3.1 Object vs. Remote Reference and Communication . . 14

1.3.2 Object vs. Parallel Activity 14

1.3.3 Object vs. Synchronization 15

1.4 Summary and Orientation 17

2 Formalisms and Distributed Calculi 21

2.1 Basic Formalismso L. 21

2.1.1 Functional Programming and Parallel Evaluation . . . 21

2.1.2 Actors

23

X Contents

2.1.3 m-calculus o o 26
2.1.4 Process Networks 30
2.1.5 g-calculuso 31
2.2 Concurrent Calculi and Languages 35
2.21 MultiLisp oL L 35
2.2.2 PICT ... i e 37
2.2.3 Ambient Calculus 40
2.24 Join-calculus Lo 42
2.2.5 Other Expressions of Concurrency 43
2.3 Concurrent Object Calculi and Languages 45
231 ABCL 45
2.3.2 Obliq and Qjeblik 49
2.3.3 The mofBX Language 51
2.3.4 Gordon and Hankin Concurrent Calculus: concg-calculus 54
2.4 Synthesis and Classification 56

Part IT ASP Calculus

3 An Imperative Sequential Calculus 63
3.1 Syntax 63
3.2 Semantic Structures 65

3.2.1 Substitutiono Lo 65
3.22 Store. e e 66
3.2.3 Configuration 66
3.3 Reduction 66
3.4 Properties e 68

4 Asynchronous Sequential Processes 69
4.1 Principles oL 69
42 New Syntax 71
4.3 Informal Semantics 71

4.3.1 Activities oo 72
432 Requests. e e 73
433 Futures 73
4.3.4 Serving Requests 73

5 AFew Examples 75
5.1 Binary Treeo 76
5.2 Distributed Sieve of Eratosthenes 77
5.3 From Process Networks to ASP 79
5.4 Example: Fibonacci Numbers 80

5.5 A Bank Account Server 81

Contents XI

Part ITT Semantics and Properties
6 Parallel Semantics 87
6.1 Structure of Parallel Activities 87
6.2 Parallel Reduction 89
6.2.1 More Operations on Store 89
6.2.2 Reduction Rules 91
6.3 Well-formedness 98
7 Basic ASP Properties 101
7.1 Notation and Hypothesis. 101
7.2 Object Sharing L. 104
7.3 Isolation of Futures and Parameters 105
8 Confluence Property 107
8.1 Configuration Compatibility 107
8.2 Equivalence Modulo Future Updates 111
8.2.1 Principleso 113
8.2.2 Alias Condition 114
8.2.3 Sufficient Conditions 115
8.3 Properties of Equivalence Modulo Future Updates 117
84 Confluence 118
9 Determinacy 121
9.1 Deterministic Object Networks 121
9.2 Toward a Static Approximation of DON Terms 124
9.3 Tree Topology Determinism 126
9.4 Deterministic Examples L. 126
9.4.1 The Binary Tree 126
9.4.2 The Fibonacci Number Example 127
9.5 Discussion: Comparing Request Service Strategies 130

Part IV A Few More Features

10 More Confluent Features 137
10.1 Delegation Lo 137
10.2 Explicit Waito 141
10.3 Method Update 141
11 Non-Confluent Features 143
11.1 Testing Future Reception 143
11.2 Non-blocking Services 144
11.3 Testing Request Reception 145
11.4 Join Patterns o e 146
11.4.1 Translating Join Calculus Programs 146

XII Contents

11.4.2 Extended Join Servicesin ASP 147

12 Migration 151
12.1 Migrating Active Objects 151
12.2 Optimizing Future Updates 153
12.3 Migration and Confluence 154

13 Groups e 157
13.1 Groups in an Object Calculus 157
13.2 Groups of Active Objects 160
13.3 Groups, Determinism, and Atomicity 162

14 Components L e 169
14.1 From Objects to Components 169
14.2 Hierarchical Components 170
14.3 Semantics 172
14.4 Deterministic Components 175
14.5 Components and Groups: Parallel Components 176
14.6 Components and Futures 178

