

City, University of London Institutional Repository

Citation: Armitage, S., Stevens, R. & Finkelstein, A. (1998). Implementing a compliance

manager. Requirements Engineering, 3(2), pp. 98-106. doi: 10.1007/bf02919969

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26469/

Link to published version: https://doi.org/10.1007/bf02919969

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

www.telelogic.com

Implementing a Compliance Manager*

Stephen Armitage & Richard Stevens Anthony Finkelstein
Quality Systems & Software Ltd. Dept. of Computer Science

Magdalen Centre University College, London
Oxford Science Park London WC1E 6BT, UK

Oxford. OX4 4GA, UK a.finkelstein@cs.ucl.ac.uk
{steve.armitage | richard.stevens}@oxford.qss.co.uk

Abstract
Many companies claim to adhere to standards for software project development. This is
often used as a marketing tool when eliciting business. But how does the customer or
project manager know that these standards are being completely and consistently applied
in their projects? In the paper "Managing Standards Compliance"[2], we identify this
problem and describe a support environment to provide identification and correction of
non-compliance to standards. This paper details the experiences gained while
implementing such a tolerant support system.

1 Introduction

1.1 Project Documentation
The types of documentation produced by a project vary depending upon project size and
style but include specification documents and plans. A typical, formal project is likely to
include a requirements specification, design documents, test documents, project
management plans and configuration management plans. The management plans, such as
the project management plan will be broken down into sub-plans that describe the
development activities for each phase.

The printed documents do not convey all of the information that is available in a project.
Associated with documents and their contents are attributes, which are used to enrich the
information provided. These attributes are used to store ancillary information, such as
implementation cost, clarity and stability. A further source of information can be derived
from the relationship between documents and their paragraphs. For example, there is a
relationship between the cost of implementing the users’ mandatory requirements (in the
requirements specification document) and the cost of completing the project (as stated in
the project plan).

“Projects are being moved from being controlled through paper to
being information based.” [9]

By referencing information, rather than documentation, a much richer quantity of
information can be extracted, manipulated and verified.

* This work was funded by the Teaching Company Directorate, scheme number 1884

1.2 Standards
“There are three types of documentation standards:
1. Documentation process standards
2. Document standards.
3. Document interchange standards” [8]

Of the documentation standards defined above, we are only interested in those that affect
the documents contents and structure. Document process standards define the process
used to produce the content of the documents. This will include ancillary information,
such as traceability matrices that should exist, showing the relationships between the
documents. Document standards define naming conventions, document structure, and
presentation of the documents. These types of standard are usually combined to provide
a coherent output (i.e. both structure and content).

An example of such a coherent standard is the European Space Agency’s, Software
Engineering Standards (PSS-05) [5]. PSS-05 defines some 450 mandatory and optional
practices. These practices define the structure of the documents, in the form of document
templates, the content of the documents, in the form of attributes and a document
generation process, in the form of what should be produced, by whom and when.
Specifically, these practices define properties that must exist in the project
documentation for the practice to be satisfied. A practice can therefore be verified by
testing for a change in the project documentation. An example of a practice from PSS-05
is:

“SR12 – The SRD (Software Requirements Document) shall cover all
requirements stated in the URD (User Requirements Document)” [5]

This practice defines a property between the SRD and the URD. The implementation of
the property may be to have a cross-reference index, relating all system requirements to
the user requirements. Once a property has been defined, it can be formalised into a rule.
This formalised rule will allow automatic verification of the property.

1.3 Checking for Quality
By following a standard through the project development process, a certain amount of
quality is assured. However, there needs to be a verification process in place to check
that the output complies with the standard. This verification can be performed by
reviews, such as Fagan Inspections [3]. This type of inspection is aimed at identifying
defects in the content of the items being reviewed as opposed to the quality of the
decisions made. However, the review is made on a piece of static information which may
not reflect the current standing of the project, i.e. is the related information correct?

