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Preface to Second Edition

What’s New?

It seems fitting that this new edition appears as we pass the centenary of
the original paper by Erlang [1909], where he first introduced the concept
of a queue. This edition incorporates a considerable number of new features
compiled since the publication of the first edition in 2005.

New Chapters and Partitioning

The amount of additional material means the book now comprises four parts
instead of three. In particular, Part I contains new chapters that present a
more complete discussion of the underlying concepts used throughout this
book.

Improved Perl Formatting

All listings have a highlighted format to aid readability of PDQ codes.

Listing 1. Example of the new PDQ code format

#! /usr/bin/perl
use pdqg;

pdq: : Init ("Example");

pdq: :CreateNode ($NodeName, $pdg::CEN, $pdg::FCFEFS);
pdqg: :CreateOpen (SWorkName, S$ArrivalRate);

pdqg: : SetDemand ($SNodeName, S$WorkName, $ServiceDemand);
pdq: :Solve ($pdqg: : CANON) ;

pdq: :Report () ;
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Virtualization

A new Chapter 13: Virtual Machine Analysis with PD(Q, in Part 111, presents queue-
ing models of fair-share scheduling that underpins all modern virtual machine im-
plementations from hyperthreading to cloud computing.

PDQ on SourceForge

All PDQ development is now gated through SourceForge sourceforge.net/
projects/pdg-gnm-pkg/ under the title Pretty Damn Quick Queueing Model
Package. PDQ can also be downloaded from the author’s distribution page at
www.perfdynamics.com/Tools/PDQcode.html.

Why Queues Rule

A new Chapter 1: Why Queues Rule Performance Analysis, endeavors to explain
why queueing models are so powerful for doing computer performance analysis. See
Example 1.2 which presents a PDQ performance and capacity model of servers that
are dedicated to filtering email spam.

PDQ Manual

Part IV comprises a set of appendices. Included there is the PDQ Manual which has
been broken out from its previous inclusion in the chapter: Pretty Damn Quick—
A Slow Introduction. Updates are available online at www.perfdynamics.com/
Tools/PDQman.html.

CreateMultiNode Function
The latest release of the open source PDQ code now implements multi-server queue-
ing nodes. See Appendix D.3.2 for details.

Brief History of Buffers

The potted history of queueing theory entitled A Brief History of Buffers, that was
previously isolated as a separate Appendix, has been updated and now appears at
the end of the new Chapter 1.

Performance Management Tools
The Appendix on performance management tools in the first edition has now been
expanded in a new Chapter 2.

Scalability and Queueing

A new Section 4.11.12 in Chapter 4 shows how the author’s wuniversal scalability
law (developed in the book Guerrilla Capacity Planning [Gunther 2007b]) is re-
lated to the queueing models presented in this book, viz., the machine repairman
model [Gunther 2008].
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Jackson’s Theorem

Chapter 5 contains a new section explaining the importance of Jackon’s theorem
for circuits of queues. This concept is vital for constructing performance models of
modern multi-tier applications, such as those employed at large-scale web sites.

Glossary Removed

The Glossary in the first edition became outdated and has been removed in order
to accommodate the new chapter content without unduly increasing the size of the
entire book.

Crowd-sourced Corrections

The corrigenda at www.perfdynamics.com/iBook/ppdgerrata.html is a tes-
tament to the power of the internet for enabling many eyes to spot typos and errors.
Every effort has been made to include all the listed errata in this edition.

Acknowledgments
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library in order to programmatically convert it to Perl. Stefan Parvu championed
the use of PDQ in the field and provided important feedback for Section 4.11.12.
The performance group at VMware Inc., contributed to some very useful discussions
that helped to shape Chap. 13.

Once again, I am endebted to the alumni of Performance Dynamics Company
classes, and other diligent readers, who contributed errata for the first edition at
www . perfdynamics.com/iBook/ppdgerrata.html. In alphabetical order they
are: P. Altevogt, D. Anburaj, W. Baeck, T. Becker, E. Borasky L. Braswell, D.
Hagler, E. Juan, S. Kannan, M. Marino, P. Puglia, J. Purinton, T. Sych, I. Tegebo,
D. Walter, T. Wilson. In particular, P. Canadilla did a truly outstanding job, as his
record tally attests. If it there is such a thing as a copy-editor gene, I believe he has
it.

Finally, I am grateful to Ralf Gerstner, my editor, for his patience while I
searched for fragmented opportunities to update the manuscript during some diffi-
cult periods over the past two years.
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perl -le ‘@g=("\120\145\162\154","\120\104\121");
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Preface to First Edition

Motivation

This book arose out of an attempt to meet two key objectives. The first was
to communicate the theory and practice of performance analysis to those who
need it most, viz. I'T professionals, system administrators, software developers,
and performance test engineers. Many of the currently available books on
computer performance analysis fall into one of three distinct camps:

1. Books that discuss tuning the performance of a particular platform, e.g.,
Linux, Solaris, Windows. These books explain how you can turn individual
software “knobs” with the hope that this will tune your platform.

