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Abstract: In this paper, we present a new learning method using prior information for three-
layer neural networks. Usually when neural networks are used for identification of systems, all of 
their weights are trained independently, without considering their inter-relation of weights values. 
Thus the training results are not usually good. The reason for this is that each parameter has 
its influence on others during the learning. To overcome this problem, first, we give exact mathe-
matical equation that describes the relation between weight values given a set of data conveying 

prior information. Then we present a new learning method that trains the part of the weights 
and calculates the others by using these exact mathematical equations. This method often keeps 
a priori given mathematical structure exactly during the learning, in other words, training is done 
so that the network follows predetermined trajectory. Numerical computer simulation results are 

provided to support the present approaches. 

Keywords: Prior information, Neural network learning, Part parameter learning, Exact math-
ematical structure

 1. Introduction 

 ARTIFICIAL neural networks(ANN's) have been 
used widely in many application areas in recent 

years. Most applications use feedforward ANN's 
and error backpropagation (EBP) training algo-
rithm. There are three questions of great concern in 
the practical training of backpropagation networks, 
of which one to find training algorithms with fast 

convergence. Another vital question arises from the 
existence of local minima of backpropagation error 
surfaces. 3rd question is that relation of structure 
of neural networks with objective plant is not clear. 
Many promising results are reported 1)5), but all 

these training algorithm in general assume that ob-

jective plant is often identified as a black-box, so 
it is difficult to use prior information in learning. 
Recently, new neural networks using prior informa-
tion are many reported too 6)7)8)10)11)12)14). In these 

literatures,many approaches have been proposed to 
incorporate prior information,which can be roughly 

grouped into two kinds. The first one is the methods 
to incorporate prior information in neural network 
constructions. Bayesian neural network is one of 
the typical examples, which is based on a Bayesian 

estimation using information theory. Another typi-
cal example is fuzzy neural network which expresses 

prior information in IF-THEN rules and use them 
in the networks. In such approaches, it is difficult to
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incorporate prior information that is described by a 

set of explicit mathematical equations. The second 

one is the methods where prior information of neural 

networks are considered as a restriction that is usu-

ally added to the objective function 16). However, 

this kind of method does not make clear the rela-

tion between prior information and neural network 

weights. In this paper, we present a new method 

for three-layered neural network learning, in which 

not only the prior information expressed in a set of 

explicit mathematical equations are used,but also 

the relation between prior information and weights 

of neural networks is made clear. 

   Usually when neural networks are used as mod-

els for system identification, all weights in the net-

work are trained together, without considering the 

relations among them. Conventional learning al-

gorithms work as parallel calculations in sonic lev-
els. However, the parallel calculation capability 

may become weak when the parameters in the net-

work have leeway for identifying certain system. 

.This leads to a poor training effectiveness because 

each parameter has its influence on others during 

the learning. For example, in the Steepest-descent 

method, each variable is not adjusted along coor-

dinated fashion but along its own Steepest-descent 

direction. Furthermore, most of existing learning 

methods are based on local information in their 

learnings, so that they are easily to be stuck at a lo-

cal minimum. Considering the information concern-

ing overall situation in the learning may be a good 

way to solve the problem. For example, if we know



 some desired results of trained neural networks, we 
may use this information to improve the learning ef-
ficiency.Therefore, in this sense, conventional learn-
ing based on steepest-descent method use the local 

optimization technique rather than the global op-
timization technique. We here will study in two 
cases. One is that partial differentiation of teach-
ing function with respect to inputs are assumed to 

be known. The other is that partial differentiation 
of teaching function with respect to inputs are as-
sumed to be unknown. For a three-layered neural 
network, we found that weights of second-layer can 
be expressed by weights of first-layer in exact math-
ematical equations under certain conditions. We 

will present a new learning method based on the 
use of these exact mathematical equations, in which 

parts of parameter are learned from data, while oth-
ers are calculated by using those exact mathemati-
cal equations. The proposed method not only keeps 

prior exact mathematical structure which include 
the information concerning overall situation in a co-
ordinated fashion, but also uses local information 
such as error back-propagation (EBP) etc. in its 
learning. That is, the training is carried out based 

on a given trajectory. It can also make the mutual 
influence among the weights small and thus speed 
up the learning. 

The remainder of paper is organized as follows. In 
Section 2, we will introduce in detail that a relation 

of parameters in neural networks, and give a exact 
mathematical equations. In Section 3, we propose 
a new learning method which use prior information 
of neural networks. In Section 4, simulation results 
are presented by this new method, the conclusions 
are given iIl Section 5. 

