Skip to main content
Log in

Cartesian differential invariants in scale-space

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a formalism for studying local image structure in a systematic, coordinate-independent, and robust way, based on scale-space theory, tensor calculus, and the theory of invariants. We concentrate ondifferential invariants. The formalism is of general applicability to the analysis of grey-tone images of various modalities, defined on aD-dimensional spatial domain.

We propose a “diagrammar” of differential invariants and tensors, i.e., a diagrammatic representation of image derivatives in scale-space together with a set of simple rules for representing meaningful local image properties. All local image properties on a given level of inner scale can be represented in terms of such diagrams, and, vice versa, all diagrams represent coordinate-independent combinations of image derivatives, i.e., true image properties.

We presentcomplete andirreducible sets of (nonpolynomial) differential invariants appropriate for the description of local image structure up to any desired order. Any differential invariant can be expressed in terms ofpolynomial invariants, pictorially represented by closed diagrams. Here we consider a complete, irreducible set of polynomial invariants up to second order (inclusive).

Examples of differential invariants up to fourth order (inclusive), calculated for synthetic, noiseperturbed, 2-dimensional test images, are included to illustrate the main theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cartan, “Les problèmes d'équivalence,” inOeuvres Complètes, vol. 2, pp. 1311–1334, Gauthiers-Villars: Paris, 1952.

    Google Scholar 

  2. P.J. Olver, “Invariant theory, equivalence problems and the calculus of variations,” inInvariant Theory and Tableaux, Springer-Verlag: New York, 1988.

    Google Scholar 

  3. H. Weyl,The Classical Groups, Their Invariants and Representations, Princeton University Press: Princeton, NJ, 1946.

    Google Scholar 

  4. A. Clebsch,Theorie der Binären Algebraischen Formen, Verlag von Teubner: Leipzig, 1872.

    Google Scholar 

  5. J.A. Dieudoné and J.B. Carrell,Invariant Theory — Old and New, Academic Press: New York, 1971.

    Google Scholar 

  6. P. Gordan,Vorlesungen über Invariantentheorie, Verlag von Teubner: Leipzig, 1885–1887.

    Google Scholar 

  7. R. Weitzenböck,Invariantentheorie, Noordhoff: Groningen, The Netherlands, 1923.

    Google Scholar 

  8. B. Gurevich,Foundations of the Theory of Algebraic Invariants Noordhoff, Groningen, 1979.

    Google Scholar 

  9. J.H. Grace and A. Young,Algebra of Invariants, Chelsea: New York, 1965.

    Google Scholar 

  10. I. Schur,Vorlesungen über Invariantentheorie, Noordhoff: Groningen, The Netherlands, 1968.

    Google Scholar 

  11. D. Hilbert, “Ueber einen algemeinen Gesichtspunkt fur Invarianten-theoretesische Untersuchungen im binaren Formengebiete,”Math. Ann., vol. 28, pp. 381–446, 1887.

    Google Scholar 

  12. D. Hilbert, “Ueber die Theorie der algebraischen Formen,”Math. Ann., vol. 36, pp. 473–534, 1890.

    Google Scholar 

  13. F. Klein, “Erlanger Programm,”Math. Ann., vol. 43, pp. 63–100, 1893.

    Google Scholar 

  14. P. Gordan, “Ueber die Bildung der Resultante zweier Gleichungen,”Math. Ann., vol. 50, pp. 355–414, 1871.

    Google Scholar 

  15. H. Weber,Lehrbuch der Algebra, vol. I–III, Chelsea: New York, 1894.

    Google Scholar 

  16. P. Gordan, “Die Discriminate der Form 7. Grades,”Math. Ann., vol. 31, pp. 566–600, 1888.

    Google Scholar 

  17. M.R. Perrin, “Subdiscriminant,”Mathematique, vol. 4, pp. 129–167, 1894.

    Google Scholar 

  18. H.W. Turnbull,Theory of Determinants, Matrices, and Invariants, Dover: New York, 1960.

    Google Scholar 

  19. B.L. van der Waerden,Moderne Algebra, vol. I–II, Springer-Verlag: Berlin, 1940.

    Google Scholar 

  20. J.P.S. Kung and G.C. Rota, “The theory of binary forms,”Bull. Amer. Math. Soc., vol. 10, pp. 27–85, 1984.

    Google Scholar 

  21. D. Hilbert, “Ueber die vollen Invariantensystemen,”Math. Ann. vol. 42, pp. 313–373, 1893.

    Google Scholar 

  22. D. Stanton, ed.,Invariant Theory and Tableaux The IMA Volumes in Mathematics and Its Applications, Springer-Verlag: New York, 1988.

    Google Scholar 

  23. D.E. Littlewood, “Invariant theory, tensors and group characters,”Philos. Trans. Roy. Soc. London Ser. A., vol. 239, no. 807, pp. 305–356, 1944.

    Google Scholar 

  24. D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell, “Invariant descriptors for 3-D object recognition and pose,”IEEE Trans. Patt. Anal. Mach. Intell., vol. 13, pp. 971–991, 1991.

    Google Scholar 

  25. L. Van Gool, M.H. Brill, E.B. Barrett, T. Moons, and E. Pauwels, “Semi-differential invariants for nonplanar curves,” inApplications of Invariance in Vision, J. Mundy and A. Zisserman, eds., pp. 293–309, MIT Press: Cambridge, MA, 1992.

