Analyzing Computer System Performance
with Perl::PDQ

Neil J. Gunther

Analyzing
Computer System
Performance

with Perl::PDQ

Second Edition

@ Springer

Neil J. Gunther

Performance Dynamics Company
4061 East Castro Valley Boulevard
Castro Valley, CA 94552

USA
http://www.perfdynamics.com/

ISBN 978-3-642-22582-6 e-ISBN 978-3-642-22583-3
DOI 10.1007/978-3-642-22583-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934511
ACM Codes: C.0,C.2.4,C4,D.25,D.2.8,D.4.8, K.6.2

© Springer-Verlag Berlin Heidelberg 2005, 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KiinkelLopka
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.perfdynamics.com/
http://www.springer.com

This book is dedicated to the memory of my father

Walter August Gunther, MIEAust, CPEng
October 23, 1908 — November 16, 2010

Preface to Second Edition

What’s New?

It seems fitting that this new edition appears as we pass the centenary of
the original paper by Erlang [1909], where he first introduced the concept
of a queue. This edition incorporates a considerable number of new features
compiled since the publication of the first edition in 2005.

New Chapters and Partitioning

The amount of additional material means the book now comprises four parts
instead of three. In particular, Part I contains new chapters that present a
more complete discussion of the underlying concepts used throughout this
book.

Improved Perl Formatting

All listings have a highlighted format to aid readability of PDQ codes.

Listing 1. Example of the new PDQ code format

#! /usr/bin/perl
use pdqg;

pdq: : Init ("Example");

pdq: :CreateNode ($NodeName, $pdg::CEN, $pdg::FCFEFS);
pdqg: :CreateOpen (SWorkName, S$ArrivalRate);

pdqg: : SetDemand ($SNodeName, S$WorkName, $ServiceDemand);
pdq: :Solve ($pdqg: : CANON) ;

pdq: :Report () ;

viii Preface to Second Edition

Virtualization

A new Chapter 13: Virtual Machine Analysis with PD(Q, in Part 111, presents queue-
ing models of fair-share scheduling that underpins all modern virtual machine im-
plementations from hyperthreading to cloud computing.

PDQ on SourceForge

All PDQ development is now gated through SourceForge sourceforge.net/
projects/pdg-gnm-pkg/ under the title Pretty Damn Quick Queueing Model
Package. PDQ can also be downloaded from the author’s distribution page at
www.perfdynamics.com/Tools/PDQcode.html.

Why Queues Rule

A new Chapter 1: Why Queues Rule Performance Analysis, endeavors to explain
why queueing models are so powerful for doing computer performance analysis. See
Example 1.2 which presents a PDQ performance and capacity model of servers that
are dedicated to filtering email spam.

PDQ Manual

Part IV comprises a set of appendices. Included there is the PDQ Manual which has
been broken out from its previous inclusion in the chapter: Pretty Damn Quick—
A Slow Introduction. Updates are available online at www.perfdynamics.com/
Tools/PDQman.html.

CreateMultiNode Function
The latest release of the open source PDQ code now implements multi-server queue-
ing nodes. See Appendix D.3.2 for details.

Brief History of Buffers

The potted history of queueing theory entitled A Brief History of Buffers, that was
previously isolated as a separate Appendix, has been updated and now appears at
the end of the new Chapter 1.

Performance Management Tools
The Appendix on performance management tools in the first edition has now been
expanded in a new Chapter 2.

Scalability and Queueing

A new Section 4.11.12 in Chapter 4 shows how the author’s wuniversal scalability
law (developed in the book Guerrilla Capacity Planning [Gunther 2007b]) is re-
lated to the queueing models presented in this book, viz., the machine repairman
model [Gunther 2008].

http://www.perfdynamics.com/Tools/PDQcode.html
http://www.perfdynamics.com/Tools/PDQman.html
http://www.perfdynamics.com/Tools/PDQman.html

Preface to Second Edition ix
Jackson’s Theorem

Chapter 5 contains a new section explaining the importance of Jackon’s theorem
for circuits of queues. This concept is vital for constructing performance models of
modern multi-tier applications, such as those employed at large-scale web sites.

Glossary Removed

The Glossary in the first edition became outdated and has been removed in order
to accommodate the new chapter content without unduly increasing the size of the
entire book.

Crowd-sourced Corrections

The corrigenda at www.perfdynamics.com/iBook/ppdgerrata.html is a tes-
tament to the power of the internet for enabling many eyes to spot typos and errors.
Every effort has been made to include all the listed errata in this edition.

Acknowledgments

Phil Feller masterfully applied SWIG (www.swig.org/) to the PDQ function C
library in order to programmatically convert it to Perl. Stefan Parvu championed
the use of PDQ in the field and provided important feedback for Section 4.11.12.
The performance group at VMware Inc., contributed to some very useful discussions
that helped to shape Chap. 13.

