Digital Image Analysis

Springer New York

New York Berlin Heidelberg Barcelona Hong Kong London Milan Paris Singapore Tokyo Walter G. Kropatsch Horst Bischof Editors

Digital Image Analysis

Selected Techniques and Applications

With 150 Illustrations

Walter G. Kropatsch Pattern Recognition and Image Processing Group Institute of Computer Aided Automation Vienna University of Technology Favoritenstrasse 9/183/2 Vienna A-1040 Austria krw@prip.tuwien.ac.at Horst Bischof Pattern Recognition and Image Processing Group Institute of Computer Aided Automation Vienna University of Technology Favoritenstrasse 9/183/2 Vienna A-1040 Austria bis@prip.tuwien.ac.at

CD-ROM available only in print version.

Library of Congress Cataloging-in-Publication Data Digital image analysis: selected techniques and applications/editors, Walter G.
Kropatsch, Horst Bischof.
p. cm.
Includes bibliographical references and index.
ISBN 0-387-95066-4
1. Image processing—Digital techniques. 2. Image analysis. I. Kropatsch, W. (Walter).
II. Bischof, Horst.
TA1637.D517 2001
621.36'7—dc21 00-052278

Printed on acid-free paper.

© 2001 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Frank McGuckin; manufacturing supervised by Jeffrey Taub. Camera-ready copy prepared from the authors' LaTeX2e files using Springer's sysing2e.sty macro. Printed and bound by Maple-Vail Book Manufacturing Group, York, PA. Printed in the United States of America.

 $9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

ISBN 0-387-95066-4

SPIN 10770712

Springer-Verlag New York Berlin Heidelberg A member of BertelsmannSpringer Science+Business Media GmbH

Disclaimer: This eBook does not include the ancillary media that was packaged with the original printed version of the book.

Preface

The human visual system as a functional unit including the eyes, the nervous system, and the corresponding parts of the brain certainly ranks among the most important means of human information processing. The efficiency of the biological systems is beyond the capabilities of today's technical systems, even with the fastest available computer systems.

However, there are areas of application where digital image analysis systems produce acceptable results. Systems in these areas solve very specialized tasks, they operate in a limited environment, and high speed is often not necessary. Several factors determine the economical application of technical vision systems: cost, speed, flexibility, robustness, functionality, and integration with other system components. Many of the recent developments in digital image processing and pattern recognition show some of the required achievements. Computer vision enhances the capabilities of computer systems

- in autonomously collecting large amounts of data,
- in extracting relevant information,
- in perceiving its environment, and
- in automatic or semiautomatic operation in this environment.

The development of computer systems in general shows a steadily increasing need in computational power, which comes with decreasing hardware costs.

About This Book

This book is the result of the Austrian Joint Research Program (JRP) 1994–1999 on "Theory and Applications of Digital Image Processing and Pattern Recognition". This program was initiated by the Austrian Science Foundation (FWF) and funded research in 11 labs all over Austria for more than 5 years. Because the program has produced many scientific results in many different areas and communities, we collected the most important results in one volume. The development of practical solutions involving digital images requires the **cooperation** of specialists from many different scientific fields. The wide range of fields covered by the participating institutions fulfills this important requirement. Furthermore, the often very specialized vocabulary in the different disciplines makes it necessary to have experts in the different areas, which are in close contact and often exchange ideas. For this reason, active cooperation among the different groups has been declared an important goal of the research program. It has stimulated the research activities for each of the participating groups (and beyond) in a way that has a positive long-term effect for activities in this field in Austria. More details about the joint research program and the participating labs can be found on the CD included in this book.

This book is not a collection of research papers; it brings together the research results of the joint research program in a uniform manner, thereby making the contents of the more than 300 scientific papers accessible to the nonspecialist. The main motivation for writing this book was to bridge the gap between the basic knowledge available in standard textbooks and the newest research results published in scientific papers.

In particular the book was written with the following goals in mind:

- presentation of the research results of the joint research program in a unified manner;
- together with the accompanying CD, the book provides a quick overview of the research in digital image processing and pattern recognition in Austria from 1994–1999;
- parts of this book can serve as advanced courses in selected chapters in pattern recognition and image processing.

The book is organized in five parts, each dealing with a special topic. The parts are written in an independent manner and can be read in any order. Each part consists of several chapters and has its own bibliography. Each part focuses on a specific topic in image processing and describes new methods developed within the research program, but it also demonstrates selected applications showing the benefits of the methods. Parts I, III, and IV are more focused on methodological developments, and Parts II and V are more application oriented. New mathematical methods centered around the topic of image transformations is the main subject of Part I. Part II is mainly devoted to the computer science aspect of image processing, in particular how to handle this huge amount of information in a reasonable time. Parts III and IV are centered around algorithmic issues in image processing. Part III deals with graph-based and robust methods, whereas Part IV is focused on information fusion. 3D information is the main topic of Part V. Table 1 gives a concise overview of the parts and presents the main methods and selected applications for each part.

The Compact Disc

The CD included with this book presents the research program from a multimedia perspective. The CD contains a collection of html-files, which can be viewed by common Web-browsers. The CD has following features:

- the structure of the research program;
- the main topics of research;
- a collection of scientific papers produced during the research program;

- WWW-links to demo pages, which are maintained by the different labs;
- information about the participating labs; and
- the people working on the various projects.

The WWW-links to the demos on the CD should add to the "static" content of the book access to the latest developments of active research done in the labs. Although we are aware of the difficulties of maintaining Internet links over long periods, we have decided for this dynamic solution in order to communicate up-to-date results in such rapidly evolving technology as digital image processing.