 2. Relation between Parameters of 
    Neural Networks and Teaching 

    Function 

  In this section, we will study relation among the 

weights in two cases. One case is that partial deriva-
tive of teaching function f (x i , x2, • • • , x,,,) for a vari-
ate xi., i = 1, 2, • • • , n is known, the other is to the 
contrary, the derivative is not known. In the first 
case, we study the relation between the weights from 

the first layer to the second layer and the weights 
from the second layer to the third layer and the re-
lation among the weights from the first layer to the 
second layer. In the second case, we give relation 
of weights by using neural network outputs at some 
special points. 

   As any mapping of n-input-one-output can be

approximated by a neural network with three lay- 
ers 15for given teaching function f (xi, x2, • • , xn), 
there is an integer m which satisfies the follows ap-

proximation equation with very small approximate 
error. 

In 

.f(x1,X2,...,x77) = EakCe(WTX +9k) (1) 
k=1 

where ak and WT are weights from the second 
layer to the third layer and weights from the 

first layer to the second layer respectively, X = 

(xi, x2, x3, • • • , x,7l) E Rn is input vector of the neu-
ral networks. Let 0k = 1, cp is node function such 
as sigmoid function. We assume f (xi, x2, • • , xn) E 

C', and let some coefficients of each term of Tay-
lor expansion of both sides of (1) equal at xi = 
x,2,•• ,x,,,,=0,wehave 

7n 

1(0,0,...,0) _ Eakcp(1) 
k=1 

7n 

f:b (0, 0, . . . , 0) _ E akW op(i) (1) 
k=1 

7r), 

f(j1. (0 0 ... 0) _ E akW:12,kWi1,k,('+1) (1) 
k=1 

                        (2) 
where f(i+1, (0, 0, • • • , 0) is the jth order partial 
derivative with respect to 5i2 after the first partial 
derivative with respect to xil, j=0,1,2,•  • , i=1,2, • • , 
xi is the ith input of neural network, and m is the 
number of hidden layer in the neural network. 

 Equation (2) can be written by matrix as follows 

A1 /31 = C1(3) 

where 

1 1 ••• 1 

         21111,1 Wi1,2 • • • Wil,7n1 a2 
Al =, Bi 

         7n.1 rral7nl         -w,7-112 • Wi1,7nl - _cem1 _ 

     -f(0 ,0,...,0) rn. -
                   49(1) — Z-ik=7n1+1 ak 

37( (o,O,o,...,0)rn 
(1)(1)—~k=7n1+1akwil,k 

  C1 = 

,p(r,,,l)(1)---------------------  Ek=7n1+1 aku'11,k



A2B2 = C2,(4) 

where 

 al  a2 " • am 

1'11 i2,1 a2wi2,2 •• • a7n1wi2,rn1 
A2= 

     nrlrral          -alwi21a2wrrali22 .. amt w;11 - 

T 

  B2 = [ wil,l, wi1,2, • • • , wi1,na1 

  C2 = 

f( ) (0,0,•••,0)   rrr aw.-              cp(1)—~k—rn1+1kil,k 
f(2) (0,0,•••,0) 

Cp(2) — k=ml+l akwil,kwi2,k 

f(,,,.1+1) (00.0) zi,(xi2)'"1_ \mrrtl 
          p(~~.1+1)k=rrtl+1akwil,kw•2,k 

where ml < m, it=1,2,• •,n, i2=1,2,3,• •,n. For 
clarity, we assume m1=m in the following. Since 
the inverse of matrix Al exists in (3) if and only 
if (5) is satisfied for ilth input of neural network ., 
otherwise we can decrease nil until the inverse of 
matrix Al exists. Here we assume that inversion of 
matrix Al exists for ml=m ,then we have (6). 

wil ,kl $ wil,k2 ,(5) 

where kl k2, kl=1,2,• • •,m,k2=1,2,• • •,m. 

B1 = Ai lC1(6) 

From (6), we can know that B1 can be expressed by 
Wil,kl, kl=1,2,• • •,m, in other words, weights from 
the second layer to the third layer can be expressed 
by weights from the first layer to second .layer as 

shown in the Fig.l. This is import for learning, we 
can use this for help learning of networks. 

