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Abstract. Constructive metaheuristics explore a tree of constructive
decisions, the topology of which is determined by the way solutions are
represented and constructed. Some solution representations allow par-
ticular solutions to be reached on a greater number of paths in this
construction tree than other solutions, which can introduce a bias to the
search. A bias can also be introduced by the topology of the construc-
tion tree. This is particularly the case in problems where certain solution
representations are infeasible. This paper presents an examination of the
mechanisms that determine the topologies of construction trees and the
implications for ant colony optimisation. The results provide insights into
why certain assignment orders perform better in problems such as the
quadratic and generalised assignment problems, in terms of both solution
quality and avoiding infeasible solutions.

1 Introduction

An implicit assumption when using any metaheuristic is that it offers relatively
unbiased access to all parts of the solution space, provided that deliberate bias
towards “good” solutions is removed. That is, if search decisions are made in an
undirected fashion (i.e., randomly) then each solution has approximately equal
probability of being found. Of course, all common metaheuristics are biased
towards solutions that appear promising. The neighbourhood in which construc-
tive metaheuristics search forms a tree of constructive decisions, or construction
tree. The nature of this construction tree can introduce a bias to the search.
Constructive metaheuristics such as Ant Colony Optimisation (ACO), which
use previously generated solutions to learn appropriate features to include in
future solutions, operate essentially randomly during the early stages of a run.
Thus, any bias that affects the undirected construction of solutions may reduce
the effectiveness of the learning mechanism employed.

Research is this area is largely restricted to the work of Blum [2] (previously
published in Blum and Sampels [3, 4] and Blum, Sampels and Zlochin [5]). These
studies have provided an investigation of model bias, or the bias introduced by
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the interaction between a particular pheromone representation and problem con-
straints. The focus on how frequently particular pheromone values are updated
for a given problem–pheromone combination does not fully take into account un-
derlying biases in the constructive approach that may unfairly advantage some
solutions.

This paper investigates how a chosen solution representation and construc-
tion mechanism combine to bias constructive metaheuristics. The interaction
between these biases and different pheromone representations is not discussed,
although these issues are addressed by Montgomery [12]. Thus, it is largely com-
plementary to the work of Blum [2]. Section 2 considers the underlying sources
of bias that act on a constructive heuristic, while Section 3 summarises the ex-
perimental work undertaken to investigate this issue. Section 4 discusses some
implications of these findings for the ACO approach.

2 Constructive Metaheuristics and Bias

Constructive metaheuristics take an empty solution (∅) and successively add
solution components to build a complete, typically feasible, solution to the prob-
lem at hand. The nature of the solution components depends on the problem
specification. For instance, in the travelling salesman problem (TSP), solution
components are typically cities (see e.g., [8]), which are successively added to
∅ to produce a complete solution (i.e., a permutation of the cities). Hence,
these metaheuristics explore a tree of constructive decisions, or construction
tree, where the root corresponds to ∅ and leaves correspond to complete (or
infeasible partial) solutions. At the heart of such metaheuristics is the construc-
tive algorithm (hereafter denoted by A) used to define solution components and
the mapping from sequences of solution components (i.e., paths in the construc-
tion tree) to solutions. The construction tree defined by A is denoted by TA. A
distinction must be made between a sequence of solution components s and the
solution to which it corresponds s = XA(s), where XA is a mapping from se-
quences to solutions. The set of solutions corresponding to a solution is denoted
by X−1

A (s).
Five common combinatorial optimisation problems are used throughout this

paper to illustrate bias in constructive metaheuristics: TSP [8], subset prob-
lems such as the multiple knapsack problem (MKP) [9], quadratic assignment
(QAP) [11], generalised assignment (GAP) [10], and permutation scheduling
problems such as the job and open-shop scheduling problems (JSP and OSP
respectively) [3]. The constructive algorithm used in each is that used most
commonly in the respective ACO algorithms for these problems.