2. Books that emphasize formal queueing theory under the rubric of perfor-
mance modeling. These books are written by mathematicians for mathe-
maticians and therefore are burdened with too much Greek for the average
IT professional to suffer through.

3. Books that employ queueing theory without the Greek but the perfor-
mance models are unrealistic because they are essentially academic toys.

Each of these categories has pedagogic merit, but the focus tends to be on
detailed particulars that are not easily generalized to a different context. These
days, IT professionals are required to be versed in more than one platform or
technology. It seemed to me that the best way to approach the performance
analysis of such a panoply is to adopt a system perspective. The system view
also provides an economy of thought. Understanding gained on one system can
often be applied to another. Successful performance analysis on one platform
often translates successfully to another, with little extra effort. Expressed in
today’s vernacular—Ilearn once, apply often.

Second, I wanted to present system performance principles in the context
of a software tool, Pretty Damn Quick (PDQ), that can be applied quickly
to address performance issues as they arise in today’s hectic business envi-
ronment. In order to meet the pressures of ever-shortening time horizons,
performance analysis has to be done in zero time. Project managers cannot
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and will not allow their schedules to be stretched by what they perceive as
inflationary performance analysis. A performance analysis tool based on a
scripting language helps to meet these severe time constraints by avoiding the
need to wrestle with compilers and debuggers.

Why Perl?

Defending the choice of a programming language is always a losing proposi-
tion, but in a recent poll on slashdot.org, Perl (Practical Extraction and
Reporting Language,) was ranked third after Bourne shell and Ruby in terms
of ease of use for accomplishing a defined set of tasks with a scripting language.
Python, Tecl, and Awk, came in fifth, seventh, and eighth respectively, while
Java (interpreted but not a scripting language) came in last. Neither Mathe-
matica nor PHP were polled. On a more serious note, John Ousterhout (father
of Tcl), has written an essay (home.pacbell.net/ouster/scripting.
html) on the general virtues of scripting languages for prototyping. Where
he says prototyping, I would substitute the word modeling.

I chose Perl because it fitted the requirement of a rapid prototyping lan-
guage for computer performance analysis. The original implementation of
PDQ was in C (and still is as far as the library functions are concerned).
To paraphrase a leading UNIX developer, one of the disadvantages of the C
language is that you can spend a lot of time in the debugger when you stab
yourself with a misreferenced pointer. Perl has a C-like syntax but is much
more forgiving at runtime. Moreover, Perl has arguably become the most
ubiquitous of the newer-generation scripting languages, including MacPerl
on MacOS (prior to MacOS X). One reason for Perl’s ubiquity is that it is
designed for extracting text and data from files. Why not for extracting per-
formance data? It therefore seemed like a good choice to offer a Perl version of
PDQ as an enhancement to the existing toolset of system administrators. By
a happy coincidence, several students, who were also system administrators,
began asking me if PDQ could be made available in Perl. So, here it is. Bonne
programmation!

How should PDQ be used? In my view, the proper analysis of computer
performance data requires a conceptual framework within which the informa-
tion hidden in those data can be revealed. That is the role of PDQ. It provides
a framework of expectations in which to assess data. If you do performance
analysis without such a framework (as is all too common), how can you know
when you are wrong? When your conclusion does not reconcile with the data,
you must stop and find where the inconsistency lies. It is much easier to detect
inconsistencies when you have certain expectations. Setting some expectations
(even wrong ones) is far better than not setting any.

I sometimes liken the role of PDQ to that of a subway map. A subway
map has two key properties. It is an abstract representation of the real sit-
uation in that the distances between train stations are not in geographical
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proportion, and it is simple because it is uncluttered by unimportant real-
world physical details. The natural urge is to create a PDQ “map” adorned
with an abundance of physical detail because that would seem to constitute a
more faithful representation of the computer system being analyzed. In spite
of this urge, you should strive instead to make your PDQ models as simple
and abstract as a subway map. Adding complexity does not guarantee ac-
curacy. Unfortunately, there is no simple recipe for constructing PDQ maps.
Einstein reputedly said that things should be as simple as possible, but no
simpler. That should certainly be the goal for applying PDQ, but like drawing
any good map there are aspects that remain more in the realm of art than
science. Those aspects are best demonstrated by example, and that is the
purpose of Part II of this book.

Book Structure

Very simply, this book falls into two parts, so that the typical rats-nest dia-
gram of chapter dependencies is rendered unnecessary.

Part I explains the fundamental metrics used in computer performance
analysis. Chapter 3 discusses the zeroth metric, time, that is common to all
performance analysis. This chapter is recommended reading for those new to
computer performance analysis but may be skipped in a first reading by those
more familiar with performance analysis concepts. The queueing concepts
encoded in PDQ tool are presented in Chaps. 4, 5, and 7, so these chapters
may also be read sequentially.

For those familiar with UNIX platforms, a good place to start might be
Chap. 6 where the connection between queues (buffers) and the load average
metric is dissected at the kernel level. Linux provides the particular context
because the source code is publicly available to be dissected—on the Web,
no less! The generalization to other operating systems should be obvious.
Similarly, another starting point for those with a UNIX orientation could be
Section 1.7 A Short History of Buffers (pun intended) which summarizes
the historical interplay between queueing theory and computer performance
analysis, commencing with the ancestors of UNIX viz. CTSS and Multics.

