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Preface 

This book is an extended and corrected version of an earlier work, "Geometrical 
Methods in Robotics" published by Springer-Verlag in 1996. I am extremely 
glad of the opportunity to publish this work which contains many corrections 
and additions. The extra material, two new chapters and several new sections, 
reflects some of the advances in the field over the past few years as well as some 
material that was missed in the original work. 

As before this book aims to introduce Lie groups and allied algebraic and 
geometric concepts to a robotics audience. I hope that the power and elegance 
of these methods as they apply to problems in robotics is still clear. By now 
the pioneering work of Ball is well known. However, the work of Study and his 
colleagues is not so widely appreciated, at least not in the English speaking 
world. This book is also an attempt to bring at least some of their work to the 
attention of a wider audience. 

In the first four chapters, a careful exposition of the theory of Lie groups and 
their Lie algebras is given. All examples used to illustrate these ideas, except for 
the simplest ones, are taken from robotics. So, unlike most standard texts on 
Lie groups, emphasis is placed on a group that is not semi-simple—the group 
of proper Euclidean motions in three dimensions. In particular, the continuous 
subgroups of this group are found, and the elements of its Lie algebra are 
identified with the surfaces of the lower Reuleaux pairs. These surfaces were 
first identified by Reuleaux in the latter half of the 19th century. They allow us 
to associate a Lie algebra element to every basic mechanical joint. The motions 
allowed by the joint are then just the one-parameter subgroups generated by the 
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Lie algebra element. A detailed s tudy of the exponential m a p and its derivative 
is given for the rotation and rigid body motion groups. 

Chapter 5 looks at some geometrical problems tha t are basic to robotics and 
the theory of mechanisms. Having developed in the previous chapter the de
scription of robot kinematics using exponentials of Lie algebra elements, these 
ideas are used to generalise and simplify some s tandard results in kinemat
ics. The chapter looks at the kinematics of 3-joint wrists and 3-joint regional 
manipulators. 

Some of the classical theory of ruled surfaces and line complexes is introduced 
in Chapter 6. This material also benefits from the Lie algebra point of view. 
For robotics, the most impor tant ruled surfaces are the cylindrical hyperboloid 
and the cylindroid. A full description of these surfaces is given. 

In Chapter 7, the theory of group representations is introduced. Once again, 
the emphasis is on the group of proper Euclidean motions. Many representa
tions of this group are used in robotics. A benefit of this is tha t it allows a 
concise s ta tement and proof of the 'Principle of Transference', a result tha t , 
until recently, had the s ta tus of a 'folk theorem' in the mechanism theory com
munity. 

Ball's theory of screws underlies much of the work in this book. Ball's treatise 
was wri t ten at the tu rn of the twentieth century, just before Lie's and Car tan ' s 
work on continuous groups. The infinitesimal screws of Ball can now be seen 
as elements of the Lie algebra of the group of proper Euclidean motions. In 
Chapter 8, on screw systems, the linear subspaces of this Lie algebra are ex
plored. The Gibson Hunt classification of these systems is derived using a group 
theoretic approach. 

Clifford algebra is introduced in Chapter 9. Again, a t tent ion is quickly spe
cialised to the case of the Clifford algebra for the group of proper Euclidean 
motions. This is something of an esoteric case in the s tandard mathemat ical 
literature, since it is the Clifford algebra of a degenerate bilinear form. This al
gebra is a very efficient vehicle for carrying out computat ion bo th in the group 
and in some of its geometrical representations. Moreover, it allows us to define 
the Study quadric, an algebraic variety t ha t contains the elements of the group 
of proper Euclidean motions. 

Chapter 10 explores this Clifford algebra in more detail. It is shown how 
points, lines and planes can be represented in this algebra, and how geometric 
operations can be modelled by algebraic operations in the algebra. The results 
are used t o look at the kinematics of six-joint industrial robots and prove an 
important theorem concerning designs of robots tha t have solvable inverse kine
matics. 

The Study quadric is more fully explored in Chapter 11, where its subspaces 
and quotients are examined in some depth. The intersection theory of the variety 
is introduced and used to solve some simple enumerative problems like the 
number of postures of the general 6-R robot. 
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Chapters 12, 13 and 14 cover the statics and dynamics of robots. The dual 
space to the Lie algebra is identified with the space of wrenches, t ha t is, force-
torque vectors. This facilitates a simple description of some s tandard problems 
in robotics, in particular, the problem of gripping solid objects. The group the
ory helps to isolate the surfaces tha t cannot be completely immobilised without 
friction. They tu rn out to be exactly the surfaces of the lower Reuleaux pairs. 

In order to deal with the dynamics of robots, the inertia properties of rigid 
bodies must be studied. In s tandard dynamics texts , the motion of the centre 
of mass and the rotat ion about the centre of mass are t reated separately. For 
robots, it is more convenient to use a six-dimensional notation, which does 
not separate the rotational and translat ional motion. This leads to a six-by-six 
inertia matr ix for a rigid body and also allows a modern exposition of some 
ideas due to Ball, namely conjugate screws and principal screws of inertia. 
The s tandard theory of robot dynamics is presented in two ways, first as a 
simple Newtonian-style approach, and then using Lagrangian dynamics. The 
Lagrangian approach leads to a simple s tudy of small oscillations of the end-
effector of a robot and reintroduces what Ball termed harmonic screws. The 
neat formalism used means tha t the equations of motion for a simple robot can 
be studied quite easily. This advantage is used to look at the design of robots 
with a view to simplifying their dynamics. Several approaches to this problem 
are considered. 

The dynamics of robots with end-effector constraints and the dj^namics of 
robots with star structures is also investigated. This allows the description of 
the dynamics of parallel manipulators and some simple examples of these are 
presented. 

In Chapter 15 some deeper applications of differential geometry are explored. 
Three applications are studied: the mobility of overconstrained mechanisms, the 
control of robots along geodesic pa ths , and hybrid control. 

The original book was never intended as an encyclopedic account of "robot 
geometry", bu t over the last few years this field has expanded so much tha t it 
is no longer even feasible to catalogue the omissions. The criterion for selecting 
material for this book is still a reliance on the methods outlined in the first few 
chapters of the book, essentially elementary differential geometry. 

However, one omission tha t I would like to mention is the field of robot vision. 
A central problem in robot vision is to find the rigid motion undergone by 
the camera using information derived from the images. There are many other 
interesting geometric problems in this area, see Kanatan i [61] for example. I 
feel tha t this area is so large and with very specific problems tha t it deserves 
separate t rea tment . 

I would like to thank the many people who pointed out errors in the original 
book, in part icular Charles Wampler, Andreas Ruf and Ross McAree. I met 
Per t t i Lounesto shortly before his untimely death in 2002. Natural ly he found 
an error in the chapter on Clifford algebra in the original book, bu t this is 
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almost a source of pride for me. His plans to apply his considerable knowledge 
and skill to mathematical problems in robotics were tragically cut short. 

It is also with sadness that I report that Ken Hunt and Joe Duffy both passed 
away in 2002. Both made substantial contributions to the fields of robotics and 
kinematics and both will be greatly missed. 

London 2003 J.M. Selig 
seligjm@lsbu.ac.uk 
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