When constructive decisions are undirected two primary sources of bias may
be identified: representation bias and construction bias. The term undirected is
used to indicate that the constructive algorithm in question makes each con-
structive decision probabilistically using a uniform random distribution over the
available choices at each step. However, it is assumed that constraints are still
enforced such that at each step no options are available that would make the
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Fig. 1. Adapted from Blum and Sampels [4]. a) A small JSP instance; directed arcs
indicate required order of operations within each job, dashed lines indicate operations
that require the same machine. b) The three solutions to this problem described in
terms of the relative order of operations that require the same machine, where i ≺ j
indicates i is processed before j. c) The six possible solution representations an ACO
algorithm may produce and the solutions to which they correspond

partial solution infeasible. All constructive algorithms discussed in this section
are considered to be undirected.

The nature of the problem representation used may allow distinct solutions
to be represented in multiple ways. In many problems, the number of represen-
tations per solution is not uniformly distributed. Consequently, in ACO, some
solutions will be overrepresented in the representation space in which ants search.
For instance, solutions to many machine scheduling problems such as the JSP
and OSP are represented as permutations of the operations to be scheduled. As
solutions are uniquely described in terms of the relative order of operations that
require the same machine (or that are part of the same job in the OSP), some
operations may be exchanged in a permutation without changing the solution
represented. Consider the JSP depicted in Fig. 1. There are three distinct solu-
tions to this problem, yet six feasible representations. Of these, four correspond
to solution s2, which accordingly appears to have a 66 2

3% probability of being
discovered by an undirected search, twice that expected if each distinct solution
could be found with equal probability.

Definition 1. A constructive process A applied to a given combinatorial opti-
misation problem is said to have a representation bias if there exist two solutions
s1 and s2 such that |X−1

A (s1)| 6= |X−1
A (s2)|.

Fig. 2 depicts the possible paths an ant may take to produce feasible solutions
to the JSP described in Fig. 1 when representing solutions as permutations of the
operations. The probability of choosing a particular component at a given node
in the tree is inversely proportional to the number of alternative components
at that node. If there are no infeasible sequences defined by A, then the degree
of branching at each level in the tree will be uniform within that level. This is
the case, for example, in the TSP and QAP, where all permutations of cities or
facilities represent feasible solutions. In problems where some solution represen-
tations correspond to infeasible solutions, the degree of branching within each
level will not be uniform, as in the JSP. Consequently, solutions found on paths
with less branching are more likely to be discovered than those on paths with
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Fig. 2. Construction tree for small JSP instance (see Fig. 1 for problem description).
Arcs are labelled with the probability of their being traversed given an undirected
construction process. End points are labelled with the solution represented by that
path. Aggregate solution probabilities appear on the right

more branching. Hence, decisions that push the solution closer to the bound-
aries of feasible space lead to solution representations with a higher probability
of being found. This constitutes a construction bias.

Definition 2. A construction tree TA has a construction bias if there exist two
nodes in TA such that their heights are equal yet their degrees are not equal.

The two biases interact. For instance, in the JSP depicted in Fig. 1, although
solution s2 has 66 2

3% of all solution representations, Fig. 2 shows it has only
a 50% probability of being found. This is because the distribution of paths in
the tree corresponding to each representation determines the actual likelihood
of constructing the solutions represented.

An interesting form of construction bias exists in problems where sequences
are of variable length—shorter paths typically have fewer branching points and
consequently have an elevated probability of being traversed. For example, in
subset problems such as the MKP, feasible solutions are of varying lengths.
Analysis of the construction tree for small instances confirms that a sequence’s
probability is inversely proportional to its length. However, such problems also
have a representation bias (assuming sequences are built from the individual
items that make up the subset) where each solution of size k is represented by
k! sequences in the construction tree. Further analysis reveals that the represen-
tation bias in these problems will always dominate.

In highly constrained problems such as the GAP partial sequences may be
constructed that cannot be completed to produce a feasible solution. In the
absence of backtracking these must then be abandoned.3 Given such infeasible
partial solutions are by definition found on shorter paths than feasible solutions,
they have an elevated probability of being discovered. Furthermore, the more
constrained a problem, the shorter will be the paths that lead to infeasible so-
lutions. This issue is of particular interest in assignment problems, where the
3 Some algorithms admit infeasible solutions, often relying on an accompanying local

search to transform these into feasible solutions (e.g., Lourenço and Serra [10]).



nature of the constructive algorithm used can reduce the probability of reaching
infeasible solutions, an issue discussed in Section 2.2.