 We have studied that relation between weights 
from the second layer to the third layer and weights 
from the first layer to second layer as mentioned 
above, now we study a relation of among weights 

from the first layer to the second layer. 
 If (5) and (8) are satisfied for ith, input, then we 

get (8) from (4)

Fig.1 the relation between weights from the second 

      layer to the third layer, g(W) is a function where 
       express relation of the above

ak O, k = 1, 2, 3, ..., m.(7) 
B2 = A2 C2(8) 

From (8), we get that Wil,ki can be expressed by 
wi2,k2 for it * i2, for given (ti, i=1,2,• •,rn, under 
the condition of (5) and (8). ai for i=1,2,,...,m, is 

not usually equal to zero, otherwise i1h, unit of hid-
den layer can be removed. 

 Now we discuss a condition that (5) is not satis-
fied, equation as wi,kl = Wi,k2 have one at the least 
for every input,kl * k2. For simplicity, we assume 

W1,1 = Wl,k(2) for 1st input, w2,k(3) = 2112,k(.1) for 
2nd input, • •, wn,k(2n.-1) - wra,k(2n0 for nth input, 
if wi k(2i) = wi.,k(24,-1), we have the following by (5). 

A3B3 = Cl(9) 

where 

 A3 = 

 1 1 • 1 1 • 1 
wi 1 wi 2 • • • wi,k(2i-I ) wi k(2i+1) ... U1.i,nn 

• Tit-1 in- lin- 1in.- 1rrr, 2Ll
,i1 '1112• • 1L1,i

,k(2i-1) wi,k(2i+1) ,,m-- 1 

a2 

• B3 = 
ak(2i-1) + "k(2i) 

                                                                        • "In 
i = 1, 2,:3, • n. 

 We get equation similar to (6) as follows.



 B:3  =  A3-  ICI_(10) 

Form (10), we can know that ai, and ak(2j-1) + 

ak(2j) can be expressed by for i=1,2,• • •,nn, 
i1=1,2,- •,m, j=1,2,• • •,n. For ak(21_1) and ak(2j) 
Because weights from the second layer to the 
third layer can not be expressed by weights from 
the first layer to second layer, if and only if 
k1=k3=k5=,...,=k(2n-1) and k2=k4=,...,=k(2n), 

With this case, we can remove this node. 
 So far, we discussed relation among weights 

under the condition that the finite derivative of 

f (x1, x2, . • . , xra) for xi, i = 1, 2, • • , n is known. 
Now we discuss the case where the finite deriva-
tive of f (x1 i x2, • • • , x„) for xi, i = 1, 2, • • • , 12,1s 
not known. Suppose we have some cardinal 

points of X where the network output should 
by exactly equal to the value of the teaching 
function f (xi, x2i • • • , x„v ). Such cardinal points 

can be origin, points that give maximal values, 
or points corresponding to the minimal value of 

f (x1, x2, • • , xrr). Our requirement on one of these 
points X (i) = (x1(i), x2(i), - • • , xn (i)),is written as 

r)L 

f (X (i)) _ E (xkp(WT X (Z) + 9k) (11) 
k=1. 

This is another expression of prior information. 
From (11) or (3) and (4), we know that if all weights 

learn independently by descent method, then (11) 
or (3) and (4) are hardly to be guaranteed at ev-
ery learning step, therefore learning result is not 
often good. Ini the following section, we present a 
new learning method that always keeps prior exact 

mathematical structure, such as (11) or (3) and (4), 
in other words, parts of parameters are trained by 
descent methods, and the others are calculated to 

give the required trajectories. for example ,(11) or 

(3) and (4). 

 3. Learning Using Prior Information 

  In this section, we will discuss how to use the 

prior information for learning of neural networks. 
We assume that the objective function be defined 
as the following 

 E(W, a) = 2 E [yk - f (X (k))12, (12) 
k=1 

where yk and f (xi (k), x2(k), ..., x„r,.(k)) are kth de-

sired outputs and kt1, actual output respectively, P 
is total number of train data, W a vector constitut-
ing of the weight from first layer to the second layer, 

a a vector constituting of weights from the second 
layer to the third layer. Now first, we study and give 
learning method incorporating the prior constraints 

(3) and (4), then give learning method for (11). We 
know, since we assumed ml=m, that the right sides 

of equations (3) and (4) are constant with no rela-
tion to parameters of neural networks for a given 
function. If we differentiate and linearize the both 
sides of (3) and (4), then under the condition of (5) 
and (8), we have 

Da = T(i)OWi, (13) 

