Monographs in Computer Science

Editors

David Gries
Fred B. Schneider

Monographs in Computer Science

Abadi and Cardelli, A Theory of Objects
Benosman and Kang [editors], Panoramic Vision: Sensors, Theory, and Applications
Broy and Stølen, Specification and Development of Interactive Systems: FOCUS on Streams, Interfaces, and Refinement
Brzozowski and Seger, Asynchronous Circuits
Burgin, Super-Recursive Algorithms
Cantone, Omodeo, and Policriti, Set Theory for Computing: From Decision Procedures to Declarative Programming with Sets
Castillo, Gutiérrez, and Hadi, Expert Systems and Probabilistic Network Models
Downey and Fellows, Parameterized Complexity
Feijen and van Gasteren, On a Method of Multiprogramming
Herbert and Spärck Jones [editors], Computer Systems: Theory, Technology, and Applications
Leiss, Language Equations
Levin, Heydon, and Mann, Software Configuration Management with VESTA Mclver and Morgan [editors], Programming Methodology
Mclver and Morgan [editors), Abstraction, Refinement and Proof for Probabilistic Systems
Misra, A Discipline of Multiprogramming: Programming Theory for Distributed Applications
Nielson [editor], ML with Concurrency
Paton [editor], Active Rules in Database Systems
Selig, Geometrical Methods in Robotics
Selig, Geometric Fundamentals of Robotics, Second Edition
Shasha and Zhu, High Performance Discovery in Time Series: Techniques and Case Studies
Tonella and Potrich, Reverse Engineering of Object Oriented Code

J.M. Selig

Geometric Fundamentals of Robotics

Second Edition

Springer

J.M. Selig
London South Bank University
Faculty of Business, Computing and Information Management
London, SE1 OAA
U.K.
seligjm@Isbu.ac.uk
\section*{Series Editors:}
David Gries
Cornell University
Department of Computer Science
Ithaca, NY 14853
U.S.A.
Fred B. Schneider
Cornell University
Department of Computer Science
lthaca, NY 14853
U.S.A.

Mathematics Subject Classification (2000): 70B15, 70E60, 53A17, 22E99

ISBN 0-387-20874-7 Printed on acid-free paper.

©2005 Springer Science+Business Media Inc.
Based on Geometrical Methods in Robotics, Springer New York ©1996.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media Inc., Rights and Permissions, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (TXQ/HP)

```
987654321 SPIN 10983911
```

springeronline.com

To Kathy

Preface

This book is an extended and corrected version of an earlier work, "Geometrical Methods in Robotics" published by Springer-Verlag in 1996. I am extremely glad of the opportunity to publish this work which contains many corrections and additions. The extra material, two new chapters and several new sections, reflects some of the advances in the field over the past few years as well as some material that was missed in the original work.

As before this book aims to introduce Lie groups and allied algebraic and geometric concepts to a robotics audience. I hope that the power and elegance of these methods as they apply to problems in robotics is still clear. By now the pioneering work of Ball is well known. However, the work of Study and his colleagues is not so widely appreciated, at least not in the English speaking world. This book is also an attempt to bring at least some of their work to the attention of a wider audience.

In the first four chapters, a careful exposition of the theory of Lie groups and their Lie algebras is given. All examples used to illustrate these ideas, except for the simplest ones, are taken from robotics. So, unlike most standard texts on Lie groups, emphasis is placed on a group that is not semi-simple-the group of proper Euclidean motions in three dimensions. In particular, the continuous subgroups of this group are found, and the elements of its Lie algebra are identified with the surfaces of the lower Reuleaux pairs. These surfaces were first identified by Reuleaux in the latter half of the 19th century. They allow us to associate a Lie algebra element to every basic mechanical joint. The motions allowed by the joint are then just the one-parameter subgroups generated by the

Lie algebra element. A detailed study of the exponential map and its derivative is given for the rotation and rigid body motion groups.

Chapter 5 looks at some geometrical problems that are basic to robotics and the theory of mechanisms. Having developed in the previous chapter the description of robot kinematics using exponentials of Lic algebra elements, these ideas are used to gencralise and simplify some standard results in kinematics. The chapter looks at the kinematics of 3 -joint wrists and 3 -joint regional manipulators.