Acknowledgments

This work was supported by the Austrian Science Foundation under grant S-70 and the Austrian national bank. We are indebted to Dr. Niel from FWF for continuing support. We would like to thank all our colleagues who have worked under the Joint Research Program S-70 for more than 5 years and who have produced the results in this book and on the CD. Special thanks go to Karin Hraby at the Pattern Recognition and Image Processing Lab who has supported the research program from the administrative side; without her invaluable help we would have spent much more time on administration than on research. For the production of the CD we would like to thank the Hagenberg team at the Fachhochschule Multimedia Design, especially Wilhelm Burger for producing the CD with his students. Special thanks to Tatjana Elssenwenger, Daniela Kreiss, and Manuela Mittermayr for their excellent work in preparing the CD and for their patience for working with us. Finally we would like to express our sincere thanks to all contributors to this book for their professional work and timely delivery of the chapters.

Vienna, Austria January 2001 Walter G. Kropatsch Horst Bischof

TABLE 1. Overview	of the	Book	Parts
-------------------	--------	------	-------

Methods

Selected Applications

I Mathematical Methods for Image Analysis

Time-frequency methods	Echocardiography					
Signal approximation	Geophysics					
Gabor analysis	Image reconstruction					
Wavelet analysis	Shape classification					
Stochastic shape theory	Image compression					
Non-linear optimizations	Image encryption					
Multilevel interpolation	Watermarking					
Chaotic Kolmogorov flows	-					
II Data	Handling					
Parallelization	Remote sensing					
Distributed processing	Radar data					
Data management	Art history					
Image databases	•					
III Robust and Adaptiv	ve Image Understanding					
Graphs	Technical drawings					
Image pyramids	Line images					
Irregular pyramids	Range images					
Robust methods	0 0					
Minimum Description Length						
Object recognition						
Structural features						
Grouping and Indexing						
Machine learning						
IV Information Fusion an	d Radiometric Models for					
Image Understanding						
Active fusion	Remote sensing					
Active recognition	Car recognition					
Reinforcement learning	View planning					
Generic object recognition	Land cover classification					
Radiometric models						
Sub-pixel analysis						
V 3D Reconstruction						
Image matching	Remote sensing					
Object reconstruction	Target localization					
Topographic mapping	Building extraction					
Vision-based navigation	Space exploration					
Rotating CCD cameras	Digital elevation models					
	Surveying					

Contributors

Andreu, Jean-Philippe Joanneum Research The Institute of Digital Image Processing (DIB) Wastiangasse 6 A-8010 Graz, Austria jean-philippe.andreu@joanneum.ac.at

Bachmann, Dieter Graz University of Technology Computer Graphics and Vision Inffeldgasse 16 A-8010 Graz, Austria bachmann@icg.tu-graz.ac.at

Bartl, Renate University of Agricultural Sciences Institute of Surveying, Remote Sensing and Land Information Peter-Jordan-Str. 82 A-1190 Vienna, Austria renate.bartl@debis.at

Bischof, Horst Vienna University of Technology Institute of Computer Aided Automation Favoritenstr. 9/1832 A-1040 Vienna, Austria bis@prip.tuwien.ac.at

Blurock, Edward Johannes Kepler University Research Institute for Symbolic Computation Altenbergerstrasse 69 A-4040 Linz, Austria blurock@risc.uni-linz.ac.at

x Contributors

Borotschnig, Hermann European Patent Office D-80298 Munich, Germany hborotschnig@epo.org

Burge, Mark Armstrong Atlantic University Department of Computer Science 11935 Abercorn Street Savannah, Georgia 31419-1997, USA mburge@acm.org

Burger, Wilhelm FH-Studiengang Medientechnik und -design Hauptstrasse 117 A-4232 Hagenberg, Austria wilbur@ieee.org

Cenker, Christian University of Vienna Department of Statistics and Decision Support Systems Universitätsstr. 5 A-1010 Vienna, Austria christian.cenker@univie.ac.at

Englert, Roman DeTeMobil-Deutsche Telekom MobilNet GmbH Landgrabenweg 151 D-53227 Bonn, Germany Roman.Englert@t-mobil.de

Feichtinger, Hans G. University of Vienna Department of Mathematics Strudlhofg. 4 A-1090 Vienna, Austria hans.georg.feichtinger@univie.ac.at

Ganster, Harald Graz University of Technology Electrical Measurement and Measurement Signal Processing Schiesstattg. 14b A-8010 Graz, Austria ganster@emt.tu-graz.ac.at Glantz, Roland Vienna University of Technology Institute of Computer Aided Automation Favoritenstr. 9/1832 A-1040 Vienna, Austria glz@prip.tuwien.ac.at

Glendinning, Ian European Centre for Parallel Computing at Vienna (VCPC) Liechtensteinstr. 22 A-1090 Vienna, Austria ian@vpc.univie.ac.at

Goller, Alois Department of Electrical and Computer Engineering Chalmers Lindholmen University College P.O. Box 8873 SE-402 72 Goeteborg, Sweden algo@chl.chalmers.se

Kahmen, Heribert Vienna University of Technology Department of Applied and Engineering Geodesy Gusshausstr. 27-29/128/3 A-1040 Vienna, Austria Heribert.Kahmen@tuwien.ac.at

Kalliany, Rainer Graz University of Technology Computer Graphics and Vision Inffeldgasse 16 A-8010 Graz, Austria kalliany@icg.tu-graz.ac.at

Kropatsch, Walter G. Vienna University of Technology Institute of Computer Aided Automation Favoritenstr. 9/1832 A-1040 Vienna, Austria krw@prip.tuwien.ac.at Leonardis, Aleš University of Ljubljana Faculty of CIS Trzaska 25 SI-1001 Ljubljana, Slovenia Ales.Leonardis@fri.uni-lj.si

Mayer Manfred University of Vienna Department of Statistics and Decision Support Systems Universitätsstr. 5 A-1010 Vienna, Austria m3mayer@ibm.net