15 Channels and Reconfigurations 181
15.1 Genuine ASP Channels 181
15.2 Process Network Channelsin ASP 183
15.3 Internal Reconfiguration 184
15.4 Event-Based Reconfiguration 186

Part V Implementation Strategies

16 A Java API for ASP: ProActive 189
16.1 Designand APT 189
16.1.1 Basic API and ASP Equivalence 190

16.1.2 Mapping Active Objects to JVMs: Nodes 191

16.1.3 Basic Patterns for Using Active Objects 192

16.1.4 Migrationo o 192

16.1.5 Group Communications 195

16.2 Exampleso 198
16.2.1 Parallel Binary Tree 198

16.2.2 Eratosthenes 201

16.2.3 Fibonacci oL 206

17 Future Update, 213
17.1 Future Forwarding 213
17.2 Update Strategies. L o 215

17.2.1 ASP and Generalization: Encompassing All Strategies 215
17.2.2 No Partial Replies and Requests 217

Contents XIII

17.2.3 Forward-Based 219

17.2.4 Message-Based 220

17.2.5 Lazy Future Update 222

17.3 Synthesis and Comparison of the Strategies 223

18 Loosing Rendezvous 225
18.1 Objectives and Principles 225
18.2 Asynchronous Without Guarantee 227
18.3 Asynchronous Point-to-Point FIFO Ordering 229
18.4 Asynchronous One-to-All FIFO Ordering 232
18.5 Conclusion Lo 235
19 Controlling Pipelining 237
19.1 Unrestricted Parallelism 238
19.2 Pure Demand Driven 238
19.3 Controlled Pipelining o000 239
20 Garbage Collection, 241
20.1 Local Garbage Collection 241
20.2 Futures 242
20.3 Active Objects 242

Part VI Final Words

21 ASP Versus Other Concurrent Calculi 245
21.1 Basic Formalismso 245
21.1.1 Actors 245

21.1.2 m-calculus and Related Calculi 246

21.1.3 Process Networks 248

21.1.4 ¢-calculus 249

21.2 Concurrent Calculi and Languages 249
21.2.1 Multilispo 249

21.2.2 Ambient Calculus 250

21.2.3 join-calculus. oL oL 250

21.3 Concurrent Object Calculi and Languages 250
21.3.1 Obliq and @jeblik 250

21.3.2 The mofBA Language 251

22 Conclusion e 253
22.1 Summary e e e 253
22.2 A Dynamic Property for Determinism 254
22.3 ASPin Practice. 255
22.4 Stateful Active Objects vs. Immutable Futures 256
22.5 Perspectiveso e 257

23 Epilogue 261

XIV ~ Contents
Appendices
A Equivalence Modulo Future Updates 269
Al Renamingo o 269
A2 Reordering Requests (Ri =g Ra)« . . o ... 269
A3 FutureUpdates, 270
A.3.1 Following References and Sub-terms 270
A.3.2 Equivalence Definition 273
A4 Propertiesof=po Lo oL 276
A.5 Sufficient Conditions for Equivalence 281
A.6 Equivalence Modulo Future Updates and Reduction 283
A.7 Another Formulation 0oL 288
A8 Decidabilityof =p o o 290
A9 Examples 291
B Confluence Proofs, 295
B.l Context 295
B2 Lemmas o 296
B.3 Local Confluence 298
B.3.1 Local vs. Parallel Reduction 299
B.3.2 Creating an Activity 300
B.3.3 Localized Operations (SERVE, ENDSERVICE) 301
B.3.4 Concurrent Request Sending: REQUEST/REQUEST . 304
B.4 Calculus with service based on activity name: Serve(a) . .. 305
B.5 Extension 306
References 309
Notation e 321
Syntax of ASP Calculus 0. 327
Operational Semantics 329
Overview of Properties 331
Overview of ASP Extensions 333
Index e 343

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Suggested reading paths

Classification of calculi (informal)
A binary treein CAML
A factorial actor [9] L L