Some of the classical theory of ruled surfaces and line complexes is introduced in Chapter 6. This material also benefits from the Lic algebra point of view. For robotics, the most important ruled surfaces are the cylindrical hyperboloid and the cylindroid. A full description of these surfaces is given.

In Chapter 7, the theory of group representations is introduced. Once again, the emphasis is on the group of proper Euclidean motions. Many representations of this group are used in robotics. A benefit of this is that it allows a concise statement and proof of the 'Principle of Transference', a result that, until recently, had the status of a 'folk theorem' in the mechanism theory community.

Ball's theory of screws underlies much of the work in this book. Ball's treatise was written at the turn of the twentieth century, just before Lie's and Cartan's work on continuous groups. The infinitesimal screws of Ball can now be scen as elements of the Lie algebra of the group of proper Euclidean motions. In Chapter 8 , on screw systems, the linear subspaces of this Lie algebra are explored. The Gibson Hunt classification of these systems is derived using a group theoretic approach.

Clifford algebra is introduced in Chapter 9. Again, attention is quickly specialised to the case of the Clifford algebra for the group of proper Euclidean motions. This is something of an esoteric case in the standard mathematical literature, since it is the Clifford algebra of a degenerate bilinear form. This algebra is a very efficient vehicle for carrying out computation both in the group and in some of its geometrical representations. Moreover, it allows us to define the Study quadric, an algebraic variety that contains the elements of the group of proper Euclidean motions.

Chapter 10 explores this Clifford algebra in more detail. It is shown how points, lines and planes can be represented in this algebra, and how geometric operations can be modelled by algebraic operations in the algebra. The results are used to look at the kinematics of six-joint industrial robots and prove an important theorem concerning designs of robots that have solvable inverse kinematics.

The Study quadric is more fully explored in Chapter 11, where its subspaces and quotients are examined in some depth. The intersection theory of the variety is introduced and used to solve some simple enumerative problems like the number of postures of the general 6 - R robot.

Chapters 12,13 and 14 cover the statics and dynamics of robots. The dual space to the Lie algebra is identified with the space of wrenches, that is, forcetorque vectors. This facilitates a simple description of some standard problems in robotics, in particular, the problem of gripping solid objects. The group theory helps to isolate the surfaces that cannot be completely immobilised without friction. They turn out to be exactly the surfaces of the lower Reuleaux pairs.

In order to deal with the dynamics of robots, the inertia properties of rigid bodies must be studied. In standard dynamics texts, the motion of the centre of mass and the rotation about the centre of mass are treated separately. For robots, it is more convenient to use a six-dimensional notation, which docs not separate the rotational and translational motion. This leads to a six-by-six inertia matrix for a rigid body and also allows a modern exposition of some ideas due to Ball, namely conjugate screws and principal screws of inertia. The standard theory of robot dynamics is presented in two ways, first as a simple Newtonian-style approach, and then using Lagrangian dynamics. The Lagrangian approach leads to a simple study of small oscillations of the endeffector of a robot and reintroduces what Ball termed harmonic screws. The neat formalism used means that the equations of motion for a simple robot can be studied quite easily. This advantage is used to look at the design of robots with a view to simplifying their dynamics. Several approaches to this problem are considered.

The dynamics of robots with end-effector constraints and the dynamics of robots with star structures is also investigated. This allows the description of the dynamics of parallel manipulators and some simple examples of these are presented.

In Chapter 15 some dceper applications of differential geometry are explored. Three applications are studied: the mobility of overconstrained mechanisms, the control of robots along geodesic paths, and hybrid control.

The original book was never intended as an encyclopedic account of "robot geometry", but over the last few years this field has expanded so much that it is no longer even feasible to catalogue the omissions. The criterion for selecting material for this book is still a reliance on the methods outlined in the first few chapters of the book, essentially elementary differential geometry.

However, one omission that I would like to mention is the field of robot vision. A central problem in robot vision is to find the rigid motion undergone by the camera using information derived from the images. There are many other interesting geometric problems in this area, see Kanatani [61] for example. I feel that this area is so large and with very specific problems that it deserves separate treatment.

I would like to thank the many people who pointed out errors in the original book, in particular Charles Wampler, Andreas Ruf and Ross McAree. I met Pertti Lounesto shortly before his untimely death in 2002. Naturally he found an error in the chapter on Clifford algebra in the original book, but this is
almost a source of pride for me. His plans to apply his considerable knowledge and skill to mathematical problems in robotics were tragically cut short.