Niederl Franz akaryon Niederl & Bußwald OEG Grazer Straße 77 A-8665 Langenwang, Austria niederl@akaryon.com

Niessner, Anton Vienna University of Technology Department of Applied and Engineering Geodesy Gusshausstr. 27-29/128/3 A-1040 Vienna, Austria aniessne@pop.tuwien.ac.at

Paar, Gerhard Joanneum Research The Institute of Digital Image Processing (DIB) Wastiangasse 6 A-8010 Graz, Austria gerhard.paar@joanneum.ac.at

Paletta, Lucas Joanneum Research The Institute of Digital Image Processing (DIB) Wastiangasse 6 A-8010 Graz, Austria lucas.paletta@joanneum.ac.at Pflug, Georg University of Vienna Department of Statistics and Decision Support Systems Universitätsstr. 5 A-1010 Vienna, Austria georg.pflug@univie.ac.at

Pinz, Axel Graz University of Technology Electrical Measurement and Measurement Signal Processing Schiesstattg. 14b A-8010 Graz, Austria pinz@emt.tu-graz.ac.at

Pölzleitner, Wolfgang Sensotech Forschungs- und Entwicklungs GesmbH Scheigergasse 74 A-8010 Graz, Austria wp@sensotech.at

Prantl, Manfred Alicona GdbR Koch-Sternfeldstr. 5 D-83471 Berchtesgaden, Germany prantl@alicona.com

Rottensteiner, Franz Vienna University of Technology Institute of Photogrammetry and Remote Sensing Gusshausstr. 27-29 A-1040 Vienna, Austria fr@ipf.tuwien.ac.at

Saraceno, Caterina Starlab NV Boulevard St.-Michel 47 B-1040 Brussels, Belgium saraceno@starlab.net

Scharinger, Josef Johannes Kepler University Institute of Systems Science, Systems Theory and Information Technology Altenbergerstrasse 69 A-4040 Linz, Austria js@cast.uni-linz.ac.at Schneider, Werner University of Agricultural Sciences Institute of Surveying, Remote Sensing and Land Information Peter-Jordan-Str. 82 A-1190 Vienna, Austria werner.schneider@boku.ac.at

Steinwendner, Joachim University of Agricultural Sciences Institute of Surveying, Remote Sensing and Land Information Peter-Jordan-Str. 82 A-1190 Vienna, Austria Steinwendner@boku.ac.at

Seixas, Andrea de Vienna University of Technology Department of Applied and Engineering Geodesy Gusshausstr. 27-29/128/3 A-1040 Vienna, Austria aseixas@pop.tuwien.ac.at

Strohmer, Thomas University of California, Davis Department of Mathematics 1 Shield Avenue Davis California 95616-8633, USA strohmer@math.ucdavis.edu

Contents

P C Li Li	refac ontri ist of ist of	e butors Figure Tables	s es s	v ix xxiii xxxi
Ι	\mathbf{M}	athen	natical Methods for Image Analysis	1
In	Introduction to Part I		3	
1	Nu	nerica	l Harmonic Analysis and Image Processing	7
	H.G	. Feicht	tinger and T. Strohmer	
	1.1	Gabor	Analysis and Digital Signal Processing	. 7
		1.1.1	From Fourier to Gabor Expansions	. 8
		1.1.2	Local Time-Frequency Analysis and STFT	. 15
		1.1.3	Fundamental Properties of Gabor Frames	. 17
		1.1.4	Commutation Relations of the Gabor Frame Operator	. 18
		1.1.5	Critical Sampling, Oversampling, and the Balian-Low Theorem	. 18
		1.1.6	Wexler-Raz Duality Condition	. 23
		1.1.1	Gabor Analysis on LUA Groups	. 24
		1.1.8	Numerical Gabor Analysis	. 30
	19	1.1.9 Signal	Image Representation and Gabor Analysis	. 34
	1.2		Notation	. 34
		1.2.1 1.2.2	Signal Reconstruction and Frames	. 30
		1.2.2 1 2 3	Numerical Methods for Signal Reconstruction	. 50
	13	Exami	ples and Applications	. 01
	1.0	1.3.1	Object Boundary Recovery in Echocardiography	. 43
		1.3.2	Image Reconstruction in Exploration Geophysics	. 44
		1.3.3	Reconstruction of Missing Pixels in Images	. 46
2	Sto	chastic	c Shape Theory	49
	Ch.	Cenker	r, G. Pflug, and M. Mayer	
	2.1	Shape	Analysis	. 49
	2.2	Conto	ur Line Parameterization	. 51
	2.3	Deform	mable Templates	. 52
		2.3.1	Stochastic Planar Deformation Processes	. 53
		2.3.2	Gaussian Isotropic Random Planar Deformations	. 54
		2.3.3	The Deformable Templates Model	. 55