Execution of the sieve of Eratosthenes in Process Networks

Sieve of Eratosthenes in Process Networks [100]
Sieve of Eratosthenes in ¢-calculus [3]
Binary tree in ¢-calculus [3]
A simple Fibonacci example in P1cT [130]
A factorial example in the core P1CT language [130] . . .
Locks in ambients [47]
Channels in ambients [47]
A cell in the join-calculus [68]
Bounded buffer in ABCL [161]
The three communication types in ABCL
Prime number sieve in Obliq
Binary tree in (a language inspired by) mogA [110]
wofA parallel binary tree, equivalent to Fig. 2.16 [110]

Objects and activities topology
Example of a parallel configuration

Example: a binary tree00
Topology and communications in the parallel binary tree
Example: sieve of Eratosthenes (pull)
Topology of sieve of Eratosthenes (pull).
Example: sieve of Eratosthenes (push)
Topology of sieve of Eratosthenes (push)
Process Network vs. object network
Fibonacci number processes

22
23
24
31
32
35
36
39
39
41
41
43
46
47
50
53
54

70
72

76
7
78
78
79
79
79
80

XVI List of Figures

5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3

10.1
10.2

11.1

12.1

13.1
13.2
13.3
13.4
13.5
13.6

14.1
14.2

Example: Fibonacci numbers
Topology of a bank application
Example: bank account server

Example of a deep copy: copy(t,04) - - - o o o oo ...
NEWACT rule o
A simple forwarder
REQUEST rule,
SERVE rule
ENDSERVICE rule
REPLY rule
Another example of configuration

An informal property diagram
Absence of sharing

Store partitioning: future value, active store, request parame-

ter .o

Example of RSL o oo
Example of RSL compatibility
Two equivalent configurations modulo future updates . .
An example illustrating the alias condition
Updates in a cycle of futures
Confluence
Confluence without cycle of futures

Anon-DONterm
Concurrent replies in the binary treecase.
Fibonacci number RSLs

Explicit delegationin ASP
Implicit delegation in ASP

A join-calculus cellin ASP
Chain of method calls and chain of corresponding futures

A group of passive objects Lo
Request sending to a group of active objects
An activated group of objects
A confluent program if communications are atomic
Execution with atomic group communications
An execution without atomic group communications

A primitive component L.
Fibonacci as a composite component

80
81
82

91
93
94
94
95
96
97
98

102
104

105

109
112
113
116
117
118
119

124
127
128

140
141

147

153

158
161
161
164
165
166

170
171

14.3
14.4
14.5
14.6

15.1
15.2
15.3

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18

17.1
17.2
17.3
17.4
17.5
17.6
17.7

18.1
18.2
18.3
18.4
18.5

19.1

23.1
23.2

List of Figures

A definition of Fibonacci components
Deployment of a composite component
A parallel component using groups
Components and futures

Requests on separate channels do not interfere
A non-deterministic merge L.
A channel specified with an active object

A simple mobile agent in ProActive
Method callon group
Dynamic typed group of active objects
Sequential binary treein Java
Subclassing binary tree for a parallel version
Main binary tree program in ProActive
Execution of the parallel binary tree program of Fig. 16.6
Screenshot of the binary tree at execution
Sequential Eratosthenesin Java
Sequential Prime Javaclass
Parallel Eratosthenes in Java ProActive
Parallel ActivePrimeclass
Graph of active objects in the Fibonacci program
Main Fibonacci program in ProActive
The class Add of the Fibonacci program
The class Cons1 of the Fibonacci program
The class Cons2 of the Fibonacci program
Graphical visualization of the Fibonacci program using IC2D

A future flow example.
General strategy: any future update can occur
No partial replies and requests
Future updates for the forward-based strategy
Message-based strategy: future received and update messages
Lazy future update: only needed futures are updated . .
Future update strategies

Example: activities synchronized by rendezvous
ASP with rendezvous — message ordering
Asynchronous communications without guarantee
Asynchronous point-to-point FIFO communications . . .
Asynchronous one-to-all FIFO communications