OW?1 Q(il,i2)QWi2, (14) 

where 

Da = [Dai, ... , Ac rn]T 

OWi = [Owi 1, ... , Awi,m1T 

T(i) _ -(Al)'- 
    0 0 ••• 0 

alwi 1 a2wi 2 • • • amwi,rra 

      rn-1 m-1 m-1 -malwii ma2wi 2 • • • man/ wi,rra - 

(i1,i2) _ _Q1(i2)(Q2(i1,i2)T(i2) + Q3(il,i2)) 

- -1 
         al a2 ... am 

    1(i2)alwi2,1a2Wi2,2•• 'amwi2,m Q= 

    mmm 
              -a1wi21a2wi2,2• • • amwi2,rn - 

wil
,1wil,2 • • • wil,rn 

Q2(il ,c2) 
wil,1Wi2,1 Wil,2Wi2,2 • • • Wil,rnwi2,m 

_ wil,iw22,1 wil,2wi2,2• • • wii,mw2,m -



 

-  0  0  •••  0  -

        1  1  •••  1 
Q3(i1,i2)•• 

         m-1 m-1 m-1 
                - mwi2 1 mwi2 2 • • • mwi2,rrz - 

alwil ,l 0 ... 0 0 -

      0 a2Wil ,2 0 • • • 0 

                                                                • 

• 

     0 ••• ••• 0 amwilm _ 

where it * i2. Aa and AWi are small. 

By Taylor expansion at W and a, we have 

AE(W, a) = aw OW as Act 

m rl aE,rc aE  

E E aW----AWi'k+EasDak+(15) 
  i=1 k=1'k=1k 

where m, n are the number of input units, the num-
ber of hidden units respectively. Furthermore if (5) 
is satisfied for i2th input unit, then we have 
AE(W, a) _ 
~mTIC=Ti8En,   ii2~1 8W2,k(~kl Q(ik,k1i2) 147i2,k1) 
+ En8En(i2)     k=1 C7ak(Ekl Tkk1•Wi2,k1) 
+ En8E      k1=1 8Wi2ki AWi2,k1 + 

_n(~m~n8E Q(i,i2) -Ekli* i2k =1 8Wz k k,k1 
naE

(•aE  +
aakTk,k1+aWi2 ,kl)AWi2,kl+...(16) 

According to the gradient descending method, we 
get a learning algorithm as follows 
AWi2,k1 =-~(Eir%i2 Enk=1 08E,kQ(ik,                                 kli2)+ 

n ----- 
(i2)aE 
   aakTk,kl+aWi2kl(17) k=1 

where kl = 1, 2, ..., m,7/ is the learning rate, i2 is 
the number of inputs which satisfy (5). Weights 
can be adjusted by (13), (14) and (17). First, we 
get AWi2,k1 by using (17), next get Awi1,k1 by using 
(14), then get Aa by using (13). 

 Now we discuss a learning method using (11) with 

given L cardinal point data (without loss of gener-
ality, we let L< m), we have 

f (x1(1), x2(1), ... xn(1)) = Ek i aoP(1) 
     •(18) 

f (xi (L), x2 (L), ... , xn(L)) = Ek=1 ak(p(L) 

where cp(i) = cp(WT X (i) + 1). If we differentiate

and linearize the both sides of (18), then we have 

  Ek=1 (p(1)Aak+~k1,j=1akcP(1)xjAwj,k = 0 

                          (19) 

                                                                                                          • 

  Ek 1 ^(1)Dak + >k_-1,j=1 ak0(1)xjAwi,k = 0 
where Awj k, Aak, k = 1, 2, • • , m, j = 1, 2, • , n 
are small, cp is the first order derivative of cp. 
Among Awj,k and Aak, L parameters are chosen 
so that an inverse of their coefficient matrix exists 
and these parameters can be expressed by the oth-
ers in (19). If the inverse matrix is not exist, then 
we decrease L until the inverse matrix exists. For 
simplicity, we assume that chosen L parameters are 
ak, k = 1, 2, • • •,L, then we have 

 AB = -CD, B = FD,F = -A-1C, (20) 

where 

(P(1) (P(1) ... (p(1) 
      (P(2) (p(2) ... cp(2)Aa2 
 A = .,B 

- (P(L) cp(L) ... (p(L) - - AaL - 

C= 

- (P(1) ... (p(1) 0(1)xi(1) ... 0(1)xn(1) -
   cp(2) ... (p(2) (16(2)xl(2) • v5(2)xn(2) 

                                                                            • -<P(L) ... co(L) (L)xl(L) - • • (P(L)xn(L) _ 

 D = [AaAaAaAwAw-]T            L+1,L+2~•~m~1,1~• •,n,nc 

 From (15),we can get (21) by (20). 