		2.3.4	Maximum Likelihood Classification				56
	2.4	The W	Vavelet Transform				58
		2.4.1	Atomic Decompositions and Group Theory				59
		2.4.2	Discrete Wavelets and Multiscale Analysis				62
		2.4.3	Wavelet Packets				67
	2.5	Wavel	et Packet Descriptors				72
	2.6	Global	Nonlinear Optimization				74
		2.6.1	Multilevel Single-Linkage Global Optimization				75
		2.6.2	Implementation		•	•	77
3	Ima	ge Coi	mpression and Coding				81
	J. Sc	charing	er				
	3.1	Image	Compression	•	•	•	81
		3.1.1	Lossy Compression and Machine Vision		•	•	82
		3.1.2	Multilevel Polynomial Interpolation				90
		3.1.3	Enhancing the FBI Fingerprint Compression Standard			•	95
	3.2	Multin	nedia Data Encryption				102
		3.2.1	Symmetric Product Ciphers				102
		3.2.2	Permutation by Chaotic Kolmogorov Flows				103
		3.2.3	Substitution by AWC or SWB Generators				108
		3.2.4	Security Considerations				111
		3.2.5	Encryption Experiments				111
		3.2.6	Encryption Summary	•	•	•	114
	Refe	erences	s				115
II	D	ata H	landling			-	131
-							100
In	trodi	uction	to Part II				133
4	Para	allel ar	nd Distributed Processing				135
	<i>A. G</i>	Goller, 1	I. Glendinning, D. Bachmann, and R. Kalliany				
	4.1	Dealin	g with Large Remote Sensing Image Data Sets				135
		4.1.1	Demands of Earth Observation				135
		4.1.2	Processing Radar-Data of the Magellan Venus Probe			•	137
	4.2	Paralle	el Radar Signal Processing			•	138
		4.2.1	Parallelization Strategy				138
		4.2.2	Evaluation of Parallelization Tools			•	139
		4.2.3	Program Analysis and Parallelization				141
	4.3	Paralle	el Radar Image Processing				143
		4.3.1	Data Decomposition and Halo Handling				144
		4.3.2	Dynamic Load Balancing and Communication Overloading				145
		4.3.3	Performance Assessment				146
	4.4	Distrib	puted Processing				149
	4.4	Distrib 4.4.1	Duted Processing	•	•		$\begin{array}{c} 149 \\ 150 \end{array}$

a	
Contents	XV11

		4.4.3	Broker
		4.4.4	Experiences
5	Ima	ore Dat	a Catalogs 155
0	$F \Lambda$	liederl	R Kalliany C Saraceno and W G Kronatsch
	51	Online	Access to Remote Sensing Imagery
	0.1	511	Remote Sensing Data Management
		5.1.1	Image Data Information and Request System 158
		513	Online Product Generation and Delivery 159
	5.2	Conte	nt-Based Image Database Indexing and Retrieval
	0.2	5.2.1	The Miniature Portrait Database
		5.2.2	The Eigen Approach
		5.2.3	Experiments
	Ref	erence	5 171
тт	т т		
11	1 1	Kobus	t and Adaptive Image Understanding 175
In	trod	uction	to Part III 177
6	Gra	ohs in	Image Analysis 179
	W.C	Krope	utsch, M. Burge, and R. Glantz
	6.1	From 1	Pixels to Graphs
		6.1.1	Graphs in the Square Grid
		6.1.2	Run Graphs
		6.1.3	Area Voronoi Diagram
	6.2	Graph	Transformations in Image Analysis
		6.2.1	Arrangements of Image Elements
		6.2.2	Dual Graph Contraction
7	Hie	rarchie	s 199
	<i>W.C</i>	G. Krope	utsch, H. Bischof, and R. Englert
	7.1	Regula	ur Image Pyramids
		7.1.1	Structure
		7.1.2	Contents
		7.1.3	Processing
		7.1.4	Fuzzy Curve Pyramid
	7.2	Irregul	ar Graph Pyramids
		7.2.1	Computational Complexity
		7.2.2	Irregular Pyramids by Hopfield Networks
		7.2.3	Equivalent Contraction Kernels
		7.2.4	Extensions to 3D
8	Roł	oust M	ethods 219
	<i>A. I</i>	Leonardi	s and H. Bischof
	8.1	The R	ole of Robustness in Computer Vision

	8.2	Parametric Models
		8.2.1 Robust Estimation Methods
	8.3	Robust Methods in Vision
		8.3.1 Recover-and-Select Paradigm
		8.3.2 Recover-and-Select applied to
9	Stru	ctural Object Recognition 237
	<i>M. E</i>	Burge and W. Burger
	9.1	2-D and 3-D Structural Features
	9.2	Feature Selection
	9.3	Matching Structural Descriptions
	9.4	Reducing Search Complexity
	9.5	Grouping and Indexing
		9.5.1 Early Search Termination
	9.6	Detection of Polymorphic Features
	9.7	Polymorphic Grouping
	9.8	Indexing and Matching
	9.9	Polymorphic Features
	9.10	3-D Object Recognition Example
		9.10.1 The IDEAL System
		9.10.2 Initial Structural Part Decomposition
		9.10.3 Part Adjacency and Compatibility Graphs
		9.10.4 Automatic Model Acquisition
		9.10.5 Object Recognition from Appearances
		9.10.6 Experiments
10	Mac	chine Learning 251
	E. B	lurock
	10.1	What Is Machine Learning?
		10.1.1 What Do Machine Learning Algorithms Need?
		10.1.2 One Method Solves All? Use of Multistrategy
	10.2	Methods
	10.3	Operational
		10.3.1 Discrimination and Classification
		10.3.2 Optimization and Search
		10.3.3 Functional Relationship
	10.4	10.3.4 Logical Operations
	10.4	Object-Oriented Generalization
	10.5	Generalized Logical Structures
		10.5.1 Reformulation
	10.0	10.5.2 Object-Oriented Implementation
	10.6	Generalized Clustering Algorithms
		10.6.1 Function Overloading