Strategies for controlling parallelism

Potential queues, buffering, pipelining, and strategiesin ASP
Classification of strategies for sending requests

XVII

172
174
177
178

182
183
184

193
196
197
199
200
200
201
202
203
203
204
205
206
207
208
209
210
211

215
217
218
220
222
223
223

226
227
229
231
234

237

263
264

XVIIT List of Figures

23.3

Al
A2
A3
A4
A5
A6

B.1
B.2
B.3

Classification of strategies for future update

Simple example of future equivalence
The principle of the alias conditions
Simple example of future equivalence
Example of a “cyclic” proof
Equivalence in the case of a cycle of futures
Example of alias condition

SERVE/REQUEST
ENDSERVICE/REQUEST

The diamond property (Property B.12) proof

Diagram of properties

265

271
275
291
292
292
293

302
303
307

331

List of Tables

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26

3.1

Aspects of distribution, parallelism, and concurrency . . .
Aspectsof ASPo

The syntax of an Actors language [9]
Aspects of Actors
The syntax of r-calculus
m-calculus structural congruence
m-calculus reaction rules L.
Aspects of r-calculus
Aspects of Process Networks
The syntax of impg-calculus [3]
Well-formed store
Well-formed stack,

Semantics of impg-calculus (big-step, closure based)

Aspects of Multiliisp
Asyntaxfor PrcT [132]
Aspectsof PrcTo oo
The syntax of Ambient calculus
Aspects of Ambients L.,
The syntax of the join-calculus

Main rules defining evaluation in the Join calculus

Aspects of the Join-Calculus
Aspectsof ABCL oL
The syntax of @jeblik
Aspects of Obliq and @jeblik
Aspectsof moBNo
The syntax of concg-calculus [78]
Aspects of concg-calculus
Summary of a few calculi and languages

Syntax of ASP sequential calculus

17
19

24
25
26
27
28
30
31
33
33
34
34
37
38
40
40
42
43
43
44
49
50
52
54
55
56
58

64

XX

List of Tables

3.2

4.1
4.2

6.1
6.2

10.1

13.1
13.2

16.1
16.2

17.1
17.2
17.3
17.4

22.1

Al
A2
A3

1

Sequential reduction

Syntax of ASP parallel primitives
Syntax of ASP calculus

Deepcopy o
Parallel reduction (used or modified values are non-gray) .

Rules for delegation (DELEGATE)

Reduction rules for groups
Atomic reduction rules for groups

Relations between ASP constructors and ProActive API .
Migration primitives in ProActive.

Generalized future update
No partial replies and requests protocol
Forward-based protocol
Message-based protocol for future update

Duality active objects (stateful) and futures (immutable)

Reordering requestso
Path definition
Equivalencerules L Lo,

Sequential reductionol
Deep copy . . . o v o o e e
Parallel reduction (used or modified values are non-gray) .

67

71
71

90
92

138

159
163

190
193

216
218
219
221

257

270
272
289

329
330
330

List of Definitions and Properties

Definition
Definition
Definition
Definition
Definition
Definition
Definition
Definition
Definition
Definition
Property

Property

Definition
Property

Definition
Definition
Property

Definition
Property

Definition
Definition
Definition
Definition
Definition
Definition
Property

Property

Definition
Theorem

Definition

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
3.1
3.2
3.3
3.4
6.1
6.2
6.3
6.4
6.5
7.1
7.2
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
9.1

Parallelism 3
CONCUITENCY -« o e v ettt ettt e 3
Distributionoo i 4
Asynchronous systems ..., 4
Future...... 11
Reactive system it 12
Synchrony hypothesis....................o.oo 12
Wait-by-necessity ... 16
Well-formed sequential configuration............. 66
Equivalence on sequential configurations......... 66
Well-formed sequential reduction 68
Determinism. 68
Copy and mergeoouiniii .. 91
Copy and mergeooeiiii .. 91
Future list 99
Well-formednesso L. 99
Well-formed parallel reduction................... 99
Potential services..........cooiiiiiiiiiiiiii 103
Store partitioning........... ool 105
Request Sender List ..., 108
RSL comparison < ..ot 110
RSL compatibility: RSL(a) X RSL(B)........... 110
Configuration compatibility: P X Q 110
Cycle of futures. ..., 116
Parallel reduction modulo future updates........ 117
Equivalence modulo future updates and reduction 117