Once again, I am endebted to the alumni of Performance Dynamics Company
classes, and other diligent readers, who contributed errata for the first edition at
www . perfdynamics.com/iBook/ppdgerrata.html. In alphabetical order they
are: P. Altevogt, D. Anburaj, W. Baeck, T. Becker, E. Borasky L. Braswell, D.
Hagler, E. Juan, S. Kannan, M. Marino, P. Puglia, J. Purinton, T. Sych, I. Tegebo,
D. Walter, T. Wilson. In particular, P. Canadilla did a truly outstanding job, as his
record tally attests. If it there is such a thing as a copy-editor gene, I believe he has
it.

Finally, I am grateful to Ralf Gerstner, my editor, for his patience while I
searched for fragmented opportunities to update the manuscript during some diffi-
cult periods over the past two years.

Melbourne, Australia N.J.G.
December, 2010

perl -le ‘@g=("\120\145\162\154","\120\104\121");
$5="\115\141\171\040\171\157\165\162\040@q\040\bs\040\142\145";
Sq[0]="s/e/ea/;$ql0]=1lefirst ($q[0]) ; @g=reverse (Cq); $s.=" @q \bs!";print $s'

http://www.perfdynamics.com/iBook/ppdqerrata.html
http://www.swig.org/
http://www.perfdynamics.com/iBook/ppdqerrata.html

Preface to First Edition

Motivation

This book arose out of an attempt to meet two key objectives. The first was
to communicate the theory and practice of performance analysis to those who
need it most, viz. I'T professionals, system administrators, software developers,
and performance test engineers. Many of the currently available books on
computer performance analysis fall into one of three distinct camps:

1. Books that discuss tuning the performance of a particular platform, e.g.,
Linux, Solaris, Windows. These books explain how you can turn individual
software “knobs” with the hope that this will tune your platform.

2. Books that emphasize formal queueing theory under the rubric of perfor-
mance modeling. These books are written by mathematicians for mathe-
maticians and therefore are burdened with too much Greek for the average
IT professional to suffer through.

3. Books that employ queueing theory without the Greek but the perfor-
mance models are unrealistic because they are essentially academic toys.

Each of these categories has pedagogic merit, but the focus tends to be on
detailed particulars that are not easily generalized to a different context. These
days, IT professionals are required to be versed in more than one platform or
technology. It seemed to me that the best way to approach the performance
analysis of such a panoply is to adopt a system perspective. The system view
also provides an economy of thought. Understanding gained on one system can
often be applied to another. Successful performance analysis on one platform
often translates successfully to another, with little extra effort. Expressed in
today’s vernacular—Ilearn once, apply often.

Second, I wanted to present system performance principles in the context
of a software tool, Pretty Damn Quick (PDQ), that can be applied quickly
to address performance issues as they arise in today’s hectic business envi-
ronment. In order to meet the pressures of ever-shortening time horizons,
performance analysis has to be done in zero time. Project managers cannot

xii Preface to First Edition

and will not allow their schedules to be stretched by what they perceive as
inflationary performance analysis. A performance analysis tool based on a
scripting language helps to meet these severe time constraints by avoiding the
need to wrestle with compilers and debuggers.

Why Perl?

Defending the choice of a programming language is always a losing proposi-
tion, but in a recent poll on slashdot.org, Perl (Practical Extraction and
Reporting Language,) was ranked third after Bourne shell and Ruby in terms
of ease of use for accomplishing a defined set of tasks with a scripting language.
Python, Tecl, and Awk, came in fifth, seventh, and eighth respectively, while
Java (interpreted but not a scripting language) came in last. Neither Mathe-
matica nor PHP were polled. On a more serious note, John Ousterhout (father
of Tcl), has written an essay (home.pacbell.net/ouster/scripting.
html) on the general virtues of scripting languages for prototyping. Where
he says prototyping, I would substitute the word modeling.

I chose Perl because it fitted the requirement of a rapid prototyping lan-
guage for computer performance analysis. The original implementation of
PDQ was in C (and still is as far as the library functions are concerned).
To paraphrase a leading UNIX developer, one of the disadvantages of the C
language is that you can spend a lot of time in the debugger when you stab
yourself with a misreferenced pointer. Perl has a C-like syntax but is much
more forgiving at runtime. Moreover, Perl has arguably become the most
ubiquitous of the newer-generation scripting languages, including MacPerl
on MacOS (prior to MacOS X). One reason for Perl’s ubiquity is that it is
designed for extracting text and data from files. Why not for extracting per-
formance data? It therefore seemed like a good choice to offer a Perl version of
PDQ as an enhancement to the existing toolset of system administrators. By
a happy coincidence, several students, who were also system administrators,
began asking me if PDQ could be made available in Perl. So, here it is. Bonne
programmation!

How should PDQ be used? In my view, the proper analysis of computer
performance data requires a conceptual framework within which the informa-
tion hidden in those data can be revealed. That is the role of PDQ. It provides
a framework of expectations in which to assess data. If you do performance
analysis without such a framework (as is all too common), how can you know
when you are wrong? When your conclusion does not reconcile with the data,
you must stop and find where the inconsistency lies. It is much easier to detect
inconsistencies when you have certain expectations. Setting some expectations
(even wrong ones) is far better than not setting any.