References

IV I	nformation Fusion and Radiometric Aodels for Image Understanding	281
Introd	action to Part IV	283
11 Info	rmation Fusion in Image Understanding	285
JP.	Andreu, H. Borotschnig, H. Ganster, L. Paletta, A. Pinz, and M. Prantl	
11.1	Active Fusion	286
11.2	Active Object Recognition	287
	11.2.1 Related Research	289
11.3	Feature Space Active Recognition	290
	11.3.1 Object Recognition in Parametric Eigenspace	291
	11.3.2 Probability Distributions in Eigenspace	292
	11.3.3 View Classification and Pose Estimation	293
	11.3.4 Information Integration	294
	11.3.5 View Planning	295
	11.3.6 The Complexity of the Algorithm	290
	11.3.7 Experiments	297
	11.3.8 A Counterexample for Conditional Independence	303
11 /	Deinforcement Learning for Active Object Decognition	304 205
11.4	11.4.1 Adaptive Conception of Object Recognition	303 207
	11.4.1 Adaptive Generation of Object Hypotheses	307
	11.4.2 Learning Recognition Control	310
	11.4.0 Experiments	312
11.5	Ceneric Active Object Recognition	317
11.0	11.5.1 Object Models	318
	11.5.2 Becognition System	319
	11.5.3 Hypothesis Generation	319
	11.5.4 Visibility Space	323
	11.5.5 Viewpoint Estimation	326
	11.5.6 Viewpoints and Actions	329
	11.5.7 Motion Planning	331
	11.5.8 Object Hypotheses Fusion	333
	11.5.9 Conclusion	334
12 Ima	ge Understanding Methods for Remote Sensing	337
J. S	einwendner, W. Schneider, and R. Bartl	
12.1	Radiometric Models	339
12.2	Subpixel Analysis of Remotely Sensed Images	346
12.3	Segmentation of Remotely Sensed Images	350
12.4	Land-Cover Classification	353
12.5	Information Fusion for Remote Sensing	355

V	3D Reconstruction 3	67
In	troduction to Part V 3	69
13	Fundamentals 3	373
	F. Rottensteiner, G. Paar, and W. Pölzleitner	
	13.1 Image Acquisition Aspects	373
	13.1.1 Video Cameras	374
	13.1.2 Amateur Cameras with CCD Sensors	374
	13.1.3 Analog Metric Cameras	374
	13.1.4 Remote Sensing Scanners	375
	13.1.5 Other Visual Sensor Systems	376
	13.2 Perspective Transformation	376
	13.3 Stereo Reconstruction	380
	13.4 Bundle Block Configurations	382
	13.5 From Points and Lines to Surfaces	383
	13.5.1 Representation of Irregular Object Surfaces	385
	13.5.2 Representation of Man-Made Objects	388
	13.5.3 Hybrid Representation of Object Surfaces	390
11	Image Matching Strategies	203
14	G Paar F Rottensteiner and W Pölzleitner	90
	14.1 Baster-Based Matching Techniques	395
	14.1 1 Cross Correlation	395
	14.1.2 Least Squares Matching	397
	14.2 Feature-Based Matching Techniques	399
	14.2.1 Feature Extraction	399
	14.2.2 Matching Homologous Image Features	402
	14.3 Hierarchical Feature Vector Matching (HFVM)	406
	14.3.1 Feature Vector Matching (FVM)	406
	14.3.2 Subpixel Matching	409
	14.3.3 Consistency Check	409
	14.3.4 Hierarchical Feature Vector Matching	409
15	Precise Photogrammetric Measurement 4	11
	F. Rottensteiner	
	15.1 Automation in Photogrammetric Plotting	413
	15.1.1 Automation of Inner Orientation	414
	15.1.2 Automation of Outer Orientation	414
	15.2 Location of Targets	415
	15.2.1 Location of Circular Targets	416
	15.2.2 Location of Arbitrarily Shaped Targets	417
	15.2.3 The OEEPE Test on Digital Aerial Triangulation	419
	15.2.4 Deformation Analysis of Wooden Doors	420
	15.3 A General Framework for Object Reconstruction	422

	15.4 15.5	15.3.1 15.3.2 15.3.3 15.3.4 Semiau 15.4.1 15.4.2 15.4.3 State o	Hierarchical Object Reconstruction	$\begin{array}{c} 42 \\ 42 \\ 42 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\$	23 27 29 30 31 33 34 36 37
16	3 D]	Naviga	tion and Reconstruction	43	9
	<i>G. P</i>	Paar and	d W. Pölzleitner		
	16.1	Stereo	reconstruction of naturally textured surfaces	43	39
		16.1.1	Reconstruction of Arbitrary Shapes Using the Locus Method	43	39
		16.1.2	Using the locus Method for Cavity Inspection	44	13
		16.1.3	Stereo Reconstruction Using Remote Sensing Images	44	17
		16.1.4	Stereo Reconstruction for Space Research	45	50
		16.1.5	Operational Industrial Stereo Vision Systems	45	50
	16.2	A Fran	nework for Vision-Based Navigation	45	52
		16.2.1	Vision Sensor Systems	45	53
		16.2.2	Closed-Loop Solution for Autonomous Navigation	45	54
		16.2.3	Risk Map Generation	45	5
		16.2.4	Local Path Planning	45)) ()
		16.2.5	Path Execution and Navigation on the DEM	40	00 :0
		10.2.0 16.2.7	Simulation Results	40	50 50
		10.2.1		40	55
17	3D (Object	Sensing Using Rotating CCD Cameras	46	5
	<i>H. K</i>	Tahmen,	A. Niessner, and A. de Seixas		
	17.1	Concep	pt of Image-Based Theodolite Measurement Systems	46	35
	17.2	The Vi	ideometric Imaging System	46	37
		17.2.1	The Purpose of the Videometric Imaging System	46	37
		17.2.2	An Interactive Measurement System–A First Step	47	70
	4 - 0	17.2.3	An Automatic System–A Second Step	47	73
	17.3	Conver	rsion of the Measurement System into a Robot System	48	51
	175	Decisio	рп макing	48	52 56
	11.5	Outloo	ж	48	50
	Refe	erences	3	48	9
	Inde	$\mathbf{e}\mathbf{x}$		49	9