Equivalence and generalized parallel reduction ... 118

Confluent configurations: P, Y Py 118
Confluenceo o 118
DON 122

XXII List of Definitions and Properties

Property 9.2
Theorem 9.3
Definition 9.4
Property 9.5
Theorem 9.6
Theorem 9.7
Definition 10.1
Definition 14.1
Definition 14.2
Definition 14.3
Definition 14.4
Property 14.5
Definition 17.1
Property 17.2
Property 17.3
Property 17.4
Property 17.5
Property 17.6
Definition 18.1
Definition A.1l
Definition A.2
Lemma A3
Lemma A4
Definition A.5
Property A.6
Definition A.7

Lemma, AR
Property A.9
Lemma A.10

Lemma A.11
Lemma A.12
Lemma A.13
Lemma A.14
Property A.15
Property A.16
Property A.17
Definition A.18
Property A.19
Corollary A.20
Definition A.21
Property A.22
Property A.23
Property B.1
Lemma B.2

DON and compatibility
DON determinismcoooviiiiiiiiia...
Static DON ...
Static approximation ool
SDON determinism..............oooiiiiino...
Tree determinacy, TDON.............
Well-formednesso,
Primitive component il
Composite componentcoooiii...
Deterministic Primitive Component (DPC)......
Deterministic Composite Component (DCC).....
DCC determinism ...
Forwarded futures............c.ooiiiiiiiiiin
Origin of futures....... i
Forwarded futures flow
No forwarded futures....................,
Forward-based future update is eager............
Message-based strategy is eager..................
Triangle pattern................oooiiiiiLL

Uniqueness of path destination
Equivalence modulo future updates: P =5 Q.
Equivalence relation..............ol
Equivalence of sub-terms
Sub-term equivalence...........,
Equivalence and compatibility
=p and store updateo i,
=r and substitution.........
A characterization of deep copy..................
Copy and merge..........ooouiiiiiiiiiina.
=pand store merge ...t
REPLY and =Fottt it iiiiiiiiinnns
Sufficient condition for equivalence...............
=p and reduction(1)............ooiilL
Parallel reduction modulo future updates........
=p and reduction(2)..............olL
=rpand reductionooiiiiii i
Equivalence modulo future updates (2)
Equivalence of the two equivalence definitions. ...
Decidability
Confluence L.
Q and compatiblity............. ...l

Lemma B.3
Lemma B.4
Lemma B.5
Lemma, B.6
Lemma, B.7
Corollary B.8
Property B.9
Lemma B.10
Lemma B.11
Property B.12

List of Definitions and Properties XXIII

Independent storescoiiiiiiiiii.... 296
Extensibility of local reduction................... 296
copy and locations..............c.ciiiiiiiin. .. 296
Multiple copies ... 297
Copy and store update 297
Copy and store update 298
Diamond property......coooeiiiiiiiiiiiiii.n. 298
=pand Q(Q,Q") . vniii 306
REPLY vs. other reduction........................ 306

Diamond property with =g, 306

Prologue

Distributed objects are becoming ubiquitous. Communicating objects interact
at various levels (application objects, Web and middleware services), and in
a wide range of environments (mobile devices, local area networks, Grid, and
P2P). These objects send messages, call methods on each other’s interfaces,
and receive requests and replies.

Why would we employ objects to act as interacting entities? An answer
with a religious twist would be that object orientation has, so far, won the
language crusade. However, a technical answer has more substance: objects
are stateful abstractions. Any globally-distributed computation must rely on
various levels of state, somehow acting as a cache for improved locality, leading
to greater scalability and performance. In a multi-tier application server, for
instance, objects representing persistent data (e.g., Entity Beans) act as a
cache for data within the n-tier database.