It is also with sadness that I report that Ken Hunt and Joe Duffy both passed away in 2002. Both made substantial contributions to the fields of robotics and kinematics and both will be greatly missed.

London 2003
J.M. Selig
seligjm@lsbu.ac.uk

Contents

Preface vii
1 Introduction 1
1.1 Theoretical Robotics? 1
1.2 Robots and Mechanisms 2
1.3 Algebraic Geometry 4
1.4 Differential Geometry 7
2 Lie Groups 11
2.1 Definitions and Examples 12
2.2 More Examples -- Matrix Groups 15
2.2.1 The Orthogonal Group $O(n)$ 15
2.2.2 The Special Orthogonal Group $S O(n)$ 16
2.2.3 The Symplectic Group $\operatorname{Sp}(2 n, \mathbb{R})$ 17
2.2.4 The Unitary Group $U(n)$ 18
2.2.5 The Special Unitary Group $S U(n)$ 18
2.3 Homomorphisms 18
2.4 Actions and Products 21
2.5 The Proper Euclidean Group 23
2.5.1 Isometries 23
2.5.2 Chasles's Theorem 25
2.5.3 Coordinate Frames 27
3 Subgroups 31
3.1 The Homomorphism Theorems 31
3.2 Quotients and Normal Subgroups 34
3.3 Group Actions Again 36
3.4 Matrix Normal Forms 37
3.5 Subgroups of $S E(3)$ 41
3.6 Reuleaux's Lower Pairs 44
3.7 Robot Kinematics 46
4 Lie Algebra 51
4.1 Tangent Vectors 51
4.2 The Adjoint Representation 54
4.3 Cormmutators 57
4.4 The Exponential Mapping 61
4.4.1 The Exponential of Rotation Matrices 63
4.4.2 The Exponential in the Standard Representation of $S E(3)$ 66
4.4.3 The Exponential in the Adjoint Representation of $S E(3)$ 68
4.5 Robot Jacobians and Derivatives 71
4.5.1 The Jacobian of a Robot 71
4.5.2 Derivatives in Lie Groups 73
4.5.3 Angular Velocity 75
4.5.4 The Velocity Screw 76
4.6 Subalgebras, Homomorphisms and Ideals 77
4.7 The Killing Form 80
4.8 The Campbell-Baker-Hausdorff Formula 81
5 A Little Kinematics 85
5.1 Inverse Kinematics for 3-R Wrists 85
5.2 Inverse Kinematics for 3-R Robots 89
5.2.1 Solution Procedure 89
5.2.2 An Example 92
5.2.3 Singularities 94
5.3 Kinematics of Planar Motion 98
5.3.1 The Euler-Savaray Equation 101
5.3.2 The Inflection Circle 103
5.3.3 Ball's Point 104
5.3.4 The Cubic of Stationary Curvature 105
5.3.5 The Burmester Points 106
5.4 The Planar 4-Bar 108
6 Line Geometry 113
6.1 Lines in Three Dimensions 113
6.2 Plücker Coordinates 115
6.3 The Klein Quadric 117
6.4 The Action of the Euclidean Group 119
6.5 Ruled Surfaces 123
6.5.1 The Regulus 124
6.5.2 The Cylindroid 126
6.5.3 Curvature Axes 128
6.6 Line Complexes 130
6.7 Inverse Robot Jacobians 133
6.8 Grassmannians 135
7 Representation Theory 139
7.1 Definitions 139
7.2 Combining Representations 142
7.3 Representations of $S O(3)$ 148
7.4 $S O(3)$ Plethyism 151
7.5 Representations of $S E(3)$ 153
7.6 The Principle of Transference 158
8 Screw Systems 163
8.1 Generalities 163
8.2 2-systems 167
8.2.1 The Case \mathbb{R}^{2} 169
8.2.2 The Case $S O(2) \times \mathbb{R}$ 169
8.2.3 The Case $S O(3)$ 170
8.2.4 The Case $H_{p} \times \mathbb{R}^{2}$ 170
8.2.5 The Case $S E(2)$ 171
8.2.6 The Case $S E(2) \times \mathbb{R}$ 171
8.2.7 The Case $S E(3)$ 172
8.3 3-systems 175
8.3.1 The Case \mathbb{R}^{3} 176
8.3.2 The Case $S O(3)$ 176