AE(W, a) _ 

n,rn aEaE  

E(-----+1'k,(il*rn{i2+rrz-l))Awil,i2 
 il,i2awil,i2k=1oak 

 +(aE+aE  FkL))Aaj+, • • • (21)     a
saak   j =L+1k=1 

 According to the gradient descending method, we 

get the following algorithm for learning.



 aE   A
ll'it ,12 = —71--------- +Fk,(il *IIL+z2+m,-l)                OW W

il,i.2Uak                                  k=1 

         c0ELd E 
Acri—71 -----+Fk ,(J-L), (22) 

              J k=I 

where j=L+1,• • •,n1,ri is the learning rate. Weights 

of neural networks except for Aa j , j = 1, 2, • • • , L, 
can be adjusted by (22), while aj, j = 1, 2, • - • , L 
can be adjusted by (20). 

In the above, we have got learning method by us-
ing prior information. Tliis means that part of pa-

rameters are adjusted by the learning method which 
uses local information, other part of parameters are 
adjusted by exact calculation which uses global in-
formation. With more accelerating learning, we as 
long as change (22), while (20) is not changed, such 

as moment method. A procedure of parameter ad-

justment based on the above method is the follow-
ing: 

  1) choose L or 1111 parameters among weights 
   of neural networks so that they satisfies (5) or 

   (20) if possible, otherwise decrease L or ml and 
    again choose the parameters. Weights of neural 

networks are initialized by random, except for 

parameters number L or nil, since parameters 
number L or in1 can be obtained from (18) or 

   (3) and (4). 
  2) part of parameters (except for parameters 

   number L or ml) are adjusted by (17) or (22), 
   other part of parameters are adjusted by (20) 
   or (13) and (14). 

  3) choose L or nil parameters among weights 
   of neural networks so that they satisfies (5) or 

   (20) if possible, otherwise decrease L or ml and 
    again choose the parameters, then go to step 2), 

until error function is changed to satisfactory 
vallle. 

 4. Simulation 

In this section, the simulations are carried out for 
identification of a dynamic plant in order to verify 
the above idea. In this example, the plant is as-

sinned to take the from :yp(k+1) = P[yp(k), yp(k-
1), yp(k-2), zi,(k), u(k-1)] where the unknown func-
tion P has the form:

Fig.2 a plot of simulation function

Fig.3 plot 1,2,3 are conventional EBP where learning 

      rate is 0.0012,0.0015,0.00155 respectively

                             ri*a2*;r3*y5(x3-1)+x423   P[x1,X2,x3ix4,x51=1+4+4, () 

 In the condition of u(k)= 1, k >0, the 

plot ofyp(k + 1) is shown in Fig.2, where the 
number of samples is 100. Neural network is 

formed as 5-60-1, node function is f (x) _ (1 -
e-")/(1 e-'), the error function is (12). Be-
cause points of k=1,2,5,7,10,12,80 is used as spe-
cial points of the plot, L=7. initial value of 
weights from the first layer to the second layer 

arid from second to third layer except for Aa2 (i = 
i1,  i2, i3, i4, i5, i6, i7) are generated from the uniform 
distribution (0.5,0) and (0.2,0) respectively, and 
Aai(i = iii i2, i3, i4, i5, i6, i7) are calculated by(20). 
In this simulation, i of Act,: is generated from the 

uniform distribution (1,60) in every step in order to 
make (20) holds. We take 3 different values of learn-



Fig.4 plot 4,5,6 are proposed method where learning 

       rate is 0.00001,0.00002,0.00005 respectively

ing rates  Ti = 0.00001, 0.00002,0.00005 and compare 
with error backpropagation (EBP) algorithm with 
learning rates 77 = 0.0012, 0.0015, 0.00155. The 

plots of error function are shown in Fig.3 and Fig. 
4. We are easily known from plots that learning of 
neural network is much faster with a small identi-
fication error and jumps down sometimes. This is 

produced by Daz (i< L), The results of simulation 
indicate that proposed method is very useful. 

 5. Conclusion 

  In this paper, a set of formulas have been intro-
duced for the relation of weights of neural networks 
and learning method which is done according to 

given learning trajectories using prior information 
of neural networks with three layers. The proposed 
method can make each other's influence of weights 
as small as possible and shows good performance 
in the training. It has the following characteristics 
: prior information is effectively used and is much 

faster than the conventional EBP method. Its effec-
tiveness arid applicability have been demonstrated 
by computer simulations. 
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