I sometimes liken the role of PDQ to that of a subway map. A subway
map has two key properties. It is an abstract representation of the real sit-
uation in that the distances between train stations are not in geographical

Preface to First Edition xiii

proportion, and it is simple because it is uncluttered by unimportant real-
world physical details. The natural urge is to create a PDQ “map” adorned
with an abundance of physical detail because that would seem to constitute a
more faithful representation of the computer system being analyzed. In spite
of this urge, you should strive instead to make your PDQ models as simple
and abstract as a subway map. Adding complexity does not guarantee ac-
curacy. Unfortunately, there is no simple recipe for constructing PDQ maps.
Einstein reputedly said that things should be as simple as possible, but no
simpler. That should certainly be the goal for applying PDQ, but like drawing
any good map there are aspects that remain more in the realm of art than
science. Those aspects are best demonstrated by example, and that is the
purpose of Part II of this book.

Book Structure

Very simply, this book falls into two parts, so that the typical rats-nest dia-
gram of chapter dependencies is rendered unnecessary.

Part I explains the fundamental metrics used in computer performance
analysis. Chapter 3 discusses the zeroth metric, time, that is common to all
performance analysis. This chapter is recommended reading for those new to
computer performance analysis but may be skipped in a first reading by those
more familiar with performance analysis concepts. The queueing concepts
encoded in PDQ tool are presented in Chaps. 4, 5, and 7, so these chapters
may also be read sequentially.

For those familiar with UNIX platforms, a good place to start might be
Chap. 6 where the connection between queues (buffers) and the load average
metric is dissected at the kernel level. Linux provides the particular context
because the source code is publicly available to be dissected—on the Web,
no less! The generalization to other operating systems should be obvious.
Similarly, another starting point for those with a UNIX orientation could be
Section 1.7 A Short History of Buffers (pun intended) which summarizes
the historical interplay between queueing theory and computer performance
analysis, commencing with the ancestors of UNIX viz. CTSS and Multics.

Irrespective of the order you choose to read them, none of the chapters in
Part I requires a knowledge of formal probability theory or stochastic meth-
ods. Thus, we avoid the torrent of Greek that otherwise makes very powerful
queueing concepts incomprehensible to those readers who would actually ben-
efit from them most.

Part IT covers a wide variety of examples demonstrating how to apply
PDQ. These include the performance analysis of multicomputer architectures
in Chap. 9, analyzing benchmark results in Chap. 10, client/server scalability
in Chap. 11, and Web-based applications in Chap. 12. These chapters can be
read in any order. Dependencies on other chapters are cross-referenced in the
text.

Xiv Preface to First Edition

Chapter 8 (Pretty Damn Quick (PDQ)—A Slow Introduction) contains
the PDQ driver’s manual and, because it is a reference manual, can be read
independently of the other chapters. It also contains many examples that were
otherwise postponed from Chaps. 4-7.

Appendix D contains the steps for installing Perl PDQ together with a
complete list of the Perl programs used in this book. The more elementary of
these programs are specially identified for those unfamiliar with writing Perl
scripts.

Classroom Usage

This book grew out of class material presented at both academic institutions
and corporate training facilities. In that sense, the material is pitched at the
graduate or mature student level and could be covered in one or two semesters.

Each chapter has a set of exercises at the end. These exercises are intended
to amplify key points raised in the chapter, but instructors could also comple-
ment them with questions of their own. I anticipate compiling more exercises
and making them available on my Web site (www.perfdynamics.com).
Solutions to selected exercises can be found in Appendix E.

Key points that should be retained by both students and practitioners are
contained in a box like this one.

Prerequisites and Limitations

This is a book about performance analysis, not performance tuning. The world
is already full of books explaining how to tune this or that application on this
or that platform. Whereas performance tuning is about particulars, the power
of performance analysis comes from discerning general principals. General
principals are often best detected at the system level. The payoff is that a
generalizable analysis technique learned once will find application in solving
a wide variety of future performance problems.

Good analysis requires clarity of thought, and clear thinking benefits from
the structure of formalism. The formalism used throughout this book is queue-
ing theory or what might be more accurately termed queueing theory lite. By
that T mean the elements of queueing theory are presented in a minimalist
style without the need for penetrating many of the complexities of mathemat-
ical queueing theory, but without loss of correctness. That said, a knowledge
of mathematics at the level of high-school algebra is assumed throughout the
text (it is hard to imagine doing any kind of meaningful performance anal-
ysis without it), and those readers exposed to introductory probability and
calculus will find most of the concepts transparent.

http://www.perfdynamics.com

Preface to First Edition XV

Queueing theory algorithms are encoded into PDQ. This frees the perfor-
mance analyst to focus on the application of queueing concepts to the problem
at hand. Inevitably, there is a price for this freedom. The algorithms contain
certain assumptions that facilitate the solution of queueing models. One of
these is the Poisson assumption. In probability theory, the Poisson distribu-
tion is associated with events which are statistically random (like the clicks
of a Geiger counter). PDQ assumes that arrivals into a queue and departures
from the service center are random. How well this assumption holds up against
behavior of a real computer system will impact the accuracy of your analysis.

