Caromel - Henrio
A Theory of Distributed Objects



Denis Caromel - Ludovic Henrio

A Theory of
Distributed Objects

Asynchrony - Mobility - Groups - Components

Preface by Luca Cardelli

With 114 Figures and 48 Tables

@ Springer



Denis Caromel

University of Nice Sophia Antipolis
I3S CNRS - INRIA

Institut universitaire de France

2004 Rt. des Lucioles, BP 93

06902 Sophia Antipolis Cedex, France
e-mail: Denis.Caromel@inria.fr

Ludovic Henrio

University of Westminster

Harrow School of Computer Science
Watford Rd, Northwick Park
Harrow HA1 3TP, UK

e-mail: Ludovic.Henrio@m4x.org

Library of Congress Control Number: 2005923024

ISBN-10 3-540-20866-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-20866-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors using a Springer TgX macro package
Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig
Cover design: KiinkelLopka, Heidelberg

Printed on acid-free paper 45/3142/YL -543210



To Isa, Ugo, Tom,
Taken from us by the Tsunami, Sri Lanka, December 26, 2004

Isabelle, my wife, my lover, my fellow intellect, I miss you so badly.
My soul, my body, my brain, all hurt for you, all cry out for you.
Your smile, your spirit would bring joy and light to all around you.
Your plans were to do voluntary work to help humanity,

I know you would have given courage and cheer to so many.

Ugo, my 8 year old boy, you could not wait to understand the world.
You even found your own definition of infinity: God!
I will remember forever when you would call me “Papaa ? ...
with that special tone, to announce a tough question.

”

Tom, my 5 year old boy, you could fight so hard and yet be so sweet.
You were so strong, and you could be so gentle.

Your determination was impressive, but clearly becoming thoughtful.
I will remember forever when after o fight,

you would jump up on my lap and give me a sweet, loving hug.

So many years of happiness and joy,
May your spirits be with us and in me forever

Denis,
Nice hospital,
January 6, 2005



To Francoise, Marc, Laurianne and Sébastien,
and my precious friends

Ludovic,
December 10, 2004



Preface

With the advent of wide-area networks such as the Internet, distributed com-
puting has to expand from its origins in shared-memory computing and local-
area networks to a wider context. A large part of the additional complexity
is due to the need to manage asynchrony, which is an unavoidable aspect of
high-latency networks. Harnessing asynchronous communications is still an
open area of research.

This monograph studies a natural programming model for distributed
object-oriented programming. In this model, objects make asynchronous
method invocations to other objects, and then concurrently carry on until
the results of the requests are needed. Only at that point may they have to
wait for the results to be completely computed; this delayed wait is called
wait-by-necessity. Aspects of such a model have been proposed and formal-
ized in the past: futures have been built into early concurrent languages, and
various distributed object calculi have been investigated. However, this is the
first time the two features, futures and distributed objects, have been studied
formally together.

The result is a natural and disciplined programming model for asyn-
chronous computing, one worthy of study. For example, it is important to un-
derstand under which conditions asynchronous execution produces predictable
outcomes, without the usual combinatorial explosion of concurrent execution.
Even the simplest sequential program becomes highly concurrent under wait-
by-necessity execution, and yet such concurrency does not always imply that
multiple outcomes are possible. One of the main technical contributions of
the monograph, beyond the formalization of the programming model, is a
sufficient condition for deterministic evaluation (confluence) of programs.

This monograph addresses problems that have been long identified as fun-
damental stumbling blocks in writing correct distributed programs. It consti-
tutes a significant step forward, particularly in the area of formalizing and
generalizing some of the best ideas proposed so far, coming up with new tech-
niques, and providing a solid foundation for further study. The techniques
studied here also have a very practical potential.

Cambridge, 2004-11-15
Luca Cardelli
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Prologue

Distributed objects are becoming ubiquitous. Communicating objects interact
at various levels (application objects, Web and middleware services), and in
a wide range of environments (mobile devices, local area networks, Grid, and
P2P). These objects send messages, call methods on each other’s interfaces,
and receive requests and replies.

Why would we employ objects to act as interacting entities? An answer
with a religious twist would be that object orientation has, so far, won the
language crusade. However, a technical answer has more substance: objects
are stateful abstractions. Any globally-distributed computation must rely on
various levels of state, somehow acting as a cache for improved locality, leading
to greater scalability and performance. In a multi-tier application server, for
instance, objects representing persistent data (e.g., Entity Beans) act as a
cache for data within the n-tier database.