8.3.3 The Case $S E(2)$ 176
8.3.4 The Case $H_{p} \ltimes \mathbb{R}^{2}$ 177
8.3.5 The Case $S E(2) \times \mathbb{R}$ 177
8.3.6 The Case $S E(3)$ 177
8.4 Identification of Screw Systems 183
8.4.1 1 -systems and 5 -systems 183
8.4.2 2-systems 184
8.4.3 4-systems 188
8.4.4 3 -systems 189
8.5 Operations on Screw Systems 193
9 Clifford Algebra 197
9.1 Geometric Algebra 199
9.2 Clifford Algebra for the Euclidean Group 206
9.3 Dual Quaternions 210
9.4 Geometry of Ruled Surfaces 214
10 A Little More Kinematics 221
10.1 Clifford Algebra of Points, Lines and Planes 221
10.1.1 Planes 221
10.1.2 Points 222
10.1.3 Lines 223
10.2 Euclidean Geometry 224
10.2.1 Incidence 224
10.2.2 Meets 225
10.2.3 Joins-- The Shuffle product 226
10.2.4 Perpendicularity The Contraction 228
10.3 Piepor's Theorem 231
10.3.1 Robot Kinematics 231
10.3.2 The T^{3} Robot 234
10.3.3 The PUMA 238
11 The Study Quadric 241
11.1 Study's Soma 241
11.2 Lincar Subspaces 245
11.2.1 Lines 245
11.2 .2 3-planes 246
11.2.3 Intersections of 3-planes 248
11.2.4 Quadric Grassmannians 250
11.3 Partial Flags and Projections 252
11.4 Some Quadric Subspaces 255
11.5 Intersection Theory 256
11.5.1 Postures for General 6-R Robots 262
11.5.2 Conformations of the 63 Stewart Platform 264
11.5.3 The Tripod Wrist 266
11.5.4 The 6-6 Stewart Platform 267
12 Statics 271
12.1 Co-Screws 271
12.2 Forces, Torques and Wrenches 272
12.3 Wrist Force Sensor 274
12.4 Wrench at the End-Effector 276
12.5 Gripping 278
12.6 Friction 283
13 Dynamics 287
13.1 Momentum and Inertia 287
13.2 Robot Equations of Motion 292
13.2.1 Equations for a Single Body 292
13.2.2 Serial Robots 293
13.2.3 Change in Payload 296
13.3 Recursive Formulation 296
13.4 Lagrangian Dynamics of Robots 300
13.4.1 Euler Lagrange Equations 301
13.4.2 Derivatives of the Generalised Inertia Matrix 303
13.4.3 Small Oscillations 304
13.5 Hamiltonian Dynamics of Robots 306
13.6 Simplification of the Equations of Motion 309
13.6.1 Decoupling by Design 309
13.6.2 Ignorable Coordinates 312
13.6.3 Decoupling by Coordinate Transformation 316
14 Constrained Dynamics 321
14.1 Trees and Stars 321
14.1.1 Dynamics of Tree and Star Structures 323
14.1.2 Link Velocities and Accelcrations 324
14.1.3 Recursive Dynamics for Trees and Stars 325
14.2 Serial Robots with End-Effector Constraints 327
14.2.1 Holonomic Constraints 327
14.2.2 Constrained Dynamics of a Rigid Body 330
14.2.3 Constrained Serial Robots 331
14.3 Constrained Trees and Stars 333
14.3.1 Systems of Freedom 333
14.3.2 Parallel Mechanisms 334
14.4 Dynamics of Planar 4-Bars 336
14.5 Biped Walking 340
14.6 The Stewart Platform 343
15 Differential Geometry 349
15.1 Metrics, Connections and Geodesics 349
15.2 Mobility of Overconstrained Mechanisms 355
15.3 Controlling Robots Along Helical Trajectories 360
15.4 Hybrid Control 363
15.4.1 What is Hybrid Control? 363
15.4.2 Constraints 364
15.4.3 Projection Operators 365
15.4.4 The Second Fundamental Form 369
References 373
Index 383

Geometric Fundamentals of Robotics