In many cases, it holds up well enough that the assumption does not need
to be scrutinized. More often, the accuracy of your measurements is the more
important issue. All measurements have errors. Do you know the magnitude of
the errors in your performance data? See Sect. 2.8 in Chapter 2 (was Appendix
D). In those cases where there is doubt about the Poisson assumption, Sect. 2.9
of Chapter 2 (was Appendix D) provides a test together with a Perl script to
analyze your data for randomness. One such case is packet queueing.

Internet packets, for example, are known to seriously violate the Poisson
assumption [See Park and Willinger 2000]. So PDQ cannot be expected to
give accurate performance predictions in that case, but as long as the perfor-
mance analysis is conducted at the transaction or connection level (as we do
in Chap. 12), PDQ is applicable. For packet level analysis, alternative perfor-
mance tools such simulators (see e.g., NS-2 http://www.isi.edu/nsnam/ns/)
are a better choice. One has to take care, however, not to be lulled into a false
sense of security with simulators. A simulation is assumed to be more accu-
rate because it allows you to construct a faithful representation of the real
computer system by accounting for every component—sometimes including
the proverbial kitchen sink. The unstated fallacy is that complexity equals
completeness. An example of the unfortunate consequences that can ensue
from ignoring this point is noted in Sect. 3.7.

Even in the era of simulation tools, you still need an independent frame-
work to validate the results. PDQ can fulfill that role. Otherwise, your simula-
tion stands in danger of being just another pseudo-random number generator.
That PDQ can act like an independent framework in which to assess your
data (be it from measurement or simulation) is perhaps its most important
role. In that sense, the very act of modeling can be viewed as an organizing
principle in its own right. A fortiori, the insights gained by merely initiating
the construction of a PD(Q model may be more important than the results it
produces.

Acknowledgments

Firstly, I would like to thank the alumni of my computer performance analysis
classes, including Practical Performance Methods given at Stanford University
(1997-2001), UCLA Extension Course 819.328 Scalable Server Performance

http://www.isi.edu/nsnam/ns/

xvi Preface to First Edition

and Capacity Planning, the many training classes given at major corporations,
and the current series Guerrilla Capacity Planning sponsored by Performance
Dynamics. Much of their feedback has found its way into this book. My Stan-
ford classes replaced those originally given by Ed Lazowska, Ken Sevcik, and
John Zahorjan. I finally attended their 1993 Stanford class, several years af-
ter reading their classic text [Lazowska et al. 1984]. Their approach inspired
mine.

Peter Harding deserves all the credit for porting my C implementation of
PDQ to Perl. Several people said they would do it (including myself), but
only Peter delivered.

Ken Christensen, Robert Lane, David Latterner, and Pedro Vazquez re-
viewed the entire manuscript and made many excellent suggestions that im-
proved the final content. Jim Brady and Steve Jenkin commented on Ap-
pendix A and Chap. 6, respectively. Ken Christensen also kindly provided me
with a copy of Erlang’s first paper. An anonymous reviewer helped tidy up
some of the queue-theoretic discussion in Chaps. 4 and 5. Myron Hlynka and
Peter Taylor put my mind at rest concerning the recent controversial claim
that Jackson’s 50-year-old theorem (Chap. 5) was invalid.

Giordano Beretta rendered his expert scientific knowledge of image pro-
cessing as well as a monumental number of hours of computer labor to improve
the quality of the illustrations. His artistic flair reveals itself in Fig. 4.1. An-
drew Trevorrow deserves a lot of thanks, not only for porting and maintaining
the OZIEX implementation of BTEX 2 on MacOS, but for being very respon-
sive to email questions. The choice of OZIEX was key to being able to produce
camera-ready copy in less than a year. Mirko Fluher kindly provided remote
access to his Linux system in Melbourne, Australia.

It is a genuine pleasure to acknowledge the cooperation and patience of
my editor Ralf Gerstner, as well as the excellent technical support of Frank
Holzwarth and Jacqueline Lenz at Springer-Verlag in Heidelberg. Tracey
Wilbourn meticulously copyedited the penultimate manuscript and Michael
Reinfarth of LE-TeX GbR in Leipzig handled the final production of the book.

Aline and Topin Dawson provided support and balance during the other-
wise intense solitary hours spent composing this book. My father tolerated
several postponed trans-Pacific visits during the course of this project. Only
someone 95 years young has that kind of patience.