List of Figures

1	Time-frequency grids	4
Δ	Gabor and wavelet grids and basis functions	4
1.1	Gabor's elementary functions $g_{m,n}(t) = e^{2\pi i m b t} g(t - na) \dots$	8
1.2	Short-time Fourier transform of a function	10
1.3	If g is localized at the origin in the time-frequency plane, then $g_{m,n}$ is localized at the point (n_a, m_b) .	11
1.4	A signal, its Fourier transform, and short-time Fourier transform with windows of different duration	13
15	Dual Cabor functions for different oversampling rates	10
1.5	The recovery of the boundary of the left ventricle from two dimensional	13
1.0	ultrasound images	41
1.7	Reconstruction methods used in exploration geophysics.	42
1.8	A priori knowledge about physical properties of potential fields.	43
1.9	Nonuniformly sampled Lena and reconstructions.	45
1.0		10
2.1	A maple leaf and its contour.	50
2.2	The change-in-angle parameterization of the maple leaf in Figure 2.1	51
2.3	Stochastic planar deformation process.	53
2.4	Deformation using different parameters	54
2.5	Calculating the polygonal distance.	56
2.6	Objective function of Gaussian deformations.	57
2.7	Daubechies scaling functions ϕ and mother wavelets ψ with vanishing moments of orders 2 to 5 for ψ .	66
2.8	Coiffets scaling functions ϕ and mother wavelets ψ with vanishing mo-	00
	ments of orders 2 to 5 for both, ϕ and ψ ,	66
2.9	Daubechies wavelet order 8, five-level decomposition of synthetic signal.	67
2.10	The wavelet and wavelet packet decomposition tree.	68
2.11	Wavelet packet basis functions Daubechies order 2, modulations $m \ 0$	
	to 7	69
2.12	Daubechies order 8 wavelet packet decomposition of the synthetic signal.	71
2.13	The wavelet packet best basis decomposition of a change-in-angle pa-	
	rameterized leaf.	74
2.14	The wavelet decomposition of a change-in-angle parameterized leaf	75
2.15	The wavelet decomposition of two types of clover	76
2.16	Projection of x - and y -shift	77
2.17	Projection of rotation and x-shift	78

3.1	Impact of image compression and subsequent Nevatia and Babu edge detection	86
3.2	Impact of image compression and subsequent Burns line extraction.	87
3.3	Impact of image compression and subsequent Canny edge detection.	88
3.4	Impact of image compression and subsequent Marr and Hildreth edge	
-	detection.	89
3.5	Problems associated with subsampling and smoothing constrained to	
	a regular grid.	91
3.6	Deslauriers-Dubuc interpolating scaling function and wavelet of order 4.	93
3.7	Pair of functions biorthogonal to the Deslauriers-Dubuc system shown	
	in Figure 3.6.	93
3.8	Comparison by zooming in on Lena's shoulder.	94
3.9	Image compression system architecture.	95
3.10	Structure of our fingerprint compression system.	98
3.11	Fingerprint compression results	99
3.12	Structure of an r -round product cipher. \ldots \ldots \ldots \ldots \ldots \ldots	102
3.13	The dynamics of the chaotic Kolmogorov flow $T_{(0.25,0.5,0.25)}$	104
3.14	Experiments validating the confusion property.	112
3.15	Experiments validating the diffusion property with respect to small	
	changes in the input data.	112
3.16	Attempt to decrypt an image with an almost correct guess of the pass-	
	phrase used for encryption.	113
4.1	Routines in the main burst processing loop in process_corr	139
4.2	The FORGExplorer Trace window	141
4.3	Results of dependence analysis–Common blocks vs. routines	143
4.4	Impact of halo thickness to data decomposition strategy	144
4.5	Data decomposition and distribution	145
4.6	Double buffering	146
4.7	Gantt chart: CPU Use	147
4.8	SfS performance on SGI cluster, Paragon, and Meiko	148
4.9	Xmatch performance: Speedup, efficiency, and efficacy	148
4.10	Xmatch performance: Scaleup	149
4.11	Overall concept of CDIP.	150
4.12	The Java front end of CDIP.	151
4.13	Example of distributed image processing using a broker: Remote exe-	
	cution of ImageVision via NetSolve.	152
5.1	Framework architecture	158
5.2	Combined approach	160
5.3	(a) High Layer, (b) low Layer	164
5.4	Connections between layers	165
5.5	(a) Input image, (b) correlation values, (c) indices of eye classes, (d)	
	thresholded correlation values.	168

6.1	(a) Pixel grid, (b) neighborhood graph $G(V, E)$, (c) dual face graph $\overline{G}(F \overline{E})$	180
6.2	Typical line images.	181
6.3	Graph encodings for line images.	182
6.4	Line image encoded as a run graph.	182
6.5	Graph representing the neighborhood of the black regions in a detail	-
	from Edvard Munch's <i>The Scream</i> .	185
6.6	Duality of the Voronoi graph and the Delaunay triangulation.	187
6.7	The perpendicular bisector method for constructing the Voronoi graph.	187
6.8	Incorrect approximation of a generalized Voronoi diagram from the	
	centroids of the primitives	188
6.9	Area Voronoi diagram.	190
6.10	Area Voronoi diagram with labeled image elements.	190
6.11	Arrangement and dispersion measurements.	192
6.12	Diagonal exchange operator.	193
6.13	Dual Graph Contraction.	194
6.14	Three cases of Dual Graph Contraction: (a) normal; (b) multiple edges;	
	(c) self-loops	195
6.15	Example of a dual irregular pyramid and decimation parameters	196
6.16	Decomposition of connecting path $CP(v, w)$	197
7.1	(a) A regular pyramid and (b) a particular cell	201
7.2	Example of a multi-resolution image $(2 \times 2/4 \text{ pyramid})$	202
7.3	The reduction step of the $2 \times 2/2$ curve pyramid	205
7.4	Structural noise filtering with the $2 \times 2/2$ binary curve pyramid	206
7.5	Image "Lenna"; final result of the segmentation.	214
7.6	"Adaptive" segmentation.	214
7.7	Segmentation using stochastic pyramid.	215
7.8	Equivalent contraction kernel.	215
7.9	Example of equivalent contraction kernels.	216
7.10	Duality in 3D: pointels, linels, surfels, and voxels	217
7.11	Bending a cell around a hole region X	218
8.1	A schematic diagram outlining the model-recovery procedure	223
8.2	Model recovery and selection	220 227
8.3	Segmentation of noisy range image	221
8.4	Range image segmentation	231
8.5	Results on Hermite polynomial with superimposed basis functions	233
8.6	Demonstration of insensitivity to occlusions using the robust methods	200
0.0	for calculating the coefficients	233
87	Test objects on cluttered background	234
8.8	Two objects occluding each other.	235
0.0		200
9.1	Region based initial structural descriptions	244
9.2	A PAG and two PCGs using different similarity functions	245