Irrespective of the order you choose to read them, none of the chapters in
Part I requires a knowledge of formal probability theory or stochastic meth-
ods. Thus, we avoid the torrent of Greek that otherwise makes very powerful
queueing concepts incomprehensible to those readers who would actually ben-
efit from them most.

Part IT covers a wide variety of examples demonstrating how to apply
PDQ. These include the performance analysis of multicomputer architectures
in Chap. 9, analyzing benchmark results in Chap. 10, client/server scalability
in Chap. 11, and Web-based applications in Chap. 12. These chapters can be
read in any order. Dependencies on other chapters are cross-referenced in the
text.
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Chapter 8 (Pretty Damn Quick (PDQ)—A Slow Introduction) contains
the PDQ driver’s manual and, because it is a reference manual, can be read
independently of the other chapters. It also contains many examples that were
otherwise postponed from Chaps. 4-7.

Appendix D contains the steps for installing Perl PDQ together with a
complete list of the Perl programs used in this book. The more elementary of
these programs are specially identified for those unfamiliar with writing Perl
scripts.

Classroom Usage

This book grew out of class material presented at both academic institutions
and corporate training facilities. In that sense, the material is pitched at the
graduate or mature student level and could be covered in one or two semesters.

Each chapter has a set of exercises at the end. These exercises are intended
to amplify key points raised in the chapter, but instructors could also comple-
ment them with questions of their own. I anticipate compiling more exercises
and making them available on my Web site (www.perfdynamics.com).
Solutions to selected exercises can be found in Appendix E.

Key points that should be retained by both students and practitioners are
contained in a box like this one.

Prerequisites and Limitations

This is a book about performance analysis, not performance tuning. The world
is already full of books explaining how to tune this or that application on this
or that platform. Whereas performance tuning is about particulars, the power
of performance analysis comes from discerning general principals. General
principals are often best detected at the system level. The payoff is that a
generalizable analysis technique learned once will find application in solving
a wide variety of future performance problems.

Good analysis requires clarity of thought, and clear thinking benefits from
the structure of formalism. The formalism used throughout this book is queue-
ing theory or what might be more accurately termed queueing theory lite. By
that T mean the elements of queueing theory are presented in a minimalist
style without the need for penetrating many of the complexities of mathemat-
ical queueing theory, but without loss of correctness. That said, a knowledge
of mathematics at the level of high-school algebra is assumed throughout the
text (it is hard to imagine doing any kind of meaningful performance anal-
ysis without it), and those readers exposed to introductory probability and
calculus will find most of the concepts transparent.
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Queueing theory algorithms are encoded into PDQ. This frees the perfor-
mance analyst to focus on the application of queueing concepts to the problem
at hand. Inevitably, there is a price for this freedom. The algorithms contain
certain assumptions that facilitate the solution of queueing models. One of
these is the Poisson assumption. In probability theory, the Poisson distribu-
tion is associated with events which are statistically random (like the clicks
of a Geiger counter). PDQ assumes that arrivals into a queue and departures
from the service center are random. How well this assumption holds up against
behavior of a real computer system will impact the accuracy of your analysis.

In many cases, it holds up well enough that the assumption does not need
to be scrutinized. More often, the accuracy of your measurements is the more
important issue. All measurements have errors. Do you know the magnitude of
the errors in your performance data? See Sect. 2.8 in Chapter 2 (was Appendix
D). In those cases where there is doubt about the Poisson assumption, Sect. 2.9
of Chapter 2 (was Appendix D) provides a test together with a Perl script to
analyze your data for randomness. One such case is packet queueing.

Internet packets, for example, are known to seriously violate the Poisson
assumption [See Park and Willinger 2000]. So PDQ cannot be expected to
give accurate performance predictions in that case, but as long as the perfor-
mance analysis is conducted at the transaction or connection level (as we do
in Chap. 12), PDQ is applicable. For packet level analysis, alternative perfor-
mance tools such simulators (see e.g., NS-2 http://www.isi.edu/nsnam/ns/)
are a better choice. One has to take care, however, not to be lulled into a false
sense of security with simulators. A simulation is assumed to be more accu-
rate because it allows you to construct a faithful representation of the real
computer system by accounting for every component—sometimes including
the proverbial kitchen sink. The unstated fallacy is that complexity equals
completeness. An example of the unfortunate consequences that can ensue
from ignoring this point is noted in Sect. 3.7.

Even in the era of simulation tools, you still need an independent frame-
work to validate the results. PDQ can fulfill that role. Otherwise, your simula-
tion stands in danger of being just another pseudo-random number generator.
That PDQ can act like an independent framework in which to assess your
data (be it from measurement or simulation) is perhaps its most important
role. In that sense, the very act of modeling can be viewed as an organizing
principle in its own right. A fortiori, the insights gained by merely initiating
the construction of a PD(Q model may be more important than the results it
produces.
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