Thus, stateful objects interact with each other. Why should they communi-
cate with method calls rather than with messages traveling over channels? One
answer is that this is exactly what objects are all about: distributed systems
should not abandon such a critical feature for software structuring. Remote
method invocation in industrial platforms, following 15 years of research in
academia, has taken off, and appears to be a practical and effective solu-
tion. Moreover, method calls are also about safety and verification, a highly
desirable feature for distributed, multi-principal, multi-domain applications.
Because method calls and the interface imply the emergence of types, remote
method invocations fall within the scope of type theories and practical ver-
ifications — including static analyses, which rely heavily on inter-procedural
analysis.

With distribution spanning the world ever more widely, an intrinsic char-
acteristic of communication is high latency, with an unbreakable barrier of
70 milliseconds for a signal to go half-way around the world at the speed of
light. Large systems, with potentially thousands of interacting entities, can-
not accommodate the high coupling induced by synchronous calls, because

XXVI Prologue

such coupling can lead to a blocked chain of remote method calls spanning
a large number of entities. An extreme case that requires non-synchronous
invocation is the handling of the disconnected mode in wireless settings. In
sum, high latency and low coupling call for asynchronous interactions, as in
the case of distributed objects: asynchronous method calls. But if we want
method calls to retain their full capacity, one-way calls on their own are in-
sufficient. Asynchronous method calls with returns are needed, leading to an
emerging abstraction: namely, futures, the expected result of a given asyn-
chronous method call. Futures turn out to be a very effective abstraction for
large distributed systems, preserving both low coupling and high structuring.

To summarize the argument, scalable distributed object systems cannot
be effective without interactions based on asynchronous method calls, with
respect to mastering both complexity and efficiency. While acknowledged the-
ories have been proposed for both asynchronous message passing (e.g., 7-
calculus) and objects (e.g., ¢-calculus), no formal framework has been pro-
posed for objects communicating solely with non-blocking method calls. This
is exactly the ambition of the current book: to define a theory for distributed
objects interacting with asynchronous method calls.

Starting from widely adopted object theory, the ¢-calculus [3], a syntacti-
cally lightweight extension is proposed to take distribution into account. Two
simple primitives are proposed: Active and Serve. The former turns an object
into an independent and potentially remote activity; the latter allows such
an active object to execute (serve) a pending remote call. On activation, an
object becomes a remotely accessible entity with its own thread of control:
an active object. In accordance with the above reasoning, we have chosen to
make method calls to active objects systematically asynchronous. Synchro-
nization is ensured with a natural dataflow principle: wait-by-necessity. An
active object is blocked on the invocation of a not yet available result, i.e.,
a strict operation on an unknown future. A further level of asynchrony and
low coupling is reached with the first-class nature of futures within wait-by-
necessity; they can be passed between active objects as method parameters
and returned as results.

The proposed calculus is named Asynchronous Sequential Processes (ASP),
reflecting an important property: the sequentiality of active objects. Processes
denote the potentially coarse-grain nature of active objects. Such processes are
usually formed with a set of standard objects under the exclusive control of
a root object. The proposed theory allows us to express a fundamental con-
dition for confluence, alleviating for the programmer of the unscalable need
to consider the interleaving of all instructions and communications. Further-
more, a property ensures determinism, stating that, whatever the order of
communications, whatever the order of future updates, even in the presence
of cycles, some systems converge towards a determinate global state. Apart
from Process Networks [99, 100, 159], now close to 40 years old, few calculi

Prologue XXVII

and languages ensure determinism, and even fewer in the context of stateful
distributed objects interacting with asynchronous method calls. The potential
of the proposed theory is further demonstrated by the capacity to cope with
more advanced issues such as mobility, groups, and components.