I would also like to take this opportunity to thank the many diligent read-
ers who contributed to the errata for Practical Performance Analyst [Gun-
ther 2000a]. In alphabetical order they are: M. Allen, A. Bondi, D. Chan,
K. Christensen, A. Cockcroft, L. Dantzler, V. Davis, M. Earp, W.A. Gun-
ther, I.S. Hobbs, P. Kraus, R. Lane, T. Lange, P. Lauterbach, C. Millsap,
D. Molero, J. A. Nolazco-Flores, W. Pelz and students, H. Schwetman, P. Sin-
clair, D. Tran, B. Vestermark, and Y. Yan. I trust the errata for this book
will be much shorter.

And finally to you, dear reader, thank you for purchasing this book and
reading this far. Don’t stop now!

Preface to First Edition xvii

Warranty Disclaimer

No warranties are made, express or implied, that the information in this book
and the associated computer programs are error free, or are consistent with
any particular standard of merchantability, or that they will meet your re-
quirements for any particular application. They should not be relied upon for
solving a problem the incorrect solution of which could result in injury to
a person or loss of property. The author disclaims all liability for direct or
consequential damages resulting from the use of this book.

Palomares Hills, California N.J.G.
July, 2004

Contents

Preface to Second Edition vii

Preface to First Edition xi

Part I Preliminary Concepts

1 Why Queues Rule Performance Analysis 3
1.1 Introduction 3
1.2 Buffers Are Queues ... 3
1.3 Modeling Efficiencies. i 4
1.4 Bandwidth and Latency Are Related..................... 8
1.5 Stretch Factor 14
1.6 How Long Should My Queue Be? 15
1.7 A Brief History of Buffers 18
2 Measurement Tools and Techniques........................ 23
2.1 Steady as She Goes 23
2.2 Performance Counters and Objects 26
2.3 Java Bytecode Instrumentation............. 27
2.4 Generic Performance Tools 27
2.5 Displaying Performance Metrics 28
2.6 Storing Performance Metrics 30
2.7 Performance Prediction Tools 30
2.8 How Accurate Are Your Data? 31
2.9 Are Your Data Poissonian? 31
2.10 Performance Measurement Standards 34
3 Time—The Zeroth Performance Metric.................... 37
3.1 Introduction 37
3.2 What Is Time?o 38

XX

Contents

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.2.1 Physical Time........ 39
3.2.2 Synchronization and Causality 39
3.2.3 Discrete and Continuous Time 40
3.2.4 Time Scales. 40
What Is a Clock?o 42
3.3.1 Physical Clocks L. 42
3.3.2 Distributed Physical Clocks..................... 43
3.3.3 Distributed Processing 43
3.3.4 Binary Precedence......... 44
3.3.5 Logical Clocks oo, 44
3.3.6 Clock Ticks . ..o e 46
3.3.7 Virtual Clocks i i 47
Representations of Time............. 48
3.4.1 In the Beginning 48
3.4.2 Making a Date With Perl.................... ... 48
3.4.3 High-Resolution Timing 50
3.4.4 Benchmark Timers 52
3.4.5 Crossing Time Zones.o .. 53
Time Distributions o . 56
3.5.1 Gamma Distribution 56
3.5.2 Exponential Distribution 57
3.5.3 Poisson Distribution 59
3.5.4 Server Response Time Distribution 60
3.5.5 Network Response Time Distribution 62
Timing Chains and Bottlenecks 63
3.6.1 Bottlenecks and Queues 64
3.6.2 Distributed Instrumentation 65
3.6.3 Disk Timing Chains 65
3.6.4 Life and Times of an NFS Operation............. 66
Failing Big Time i 68
3.7.1 Hardware Availability 68
3.7.2 Tyranny of the Nines 69
3.7.3 Hardware Reliability 69
3.74 Mean Time Between Failures 71
3.7.5 Distributed Hardware 72
3.7.6 Components in Series 72
3.7.7 Components in Parallel 73
3.7.8 Software Reliability 73
Metastable Lifetimes..........., 75
3.8.1 Microscopic Metastability 75
3.8.2 Macroscopic Metastability 78
3.8.3 Metastability in Networks 78
3.8.4 Quantum-like Phase Transitions 80
Review . .. oo 80