2.1 Assignment Problems and Assignment Order

In problems involving assignment of items to groups (i.e., facilities to locations
in the QAP, jobs to agents in the GAP) there exists a choice over the order in
which items are assigned. While the construction tree is defined by the construc-
tive algorithm used to solve the TSP, MKP and JSP, in assignment problems
the choice of assignment order partly determines the topology of the tree. The
solutions represented remain unchanged. Solutions that share much of their re-
spective paths in the construction tree under one assignment order may diverge
much earlier under another. In effect, the assignment order determines the con-
structive neighbourhood in which solutions are found.

In problems with no representation or construction bias, such as the QAP,
different assignment orders will not alter solutions’ respective probabilities. How-
ever, they will change which solutions are neighbours (in the construction tree)
and hence may produce differing results in directed algorithms such as ACO.
ACO algorithms for the QAP have taken a variety of approaches to determining
assignment order, including selecting items randomly [15] and predetermining
an order such that facilities with high flow requirements are assigned early with
the intention they are assigned relatively central locations [11].

2.2 Assignment Order and Infeasible Space

In problems which do have infeasible solution representations, different assign-
ment orders not only redistribute solutions in the construction tree, but may also
alter their respective probabilities. Decisions that take partial solutions closer to
infeasibility increase the probability of the (possibly infeasible) solutions to which
they correspond. Consequently, the earlier such decisions are made, the greater
the increase in probability. By altering the assignment order such decisions may
be moved to any level in the construction tree, thereby altering their respective
solutions’ probabilities. In problems where feasible solutions are not guaranteed,
choosing an appropriate assignment order is thus a significant issue.

A good construction tree topology for these problems is one in which the
probability of discovering a feasible solution is maximised. However, finding an
assignment order that produces such a tree is non-trivial. A static order fixes
the topology of the construction tree and so also fixes the probability of infea-
sible representations. In contrast, a dynamic random order allows a range of
construction trees to be used at various times in the algorithm and will likely
be superior to an arbitrary static order. More commonly, assignment orders are
chosen heuristically, such as in one ACO algorithm for the GAP developed by
Randall [13].

Assigning highly constrained items early will likely produce trees with shorter
paths leading to infeasible solutions, which consequently have an elevated prob-
ability relative to the proportion of paths they represent. However, using such



an assignment order the total number of paths leading to infeasible solutions is
reduced, as decisions that lead to infeasibility are consolidated nearer the root
of the construction tree. Although a small number of infeasible paths does not
guarantee a high probability of reaching a feasible solution our empirical studies
show that trees with fewer infeasible paths typically have a higher probability of
reaching a feasible solution than those with more infeasible paths. Indeed, a com-
monly used static assignment order assigns highly constrained items (e.g., jobs
with high resource requirements in the GAP) early [10, 14]. Empirical testing
reveals that simple heuristics for determining a static assignment order are often
not the best. Accordingly, Costa and Hertz [6] consider a number of static and
dynamic assignment orders for the graph colouring problem based on heuristics
related to the principle of assigning more highly constrained items early.

3 Experimental Investigation

This section presents a summary of our empirical investigation of bias in five com-
mon combinatorial problems: Symmetric TSP [8], MKP [9], group-shop schedul-
ing problem (GSP) (a generalisation of the JSP and OSP) [3], QAP [11] and
GAP [10].4

Complete exploration of the construction trees for small instances was per-
formed, collecting data concerning the existing distribution of costs in each in-
stance and the expected probability of solutions given an undirected constructive
algorithm (referred to as Aundir).5 Results were confirmed by comparing them
against the frequency with which solutions were found by an implementation of
Aundir. The two analyses confirmed that the TSP and QAP have no inherent
bias. In the MKP, only on the most trivial instance studied did a small solution
show an elevated bias over others, further suggesting that in this problem the
representation bias dominates.