Thus, stateful objects interact with each other. Why should they communi-
cate with method calls rather than with messages traveling over channels? One
answer is that this is exactly what objects are all about: distributed systems
should not abandon such a critical feature for software structuring. Remote
method invocation in industrial platforms, following 15 years of research in
academia, has taken off, and appears to be a practical and effective solu-
tion. Moreover, method calls are also about safety and verification, a highly
desirable feature for distributed, multi-principal, multi-domain applications.
Because method calls and the interface imply the emergence of types, remote
method invocations fall within the scope of type theories and practical ver-
ifications — including static analyses, which rely heavily on inter-procedural
analysis.

With distribution spanning the world ever more widely, an intrinsic char-
acteristic of communication is high latency, with an unbreakable barrier of
70 milliseconds for a signal to go half-way around the world at the speed of
light. Large systems, with potentially thousands of interacting entities, can-
not accommodate the high coupling induced by synchronous calls, because
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such coupling can lead to a blocked chain of remote method calls spanning
a large number of entities. An extreme case that requires non-synchronous
invocation is the handling of the disconnected mode in wireless settings. In
sum, high latency and low coupling call for asynchronous interactions, as in
the case of distributed objects: asynchronous method calls. But if we want
method calls to retain their full capacity, one-way calls on their own are in-
sufficient. Asynchronous method calls with returns are needed, leading to an
emerging abstraction: namely, futures, the expected result of a given asyn-
chronous method call. Futures turn out to be a very effective abstraction for
large distributed systems, preserving both low coupling and high structuring.

To summarize the argument, scalable distributed object systems cannot
be effective without interactions based on asynchronous method calls, with
respect to mastering both complexity and efficiency. While acknowledged the-
ories have been proposed for both asynchronous message passing (e.g., 7-
calculus) and objects (e.g., ¢-calculus), no formal framework has been pro-
posed for objects communicating solely with non-blocking method calls. This
is exactly the ambition of the current book: to define a theory for distributed
objects interacting with asynchronous method calls.

Starting from widely adopted object theory, the ¢-calculus [3], a syntacti-
cally lightweight extension is proposed to take distribution into account. Two
simple primitives are proposed: Active and Serve. The former turns an object
into an independent and potentially remote activity; the latter allows such
an active object to execute (serve) a pending remote call. On activation, an
object becomes a remotely accessible entity with its own thread of control:
an active object. In accordance with the above reasoning, we have chosen to
make method calls to active objects systematically asynchronous. Synchro-
nization is ensured with a natural dataflow principle: wait-by-necessity. An
active object is blocked on the invocation of a not yet available result, i.e.,
a strict operation on an unknown future. A further level of asynchrony and
low coupling is reached with the first-class nature of futures within wait-by-
necessity; they can be passed between active objects as method parameters
and returned as results.

The proposed calculus is named Asynchronous Sequential Processes (ASP),
reflecting an important property: the sequentiality of active objects. Processes
denote the potentially coarse-grain nature of active objects. Such processes are
usually formed with a set of standard objects under the exclusive control of
a root object. The proposed theory allows us to express a fundamental con-
dition for confluence, alleviating for the programmer of the unscalable need
to consider the interleaving of all instructions and communications. Further-
more, a property ensures determinism, stating that, whatever the order of
communications, whatever the order of future updates, even in the presence
of cycles, some systems converge towards a determinate global state. Apart
from Process Networks [99, 100, 159], now close to 40 years old, few calculi
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and languages ensure determinism, and even fewer in the context of stateful
distributed objects interacting with asynchronous method calls. The potential
of the proposed theory is further demonstrated by the capacity to cope with
more advanced issues such as mobility, groups, and components.

One objective of the proposed theory is to be a practical one. Implemen-
tation strategies are covered. Several chapters explore a number of solutions,
adapted to various settings (high-speed local area networks with buffer sav-
ing in mind, wide area networks with latency hiding as a primary goal, etc.),
but each one still preserving semantics and properties. An illustration of such
practicability is available under an open source Java API and environment,
ProActive [134], which implements the proposed theory using a strategy de-
signed to hide latency in the setting of wide area networks.

The first part of this book analyzes the issues at hand, reviewing existing
languages and calculi.

Parts IT and IIT formally introduce the proposed framework, defining the
main properties of confluence and determinism.

Part IV reaches a new frontier and discusses issues at the cutting edge
of software engineering, namely migration, reconfiguration, and component-
based systems. From the proposed framework, we suggest a path that can
lead to reconfigurable components. It demonstrates how we can go from asyn-
chronous distributed objects to asynchronous distributed components, includ-
ing collective remote method invocations (group communications), while re-
taining determinism.