One objective of the proposed theory is to be a practical one. Implemen-
tation strategies are covered. Several chapters explore a number of solutions,
adapted to various settings (high-speed local area networks with buffer sav-
ing in mind, wide area networks with latency hiding as a primary goal, etc.),
but each one still preserving semantics and properties. An illustration of such
practicability is available under an open source Java API and environment,
ProActive [134], which implements the proposed theory using a strategy de-
signed to hide latency in the setting of wide area networks.

The first part of this book analyzes the issues at hand, reviewing existing
languages and calculi.

Parts IT and IIT formally introduce the proposed framework, defining the
main properties of confluence and determinism.

Part IV reaches a new frontier and discusses issues at the cutting edge
of software engineering, namely migration, reconfiguration, and component-
based systems. From the proposed framework, we suggest a path that can
lead to reconfigurable components. It demonstrates how we can go from asyn-
chronous distributed objects to asynchronous distributed components, includ-
ing collective remote method invocations (group communications), while re-
taining determinism.

With practicality in mind, Part V analyzes implementation issues, and
suggests a number of strategies. We are aware that large-scale distributed
systems encounter large variations in conditions, due to both localization in
space and dynamic changes over time. Thus, potentially adaptive strategies
for buffering and pipelining are proposed.

Finally, after a comparative evaluation of related formalisms, Part VI con-
cludes and suggests directions for the future.

XXVIIIPrologue

Acknowledgments

We are pleased to acknowledge discussions, collaboration, and joint work with
many people as a crucial inspiration and contribution to the pages herein.

Without Isabelle Attali — Isa, Project Leader of the OASIS team until De-
cember 26th 2004, this book would not be in your hands.

Bernard Serpette significantly contributed to the development of the ASP
calculus and related proofs.

All the other senior OASIS team members, Francoise Baude and Eric
Madelaine, were very supportive and contributed in many aspects.

This book is also the result of many fruitful interactions between theory
and practice. Many inspiring ideas came from the practical development of
the ProActive library, and from contributors.

Special thanks go to Fabrice Huet and Julien Vayssiére, the first two ProAc-
tive contributors, implementors, and testers. Many others recently had key
contributions, especially the younger researchers and engineers in our team:
Laurent Baduel, Tomds Barros, Rabéa Ameur-Boulifa, Javier Bustos, Arnaud
Contes, Alexandre Di Costanzo, Christian Delbé, Felipe Luna Del Aguila,
Matthieu Morel, and last, but not least, Romain Quilici.

Former Master’s, Ph.D. students, engineers, were also a key source of mat-
uration and inspiration: Alexandre Bergel, Roland Bertuli, Florian Doyon,
Sidi Ould Ehmety, Alexandre Fau, Wilfried Klauser, Emmanuel Léty, Lionel
Mestre, Olivier Nano, Arnaud Poizat, Yves Roudier, Marjorie Russo, David
Sagnol.

Finally, colleagues from around the world, Martin Abadi, Gul Agha, Gérard
Boudol, Luca Cardelli, David Crookall, Davide Sangiorgi, Akinori Yonezawa,
and Andrew Wendelborn, made very useful comments on early drafts of the
book or related research papers.

Nice - Sophia Antipolis Denis Caromel

London Ludovic Henrio
February 2005

Reading Paths and Teaching

Extra Material and Dependencies

You will find at the end of this book a list of notations and a summary of
ASP syntax and semantics that should provide a convenient quick reference
(Index of Notations, Syntax, Operational Semantics). This is followed by a
graphical view of ASP properties (page 331), and the syntax of ASP extensions
(Synchronizations, Migration, Groups, Components).

The Appendices detail formal definitions and proofs of the main theorems
and properties introduced in Part III.

Figure 1 exhibits the dependencies between chapters and sections. Each
chapter is best read after the preceding chapters. For example, in order to
fully understand the group communication in ASP (Chap. 13), one should
read Chaps 3, 4, Part III (Chaps. 6, 7, 8, 9), and Chap.10. Going down the
lines (Fig. 1), one can follow the outcomes of chapters. For instance, still for
group communication in Chap. 13, immediate benefits are parallel components
(Sect. 14.5), and a practical implementation of typed group communication
within ProActive (Chap. 16).