The GSP and JSP show a mixture of representation and construction bi-
ases, with further analysis revealing that high probability sequences correspond
to under-represented solutions and vice versa. This is an interesting property
of these problems when solutions are represented as permutations of the opera-
tions, whereby those sequences with the highest probability are also those that
are least able to be perturbed without changing the solution represented (see
Montgomery [12] for full details).

Large problem instances were studied for all problems except the TSP using
Aundir.6 On these instances, the effects of any underlying bias could not be
observed, as Aundir can only take a sample from the very large space of sequences
and solutions to these instances.

4 Full results are available on request from the corresponding author.
5 Small instances consisted of up to 14 cities in the TSP, 20 items in the MKP, 11

operations in GSP, 12 locations in the QAP, and 5 agents, 20 jobs in the GAP.
6 Large instances consisted of up to 100 items in the MKP, 225 operations in GSP,

256 locations in the QAP, and 10 agents, 60 jobs in the GAP.



3.1 Assignment Order in the QAP and GAP

Given that the QAP has no inherent bias, changing the assignment order should
have no impact on the frequency with which different solutions are found using
Aundir. Applying Aundir with a range of assignment orders to various QAP
instances confirmed this.

In contrast, construction trees for all but the smallest contrived GAP in-
stances contain infeasible partial solutions, the number and distribution of which
is determined by the assignment order. Although the effects of representation
and construction bias are not evident in large MKP and GSP instances, the
effects of different assignment orders were observed in large GAP instances.
Analysis was made of the construction trees for every static assignment order
for a trivial instance with 3 agents and 8 jobs (adapted from a 5 agent, 15 job
instance from the gap1 problem set, available from the OR-Library [1]). Across
most assignment orders, the probability of producing infeasible solutions was el-
evated above what would be expected given the total number of infeasible paths
in the construction tree, in some cases by more than 35%. This is in line with
predictions made in Section 2.2. The probability of reaching a feasible solution
when the number of paths leading to infeasible solutions is minimal was found
to be better than the probability under the worst assignment order (13% ver-
sus 3%). However, the highest probability (34%) was shown under an another
assignment order in which the number of such paths was low, but not minimal.
Under this assignment order, the probability of producing infeasible solutions
was below what would be expected given their number. Furthermore, the best
assignment order did not have jobs in non-increasing order of constrainedness,
which had a 16% probability of producing feasible solutions.

Sampling of randomly generated static assignment orders for instances from
the gap1 (5 agents, 15 jobs) and gap2 (5 agents, 20 jobs) problem sets [1] re-
veals that very few assignment orders can produce a relatively high probability
of finding feasible solutions. Comparison with the construction tree produced
by a static assignment order in which jobs appear in non-increasing order of
constrainedness indicates that it typically produces a higher probability of find-
ing feasible solutions than 90% of alternative static orders for gap1 instances
(although on one instance it was better than only 24% of sampled orders) and
80% of some gap2 instances. Interestingly, several different dynamic assignment
orders based on the same heuristic of assigning more highly constrained jobs
early did not produce a higher probability of feasibile solutions in general.

4 Implications for ACO

The nature of the constructive process is such that solution representation and
problem constraints may introduce a bias into any search process that uses
it. Constructive metaheuristics such as ACO use heuristic information and ac-
cumulated pheromone information to adapt their searches towards promising
solutions. Additionally, almost all current ACO algorithms use a local search



procedure to improve solutions produced by the ACO algorithm [7]. Each of
these serves to counteract any underlying bias in the constructive process.

In assignment problems such as the QAP and GAP, the assignment order
can alter the distribution of solutions within the construction tree. This may
impact on the performance of ACO.

Infeasible space is a problem for any metaheuristic, but may be particularly so
for constructive techniques as infeasible solutions individually have an elevated
probability of being found. In problems involving assignment, the assignment
order can alter the number and distribution of infeasible solutions in the con-
struction tree. Heuristically determined static assignment orders can reduce the
probability of reaching an infeasible solution, but may not necessarily produce
the best construction tree.
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