9.3	Example CRG tree	246
9.4	Examples of initial structural segmentation.	247
9.5	Example view-sphere tessellation.	248
9.6	Flowchart of the learning and recognition process	249
10.1		
10.1	The interaction and building of a complex data structure from the	961
10.9	The Main Algorithm of Divisive Clustering	201
10.2	The Main Algorithm of Divisive Clustering	202
11.1	The concept of "active fusion" controlling a general image understand-	
	ing framework.	287
11.2	The major modules involved in active object recognition	288
11.3	Exemplary eigenspace representation of the image set of one object	
	used in the experiments.	292
11.4	A sketch plus a picture of the used active vision setup with six degrees	
	of freedom and fiteen different illumination situations	297
11.5	Each of the objects is modeled by a set of 2-D views	298
11.6	Manifolds of all eight objects and distance between the manifolds of	
	two similar objects introduced by a discriminative marker feature	298
11.7	Sample pose sequence actuated by the planning system	299
11.8	Extended database consisting of fifteen objects.	300
11.9	Top half of the view sphere of two-dimensional rotation about the ob-	
	ject (at sphere center).	300
11.10	Results obtained with the whole database of toy objects	302
11.11	The average recognition rate achieved for the two Mercedes cars o_8 and	
	o_9 (with marker) in case of a three-dimensional eigenspace	303
11.12	Closed-loop recognition model: The agent recursively adjusts its dis-	
	crimination behavior from visual feedback	306
11.13	Gaussian basis functions and structural sketch of the RBF mapping	
	from eigenperceptions to posterior probabilities	309
11.14	Illustration of appearance-based object representation with five objects	
	and one degree of freedom	313
11.15	Performance of the learned recognition strategy	313
11.16	Extended database consisting of sixteen objects	314
11.17	Performance statistics	315
11.18	Convergence rate improvement by learning	316
11.19	Sample fusion sequences exhibited on object o_9	316
11.20	Dual representation of object models	318
11.21	Generic object recognition system.	319
11.22	Original image.	320
11.23	Segmentation result with detected regions	320
11.24	Face graph	321
11.25	Examples of geodesic domes at increasing resolution.	324
11.26	Crisp quantification (left) and fuzzy quantification (right) of visibility.	325
11.27	Visibility of the same stool leg (dotted lines) from different viewpoints.	325

11.28	Visibility view spheres for the three different parts composing a simple	200
11.90	$\operatorname{Iamp}_{\mathcal{L}} \dots $	320
11.29	Innuence of fuzzy intersection operators $i_1, i_2, i_3, \ldots, \ldots$	321
11.30	Aggregation with two different object parts configurations	328
11.31	Camera position estimation methods: (a) simple ranking (b) using non- maxima suppression.	329
11.32	The angular displacements are planned as next camera action to reach the desired viewpoint.	329
11.33	Model image and test image both seen from the same viewpoint.	330
11.34	Fuzzy landscape $\mu_{\alpha}(R)$ for $\alpha = 0$.	331
11.35	Fuzzy spatial relations between an object part and its neighbors.	331
11.36	Actual viewing position	332
11.37	Next selected viewing position	333
11.38	Image of the object from the new viewing position.	334
12.1	Satellite images: Differences in geometrical resolution.	338
12.2	LANDSAT TM image of a region near Krems, Austria	339
12.3	Conceptual model of computer vision in remote sensing	340
12.4	Influence of the atmosphere on the relationship between terrain re-	
	flectance ρ and pixel value p	341
12.5	Simultaneous classification and radiometric calibration	345
12.6	Landsat TM image of a region near Mürzzuschlag, Austria, original and radiometrically corrected	346
12.7	Relations between real-world scene its model and multiband image	347
12.8	Example of an image window with optimal subpixel line and respective	011
	error space.	349
12.9	Different discernibility of segments in different bands	349
12.10	Spatial subpixel analysis applied to LANDSAT TM image (only near-	~~~
10.11	infrared band is shown)	350
12.11	Segmented synthetic image	352
12.12	LANDSAT TM (band 4) and vector segmentation results	353
12.13	Spectral reflectance curves of typical land-surface objects	354
12.14	Classified Landsat TM scene.	355
12.15	Regions and their shape attributes	356
12.16	Matching of line segments	357
13.1	The sensor coordinate system.	373
13.2	Image acquisition principle of optical line scanners from satellites or	975
199	all later Transformation	010 977
10.0 10.4	Consistent of the common two common stars and d	0// 001
13.4 19 5	Geometry of the common two-camera stereo model	381
13.5	A bundle block configuration.	382
13.6	A photogrammetric block for the generation of a virtual reality model of an architectural object.	384
13.7	Geometry of digital elevation models (DEM). $\ldots \ldots \ldots \ldots$	386