Exercises 81

Contents xxi

Part II Basic Queueing Theory for PDQ

4

Getting the Jump on Queueing 85
4.1 Introduction 85
4.2 What Is a Queue? 86
4.3 The Grocery Store—Checking It Out 87
4.3.1 Queueing Analysis View 87
4.3.2 Perceptions and Deceptions 88
4.3.3 The Post Office—Snail Mail 89
4.4 Fundamental Metric Relationships....................... 89
4.4.1 Performance Measures 90
4.4.2 Arrival Rate 92
4.4.3 System Throughput 93
4.4.4 Nodal Throughput.......... 94
4.4.5 Relative Throughput......... 94
4.4.6 Service Time. 96
4.4.7 Service Demand oL 96
4.4.8 Utilizationo 97
4.4.9 Residence Time 97
4.5 Little’s Law Means a Lot 98
4.5.1 A Little Intuition L 99
4.5.2 A Visual Proof L 100
4.5.3 Little’s Microscopic Law............. 104
4.5.4 Little’s Macroscopic Law 105
4.6 Unlimited Request (Open) Queues....................... 106
4.6.1 Single Server Queue 106
4.6.2 Measured Service Demand 107
4.6.3 Queueing Delays 107
4.6.4 Twin Queueing Facility 112
4.6.5 Parallel Queues 113
4.6.6 Dual Server Queue—Heuristic Analysis........... 115
4.7 Multiserver QUeue 119
4.7.1 Erlang’s C' Formula....... 120
4.7.2 Accuracy of the Heuristic Formula 122
4.7.3 Erlang’s B Formula............ 122
4.74 Erlang Algorithms in Perl 124
4.7.5 Dual Server Queue—Exact Analysis 127
4.8 Limited Request (Closed) Queues........................ 128
4.8.1 Closed Queueing Facility 128
4.8.2 Interactive Response Time Law 129
4.8.3 Repairman Algorithm in Perl 131
4.8.4 Response Time Characteristic................... 131
4.8.5 Throughput Characteristic...................... 133

4.8.6 Finite Response Times 135

xxii Contents

4.8.7 Approximating Closed Queues 136

4.9 Shorthand for Queues 140
4.9.1 Queue Schematics i, 140

4.9.2 Kendall Notation 141

4.10 Comparative Performance 142
4.10.1 Multiserver Versus Uniserver.................... 143

4.10.2 Multiqueue Versus Multiserver 143

4.10.3 The Envelope Please! 145

4.11 Generalized Serverso.iiiiiii i 146
4.11.1 Infinite Capacity (IS) Server 147

4.11.2 Exponential (M) Server 148

4.11.3 Deterministic (D) Server 148

4114 Uniform (U) Server 149

4115 Erlang-k (Ex) Server.............. 149

4.11.6 Hypoexponential (Hypo—k) Server 150

4.11.7 Hyperexponential (Hy) Server................... 150

4.11.8 Coxian (Cox—k) Servero.un. 151

4119 General (G) Server 152
4.11.10 Pollaczek-Khintchine Formula 153
4.11.11 Polling Systemsviiiriiniannen .. 155
4.11.12 Queues and Scalability 157

412 ReVIEW . .o 159
ExXerciseso 159
5 Queueing Systems for Computer Systems.................. 161
5.1 Introduction 161
5.2 Types of Circuits 162
5.3 Poisson Properties........ i 164
5.3.1 Poisson Merging.......... .o i 164

5.3.2 Poisson Branching L 165

5.3.3 Poisson PASTA 166

5.4 Open-Circuit Queues 166
5.4.1 Series Circuitso.viiiiinin e, 167

5.4.2 Feedforward Circuits.......... 167

5.4.3 Feedback Circuits 168

5.5 Jackson’s Theorem 171
5.5.1 Jackson Network Traffic........................ 173

5.5.2 Jackson Node Traffic............ 173

5.5.3 Routing Requests in PDQ 175

5.5.4 Parallel Queues in Series 177

5.5.5 Multiple Workloads in Open Circuits 180

5.6 Closed-Circuit QUeuescoiiiiiirenenenennn.. 181
5.6.1 Arrival Theorem 182

5.6.2 Tterative MVA Algorithm 183

5.6.3 Approximate Solution.......................... 185

Contents xxiii

5.7 Visit Ratios and Routing Probabilities 189
5.7.1 Visit Ratios and Open Circuits.................. 189

5.7.2 Visit Ratios and Closed Circuits. 191

5.8 Multiple Workloads in Closed Circuits 192
5.8.1 Workload Classes, 192

5.8.2 Baseline Analysis oo i 192

5.8.3 Aggregate Analysis il 194

5.8.4 Component Analysis, 197

5.9 Operating Systems and Schedulers....................... 199
5.9.1 Time-Share Scheduler 199

5.9.2 Fair-Share Scheduler 201

5.9.3 Priority Scheduling L. 204

5.9.4 Thread Scheduler.......... 206

5.10 Rules for Applying Queueing Models..................... 207
5.10.1 MVA Is a Style of Thinking..................... 207