    Google Scholar 

  26. L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever, “General intensity transformations and second order invariants,” inTheory and Applications of Image Analysis, Series in Machine Perception and Artificial Intelligence vol. 2., P.Johansen and S. Olsen, eds. World Scientific: Singapore, 1992, pp. 22–29.

    Google Scholar 

  27. A. Witkin, “Scale space filtering,” inProc. International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983, pp. 1019–1023.

  28. J.J. Koenderink, “The structure of images,”Biol. Cybernet., vol. 50, pp. 363–370, 1984.

    Google Scholar 

  29. T. Lindeberg, “Scale-space for discrete signals,”IEEE Trans. Patt. Anal. Mach. Intell. vol. 12, pp. 234–245, 1990.

    Google Scholar 

  30. L.M.J. Florack, B.M. ter Haar J. Romeny, J.J. Koenderink, and M.A. Viergever, “Scale and the differential structure of images,”Image Vis. Comput., vol. 10, pp. 376–388, 1992; also in Computer Vision Research Group, Utrecht, The Netherlands, 3DCV Tech. Report 91-30, 1991.

    Google Scholar 

  31. P.J. Olver,Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107, Springer-Verlag: Berlin, 1986.

    Google Scholar 

  32. T. Poston and I. Steward,Catastrophe Theory and Its Applications, Pitman: London, 1978.

    Google Scholar 

  33. J.J. Koenderink and A.J. van Doorn, “Receptive field families,”Biol, Cybernet., vol. 63, pp. 291–298, 1990.

    Google Scholar 

  34. B.M. ter Haar Romeny, L.M.J. Florack, J.J. Koenderink, and M.A. Viergever, “Scale-space: its natural operators and differential invariants,” inInformation Processing in Medical Imaging, Lecture Notes in Computer Science, vol. 511, A.C.F. Colchester and D.J. Hawkes, eds., Springer-Verlag: Berlin, 1991, pp. 239–255.

    Google Scholar 

  35. J. Blom, B.M. ter Haar Romeny, A. Bel, and J.J. Koenderink, “Spatial derivatives and the propagation of noise in gaussian scale-space,”J. Vis. Comm. Image Repr., vol. 4, pp. 1–13, March 1993; also in Computer Vision Research Group, Utrecht, The Netherlands, 3DCV Tech. Report 91-03, 1991.

    Google Scholar 

  36. J.J. Koenderink, “The brain a geometry engine,”Psychol. Res., vol. 52, pp. 122–127, 1990.

    Google Scholar 

  37. L. Schwartz,Théorie des Distributions, Actualités scientifiques et. industrielles, vol., I, II, Publications de l'Institut de Mathematique de l'Université de Strasbourg, Hermann: Paris, 1950, 1951.

    Google Scholar 

  38. L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever, “Images: regular tempered distributions,” to appear.

  39. J. Canny, “A computational approach to edge detection,”IEEE Trans. Patt. Anal. Mach. Intell., vol. 8, pp. 679–698, 1986.

    Google Scholar 

  40. J.J. Clark, “Authenticating edges produced by zerocrossing algorithms,”IEEE Trans. Patt. Anal. Mach. Intell. vol. 11, pp. 43–57, 1989.

    Google Scholar 

  41. J. Blom,Topological and geometrical aspects of image structure, Ph.D., thesis, University of Utrecht, The Netherlands, 1992.

    Google Scholar 

  42. M.A. Piech, “Decomposing the Laplacian,”IEEE Trans. Patt. Anal. Mach. Intell., vol. 12, pp. 830–831, 1990.

    Google Scholar 

  43. A.H. Salden, L.M.J. Florack, and B.M. ter Haar Romeny, “Differential geometric description of 3D scalar images,” Computer Vision Research Group, Utrecht, The Netherlands, 3DCV, Tech. Report 91-23, 1991.

    Google Scholar 

  44. L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever, “General intensity transformations,” inProc. 7th Scandinavian Conference on Image Analysis, P. Johansen and S. Olsen, eds., Aalborg, Denmark K, August 1991, pp. 338–345; also in Computer Vision Research Group Utrecht, The Netherlands, 3DCV, Tech. Report, 90-20, 1990.

    Google Scholar 

  45. P.A. van den Elsen,Multimodality matching of brain images, Ph.D. thesis, University of Utrecht, The Netherlands, 1993.

    Google Scholar 

  46. J.B.A. Maintz, P.A. van den Elsen, and M.A. Viergever, “Extraction of invariant ridgelike features for CT and MRI brain image matching,” inProc. Visual Image Processing, Utrecht, The Netherlands, June, 2–4, 1993.

  47. D.F. Lawden,An Introduction to Tensor Calculus and Relativity, Spottiswoode Ballantyne, 1962.

  48. D.C. Kay,Tensor Calculus, Schaum's Outline Series, McGraw-Hill Book Company: New York, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florack, L.M.J., Ter Haar Romeny, B.M., Koenderink, J.J. et al. Cartesian differential invariants in scale-space. J Math Imaging Vis 3, 327–348 (1993). https://doi.org/10.1007/BF01664793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01664793

Key words

Navigation