13.8	A high-quality 2.5-dimensional DEM of a topographical surface con-	000
10.0	taining breaklines.	386
13.9	A perspective view of a 3D triangulation with constraints at the ridge.	387
13.10	Object representation methods	388
13.11	Boundary representation.	389
13.12	CSG: The model is represented by its parameters w, l, h_1 , and h_2	390
13.13	A hybrid representation: Boundary representation for houses and a	
	high-quality DEM for the terrain	391
14.1	Matching versus object reconstruction.	394
14.2	Cross correlation.	396
14.3	Subpixel estimation.	396
14.4	Least squares matching	398
14.5	Original image.	401
14.6	Left: W image. Right: Q image	401
14.7	Classified image and extracted points and lines	402
14.8	Delaunay triangulation.	403
14.9	The principle of feature-based matching	404
14.10	Feature vector matching principle.	408
14.11	Hierarchical feature vector matching from pyramid level N to $N-1.$.	410
15.1	Large-scale aerial image.	412
15.2	A small section of an aerial image	413
15.2	Targets in photogrammetry	415
15.4	Location of circular symmetric targets by intersection of gradients	417
15.5	Vector-raster conversion for target models	418
15.6	Rotation of the template from Figure 15.5 by 30°	419
15.0 15.7	One of the targets	419
15.8	One of the images taken from the door	421
15.0	Image configuration	421
15.0	A shaded view of the differential model	121
15.10 15.11	Two homologous image patches used for small-scale topographic map-	144
	ping	422
15.12	Two homologous image patches from a large-scale photo flight	423
15.13	Three images for the reconstruction of a car's door	424
15.14	A flowchart of hierarchical object reconstruction.	425
15.15	A flowchart of object reconstruction at pyramid level <i>i</i>	426
15.16	Generation and evaluation of correspondence hypotheses	427
15.17	Surface models for DEM generation.	431
15.18	Surface models for building reconstruction.	433
15.19	Semiautomatic building extraction.	435
15.20	Semiautomatic building extraction: Features extracted in the region of	
	interest.	436
16.1	Stereo locus reconstruction.	441
		-

16.2	Combination of surface patches	442
16.3	3D inspection database.	443
16.4	Cavity inspection scenario	444
16.5	Row disparity image for plane.	445
16.6	Row disparity images and locus reconstruction results for cylinder	446
16.7	1024×1024 pixel stereo partners, part of SPOT $TADAT$ test site	447
16.8	Contour plots of TADAT test area DEMs	449
16.9	Left and right stereo partner and row disparity image of a concrete	
	surface.	451
16.10	Result of merging four stereo reconstructions	451
16.11	Path planning task	456
16.12	Coarse-to-fine tracking using HFVM results from higher pyramid levels.	457
16.13	Software components currently used for simulations	460
16.14	Every fifth stereo pair is used for the reconstruction of a new DEM. $\ .$	461
16.15	Four subsequent stereo pairs and HFVM matching result of first stereo	
	pair	462
16.16	Ortho image merged from nine stereo configurations	463
16.17	Four consecutive image frames and landmark tracking paths	463
16.18	Camera trajectory as calculated on the basis of landmark tracking	464
17.1	Theodolite measurement system consisting of two theodolites	466
17.2	Optical path of a video theodolite.	467
17.3	A simplified concept of a videometric imaging system.	468
17.4	CCD camera combined with the telescope of a theodolite	469
17.5	Diagram of videometric system of the theodolites.	471
17.6	Facade original; after applying histogram equalization and Sobel-operator	;
	after applying thresholding.	472
17.7	Standard deviation of the horizontal direction	473
17.8	Tripod original; and after applying image processing	474
17.9	Diagram of the automatic measurement system	475
17.10	The tracking procedure of the slave theodolite.	476
17.11	The tracking procedure by using the epipolar line.	478
17.12	Lines intersect the surface of an object	479
17.13	Principle of the measurements with laser and video theodolite	480
17.14	An application of scanning complex surfaces with the grid-line method.	481
17.15	The principle of a feedback control system.	482
17.16	Scan of object with overlapping images.	483
17.17	Representation of colors in the color cube	484
17.18	Intensity I of a scene	485
17.19	Saturation S of a scene	485
17.20	Hue H of a scene	486
17.21	Automatic deformation monitoring of frameworks as an example of a	
	main goal for future research	487

List of Tables

1	Overview of the Book Parts	viii
3.1	Impact of Image Compression and Subsequent Nevatia and Babu Edge	
	Detection	101
3.2	Impact of Image Compression and Subsequent Burns Line Extraction	101
$3.3 \\ 3.4$	Impact of Image Compression and Subsequent Canny Edge Detection Impact of Image Compression and Subsequent Marr and Hildreth Edge	101
	Detection	101
3.5	Rate/Distortion Comparison to the JPEG Standard	101
3.6	Comparison to the FBI WSQ Standard	101
3.7	Rate/Distortion Comparison to the EZW Coder	102
3.8	Number of Permissible Keys for Selected Values of n	107
3.9	χ^2 -Testing Checking the Confusion Properties of Permutations Based	
	on Discrete Chaotic Kolmogorov Flows	107
5.1	Eye Detection Results.	169
7.1	Image qualities at different resolutions	199
11.1	Probabilities for object hypotheses in an exemplary run	299
11.2	Belief assignment after fusing all object hypotheses	323
12.1	Comparison of spectral parameters of segmented objects	351
12.2	Comparison of spatial parameters of segmented objects for vector and	
	raster segmentation.	351
14.1	FVM feature set.	407
15.1	Empirical accuracy measures for the check points	420
10.1		4.40
16.1	1024×1024 pixels part of SPOT <i>TADAT</i> test site	448
16.2	Comparison between HFVM and cross correlation.	448
16.3	Processing time for the simulation software modules	459