5.10.2 BCMP Rules i 208

5.10.3 Service Classesouiiiiiinn.. 209

5.10.4 Limitations i 210

511 ReVIeW . .ot 212
EXerciseso 213
6 Linux Load Average 215
6.1 Introduction 215
6.1.1 Load Average Reporting 216

6.1.2 What Is an “Average” Load? 217

6.2 A Simple Experiment, 218
6.2.1 Experimental Results 219

6.2.2 Submerging Into the Kernel..................... 221

6.3 Load Calculation i, 222
6.3.1 Fixed-Point Arithmetic......................... 223

6.3.2 Magic Numberso i 224

6.3.3 Empty Run-Queue 226

6.3.4 Occupied Run-Queue 226

6.3.5 Exponential Damping 228

6.4 Steady-State Averages i i 231
6.4.1 Time-Averaged Queue Length................ ... 232

6.4.2 Linux Scheduler Model 232

6.5 Load Averages and Trend Visualization 235
6.5.1 What Is Wrong with Load Averages 235

6.5.2 New Visual Paradigm 235

6.5.3 Application to Workload Management 237

6.6 Review 237

EXercises 238

xxiv Contents

7 Performance Bounds and Log Jams 239
7.1 Introduction 239
7.2 Out of Bounds in Florida 239

7.2.1 Load Test Results 240
7.2.2 Bottlenecks and Bounds 240
7.3 Throughput Bounds 241
7.3.1 Saturation Throughput........... 241
7.3.2 Uncontended Throughput 242
7.3.3 Optimal Load oo i 243
7.4 Response Time Bounds 244
7.4.1 Uncontended Response Time.................... 244
7.4.2 Saturation Response Time 244
7.4.3 Worst—Case Response Bound 246
7.5 Meanwhile, Back in Florida 246
7.5.1 Balanced Bounds 247
7.5.2 Balanced Demand 247
7.5.3 Balanced Throughput 248
7.6 The X—Files: Encounters with Performance Aliens 249
7.6.1 X Window Architecture 249
7.6.2 Production Environment 250
7.7 Close Encounters of the Performance Kind................ 251
7.7.1 Close Encounters I: Rumors 251
7.7.2 Close Encounters II: Measurements 251
7.7.3 Close Encounters III: Analysis 252
7.8 Performance Aliens Revealed........... 254
7.8.1 Out of Sight, Out of Mind 254
7.8.2 Log-Jammed Performance 256
7.8.3 To Get a Log You Need a Tree 256
7.9 X11 Window Scalability 258
7.9.1 Measuring Sibling X-Events..................... 258
7.9.2 Superlinear Response 259
710 ReVIieW . ..o 260
EXercises 260

Part III Practical Application of PDQ

8 Pretty Damn Quick—A Slow Introduction................. 263
8.1 Introduction 263

8.2 How to Build PDQ Circuits........... ..., 263

8.3 Inputs and Outputs......... ... i 263
8.3.1 Setting Up PDQ 264

8.3.2 Some General Guidelines 266

8.4 Simple Annotated Example 266

8.4.1 Creating the PDQ Model 266

Contents XXV

8.4.2 Reading the PDQ Report....................... 268

8.4.3 Validating the PDQ Model 268

8.5 Classic Queues in PDQ. i 271
8.5.1 Delay Node in PDQ 271

852 M/M/TnPDQ............................... 271

8.5.3 M/M/min PDQ 271

8.5.4 M/M/1/N/NinPDQooo... 272

8.5.5 M/M/m/N/NinPDQ......................... 272

8.5.6 Feedforward Circuits in PDQ 272

8.5.7 Feedback Circuits in PDQ 272

8.5.8 Parallel Queues in Series 276

8.5.9 Multiple Workloads in PDQ 276

8.5.10 Priority Queueing in PDQ 276

8.5.11 Load-Dependent Servers in PDQ 278

8.6 Review 289
EXercises . ..o 289
9 Multicomputer Analysis with PDQ 291
9.1 Introduction 291
9.2 Multiprocessor Architectures............................ 292
9.2.1 Symmetric Multiprocessors 293

9.2.2 Multiprocessor Caches 294

9.2.3 Cache Bashing 295

9.3 Multiprocessor Models 296
9.3.1 Single-Bus Models o i 297

9.3.2 Processing Power Lo il 298

9.3.3 Multiple-Bus Models 300

9.3.4 Cache Protocols i i 302

9.3.5 Tron Law of Performance 305

9.4 Multicomputer Models i 307
9.4.1 Parallel Query Cluster 307

9.4.2 Query Saturation Method 311

0.5 ReVIeW . .t 316
EXerciseso 316
10 How to Scale an Elephant with PDQ 317
10.1 An Elephant Story i 317
10.1.1 What Is Scalability? 318