Text Book

Besides researchers and middleware designers, the material here can also be
used as a text book for courses related to models, calculi, languages for concur-
rency, parallelism, and distribution. The focus is clearly on recent advances,
especially object-orientation and asynchronous communications. Such courses
can provide theoretical foundations, together with a perspective on practical
programming and software engineering issues, such as distributed components.

The courses cover classical calculi such as CSP [88] and w-calculus [119,
120, 144], object-orientation using ¢-calculus [3, 1, 2], and ASP [52], and
advanced issues such as mobility, groups, and components. Overall, the ob-
jectives are threefold:

XXX Reading Paths and Teaching

I

Review

11

ASP Calculus

111

Semantics and Properties

v

A Few More Features

Implementation Strategies

VI
Final Words

1
2 — R —_— JRN— —_—
3i1
4\
/ 3.2-3.3
5 3.4 |
/6
// 0
10\ 14.1-14.3
/ 13 15
11
12 \
145 14.4, 14.6
17
18 16 19
20.1, 20.3 20.2
- — - — A
\V4
21 22, 23

Fig. 1. Suggested reading paths

(1) study and analyze existing models of concurrency and distribution,
(2) survey their formal definitions within a few calculi,
(3) understand the implications on programming issues.
Depending on the objectives, the courses can be aimed at more theoretical
aspects, up to proofs of convergence and determinacy within 7-calculusand
ASP, or targeted at more pragmatic grounds, up to practical programming

Reading Paths and Teaching XXXI

sessions using software such as PICT [132, 131] or ProActive [134].

Below is a suggested outline for a semester course, with references to online
material, and chapters or sections of this book:

Models, Calculi, Languages for
Concurrency, Parallelism, and Distribution

1. |Introduction to Distribution, Parallelism, Concurrency 1
General Overview of Basic formalisms [39]
2. |CCS, and/or Pi-Calculus 2.1.3
[73]
3. |Other Concurrent Calculi and Languages 214,22
(Process Network, Multilist, Ambient, Join, ...) [125]
4. |Object-Oriented calculus: ¢-calculus 2.1.5
4]
5. |Overview of Concurrent Object Calculi (Actors, 2.1.2,2.3
ABCL, Obliq and Qjeblik, 7o\, concg-calculus, ...) [39]
6. |Asynchronous Method Calls and Wait-by-necessity 3,4,5
ASP: Asynchronous Sequential Processes
7. |Semantics, Confluence, Determinacy 6,7,8,9
8. |Advanced issues I: 10, 11, 12
Confluent and non-confluent features, mobility [125]
9. |Advanced issues II: 13,14
Groups, Components
10.|Open issue: reconfiguration 15, 21, 22, 23
Conclusion, Perspective, Wrap-up

The Web page [39] gathers a broad range of information aimed at concurrent
systems, also featuring parallel and distributed aspects. Valuable material for
teaching models of concurrent computation, including CCS and w-calculus
can be found at [73]. The Web page [4] is dedicated to the book A Theory
of Objects [3]; it references pointers to courses using ¢-calculus, some with
teaching material available online. Finally, a comprehensive set of resources
related to calculi for mobile processes is available at [125].

Assignments can include proofs of the confluence or non-confluence na-
tures of a few features (e.g., delegation, explicit wait, method update, testing
future or request reception, non-blocking services, join constructs, etc.). More
practical assignments can involve designing and evaluating new future-update
strategies, new request delivery protocols, or new schemes for pipelining con-
trol. Practicality can reach as far as implementing examples or prototypes,
using PICT [132, 131], ProActive [134], or other programming frameworks.

XXXII Reading Paths and Teaching
A Theory of Distributed Objects online

We intend to maintain a Web page for general information, typos, etc. Extra

material is also expected to be added (slides, exercises and assignments, con-

tributions, reference to new related papers, etc.). This page is located at:
http://www.inria.fr/oasis/caromel/TDO

Do not hesitate to contact us to comment or to exchange information!

Part I

Review