With practicality in mind, Part V analyzes implementation issues, and
suggests a number of strategies. We are aware that large-scale distributed
systems encounter large variations in conditions, due to both localization in
space and dynamic changes over time. Thus, potentially adaptive strategies
for buffering and pipelining are proposed.

Finally, after a comparative evaluation of related formalisms, Part VI con-
cludes and suggests directions for the future.
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Extra Material and Dependencies

You will find at the end of this book a list of notations and a summary of
ASP syntax and semantics that should provide a convenient quick reference
(Index of Notations, Syntax, Operational Semantics). This is followed by a
graphical view of ASP properties (page 331), and the syntax of ASP extensions
(Synchronizations, Migration, Groups, Components).

The Appendices detail formal definitions and proofs of the main theorems
and properties introduced in Part III.

Figure 1 exhibits the dependencies between chapters and sections. Each
chapter is best read after the preceding chapters. For example, in order to
fully understand the group communication in ASP (Chap. 13), one should
read Chaps 3, 4, Part III (Chaps. 6, 7, 8, 9), and Chap.10. Going down the
lines (Fig. 1), one can follow the outcomes of chapters. For instance, still for
group communication in Chap. 13, immediate benefits are parallel components
(Sect. 14.5), and a practical implementation of typed group communication
within ProActive (Chap. 16).

Text Book

Besides researchers and middleware designers, the material here can also be
used as a text book for courses related to models, calculi, languages for concur-
rency, parallelism, and distribution. The focus is clearly on recent advances,
especially object-orientation and asynchronous communications. Such courses
can provide theoretical foundations, together with a perspective on practical
programming and software engineering issues, such as distributed components.

The courses cover classical calculi such as CSP [88] and w-calculus [119,
120, 144], object-orientation using ¢-calculus [3, 1, 2], and ASP [52], and
advanced issues such as mobility, groups, and components. Overall, the ob-
jectives are threefold:
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Fig. 1. Suggested reading paths

(1) study and analyze existing models of concurrency and distribution,
(2) survey their formal definitions within a few calculi,
(3) understand the implications on programming issues.
Depending on the objectives, the courses can be aimed at more theoretical
aspects, up to proofs of convergence and determinacy within 7-calculusand
ASP, or targeted at more pragmatic grounds, up to practical programming
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sessions using software such as PICT [132, 131] or ProActive [134].

Below is a suggested outline for a semester course, with references to online
material, and chapters or sections of this book:

Models, Calculi, Languages for
Concurrency, Parallelism, and Distribution

1. |Introduction to Distribution, Parallelism, Concurrency 1
General Overview of Basic formalisms [39]
2. |CCS, and/or Pi-Calculus 2.1.3
[73]
3. |Other Concurrent Calculi and Languages 214,22
(Process Network, Multilist, Ambient, Join, ...) [125]
4. |Object-Oriented calculus: ¢-calculus 2.1.5
4]
5. |Overview of Concurrent Object Calculi (Actors, 2.1.2,2.3
ABCL, Obliq and Qjeblik, 7o\, concg-calculus, ...) [39]
6. |Asynchronous Method Calls and Wait-by-necessity 3,4,5
ASP: Asynchronous Sequential Processes
7. |Semantics, Confluence, Determinacy 6,7,8,9
8. |Advanced issues I: 10, 11, 12
Confluent and non-confluent features, mobility [125]
9. |Advanced issues II: 13,14
Groups, Components
10.|Open issue: reconfiguration 15, 21, 22, 23
Conclusion, Perspective, Wrap-up

The Web page [39] gathers a broad range of information aimed at concurrent
systems, also featuring parallel and distributed aspects. Valuable material for
teaching models of concurrent computation, including CCS and w-calculus
can be found at [73]. The Web page [4] is dedicated to the book A Theory
of Objects [3]; it references pointers to courses using ¢-calculus, some with
teaching material available online. Finally, a comprehensive set of resources
related to calculi for mobile processes is available at [125].

Assignments can include proofs of the confluence or non-confluence na-
tures of a few features (e.g., delegation, explicit wait, method update, testing
future or request reception, non-blocking services, join constructs, etc.). More
practical assignments can involve designing and evaluating new future-update
strategies, new request delivery protocols, or new schemes for pipelining con-
trol. Practicality can reach as far as implementing examples or prototypes,
using PICT [132, 131], ProActive [134], or other programming frameworks.
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A Theory of Distributed Objects online

We intend to maintain a Web page for general information, typos, etc. Extra

material is also expected to be added (slides, exercises and assignments, con-

tributions, reference to new related papers, etc.). This page is located at:
http://www.inria.fr/oasis/caromel/TDO

Do not hesitate to contact us to comment or to exchange information!
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