10.1.2 SPEC Multiuser Benchmark 319

10.1.3 Steady-state Measurements 321

10.2 Parts of the Elephant 321
10.2.1 Service Demand Part 322

10.2.2 Think Time Part 322

10.2.3 User Load Part 322

10.3 PDQ Scalability Model o i 323

XXVi

11

12

Contents
10.3.1 Imterpretation.......... 324
10.3.2 Amdahl's Law 326
10.3.3 The Elephant’s Dimensions 328
10.4 RevieW ..o 329
Exercises e 330
Client/Server Analysis with PDQ.......................... 331
11.1 Introduction 331
11.2 Client/Server Architecturesoooiioo .. 332
11.2.1 Multitier Environments 333
11.2.2 Three-Tier Options........... 333
11.3 Benchmark Environment 335
11.3.1 Performance Scenarios 335
11.3.2 Workload Characterization 337
11.3.3 Distributed Workflow 339
11.4 Scalability Analysis with PDQ 340
11.4.1 Benchmark Baseline 341
11.4.2 Client Scaleupcoiiiiiiiiiinena... 346
11.4.3 Load Balancer Bottleneck 349
11.4.4 Database Server Bottleneck 349
11.4.5 Production Client Load 349
11.4.6 Saturation Client Load 350
11.4.7 Per-Process Analysis..........., 350
115 Review 353
Exercises 354
Web Application Analysis with PDQ 355
12.1 Introduction 355
12.2 HTTP Protocol 355
12.2.1 HTTP Performance............................ 360
12.2.2 HTTP Analysis Using PDQ 361
12.2.3 Fork-on-Demand Analysis 361
12.2.4 Prefork Analysis i, 363
12.3 Two-Tier PDQ Model 369
12.3.1 Data and Information Are Not the Same 369
12.3.2 HTTPd Performance Measurements 369
12.3.3 Java Performance Measurements 369
12.4 Middleware Analysis Using PDQ 372
12.4.1 Active Client Threads.......................... 372
12.4.2 Load Test Results 374
12.4.3 Derived Service Demands....................... 375
12.4.4 Preliminary PDQ Model 375
12.4.5 Adding Hidden Latencies in PDQ 379
12.4.6 Adding Overdriven Throughput in PDQ.......... 381

12.5 Review 384

Contents xxvii

EXercises 384
13 Virtual Machine Analysis with PDQ....................... 387
13.1 Imtroduction i 387
13.2 The Virtual Machine Spectrum. 388
13.3 Micro-VMM Scale: Hyperthreading 390
13.3.1 Controlled Measurements....................... 392

13.3.2 PDQ Model of Micro-VMM 395

13.4 Meso-VMM Scale: Hypervisors, 397
13.4.1 Performance Monitoring Tools 404

13.4.2 Controlled Measurements 405

13.5 Macro-VMM Scale: Clouds and P2P 407
13.5.1 Macro-VM Polling 408

13.5.2 Scalability Analysis Using PDQ 409

13.6 Cloud Computing Models 411
13.6.1 Fixed-Size Bounds 413

13.6.2 Harmonic Bounds, 416

13.6.3 Scaled-Size Bounds 417

13.6.4 Erlang Model L. 418

13.6.5 LogP Model i 419

13,7 SUMIATY . oottt e 421

Part IV Appendices

A Thanks for No Memories, 425
A.1 Life in the Markov Lane 425

A.2 Exponential Invariance 426

A.3 Shape Preservation 428

A4 A Counterexample. 428

B Compendium of Queueing Equations 431
B.1 Fundamental Metrics i 431

B.2 Queueing Delays i 432

C Units and Abbreviations............. 433
C.l SIPrefixes.o 433

C.2 Time Suffixes 433

C.3 Capacity Suffixes i 433

D Perl PDQ Manual 435
D.1 Introduction 435

D.2 Perl PDQ Module 435
D.21 PDQDataTypes.......cocoviiiiiiiiii. .. 435

D.2.2 PDQ Global Variables 436

xxviii Contents
D.2.3 PDQ Functionsc.iiiiiiiiiiai... 437
D.3 Function Synopses............c.iiiiiiiiiiii 437
D.3.1 pdq::CreateClosedcooiiiiiiiin... 437
D.3.2 pdq:CreateMultiNode 438
D.3.3 pdq::CreateNode, 438
D.3.4 pdqg:CreateOpen 439
D.3.5 pdq:CreateSingleNode 439
D.3.6 pdq:GetLoadOpt. ... 440
D.3.7 pdq:GetQueueLength.......... 441
D.3.8 pdq::GetResidenceTime 441
D.3.9 pdqg:GetResponse, 442
D.3.10 pdqg:GetThruMax 443
D.3.11 pdqg:GetThruput ..o 443
D.3.12 pdq:GetUtilization 444
D.3.13 pdg:Init ..o 444
D.3.14 pdqg:Report ... 445
D.3.15 pdqg:SetDebug 446
D.3.16 pdqg:SetDemand, 447
D.3.17 pdq:SetTUnit ..ovnne 448
D.3.18 pdqg:SetVisits . ..ot 448
D.3.19 pdqg:SetWUnit 449
D.3.20 pdg:Solve ..o 449
D4 Perl Scriptso 450
D5 PDQ Scripts .« vv it 451
D.6 Installing the PDQ Module 451
E Solutions to Selected Exercises 453
Bibliography 457
Indexo 465

	Analyzing Computer System Performance with Perl::PDQ
	Preface to Second Edition
	What's New?
	New Chapters and Partitioning
	Improved Perl Formatting
	Virtualization
	PDQ on SourceForge
	Why Queues Rule
	PDQ Manual
	CreateMultiNode Function
	Brief History of Buffers

	Performance Management Tools
	Scalability and Queueing
	Jackson's Theorem
	Glossary Removed
	Crowd-sourced Corrections
	Acknowledgments

	Preface to First Edition
	Motivation
	Why Perl?
	Book Structure
	Classroom Usage
	Prerequisites and Limitations
	Acknowledgments
	Warranty Disclaimer

	Contents