“Reality is always much more intricate, concurrent and conditional
than any model would suggest, and this is particularly true for the
creative tasks of development.” [9]

A problem with document reviews is that they are manual processes and therefore
compliance with the applied standards cannot be guaranteed. This is also compounded
by the fact that the review is undertaken at the end of the document generation process

when the author believes the document to be complete. If there are major flaws in the
document, insufficient time may have been allocated to allow correction of the problems.

1.4 Compliance
By checking the completeness or compliance to the practices that a standard specifies,
we can monitor the state and progress of a project. To do this, the properties need to be
formalised into checks. These checks can then be applied to the project documentation to
verify that the properties have been successfully completed.

1.4.1 Policies

When the property has been defined, a policy needs to be associated with it. A policy
defines: when the property is to be applied, how rigorously the property is to be applied
and the type of diagnostic that is displayed to the user

The properties need to be applied to the project’s documentation at discrete intervals.
Too frequently and the feedback to the user would be overwhelming and interfering, too
infrequently would increase uncertainty about project compliance. These intervals are
determined by events on the project documentation.

A definition of how rigorously the property is applied is also required. To allow a
flexible approach, the user needs to have the option to continue even if there are non-
compliant items. This is defined by an operating mode that may be guideline, warning or
error. Guideline mode allows the user to choose not to apply the rule. Warning mode
rules are always applied. Error mode rules are always applied when the event occurs, but
the user is not allowed to continue with the current action.

The feedback given to the user is in the form of a diagnosis. There are two forms of
diagnosis available: list and statistics. The list diagnosis displays all items (if applicable)
that are non-compliant. The statistical diagnosis displays statistical information, such as
the number of items checked and the number of items that failed.

1.4.2 State

The properties need to have a state that reflects the properties’ status. This reflects the
current state of the property and the success of the last application of the check. The
states are described below:

• Non-compliant. A non-compliant property means that the application of the check
has failed. The reason for failure may be that the change described by the practice
has not been completed, or that the current environment does not support the
property.

• Unsafe. An unsafe property is one where the status of the objects is unknown. This
is because the check has attempted to be applied, but the user has vetoed the check.

• Undefined. An undefined property is one where there is no check available. This
may be because a practice cannot be automatically verified or that the check has not
been implemented.

• Not required. A check that is not required has a policy defined, but the associated
event has not yet occurred.

• Compliant. A property that is compliant means that the project’s documentation
meets the criteria specified by the check.

1.5 Outline
In this paper, we describe in more detail two development iterations of a prototype
system, detailing an overview of the implementation, the lessons learnt and proposed
further work.

2 Prototype 1

2.1 Purpose
The purpose of the first prototype was a proof of concept and feasibility study. The goal
was to implement the compliance manager model, as described in the paper “Managing
Standards Compliance”[2]. The model in Figure 1 shows the concepts underlying the
environment.

Figure 1. Standards Compliance Model [2]

2.2 Tools
To implement the prototype, we decided to exploit existing technology. This would
reduce the implementation costs and simplify the interfaces. For the prototype, we

standard

practice rationale

state

property

policy

check

document

diagnosis

event

is in

updates

monitors

occurs on

composed of
prescribes

justified by

concerns

informs

identifies

evaluates

entails

*

*

*
*

*

assesses

standards

support

standard

practice rationale

state

property

policy

check

document

diagnosis

event

is in

updates

monitors

occurs on

composed of
prescribes

justified by

concerns

informs

identifies

evaluates

entails

*

*

*
*

*

assesses

standards

support

identified the facilities that we needed: an information manager, an event generator, an
event receiver, an environment to allow specification of document properties and a
specification application mechanism. For this prototype, we used DOORS [6] and FLEA
[4], as described below:

2.2.1 DOORS
DOORS (Dynamic Object Oriented Requirements System) is a project information
management tool, supplied by Quality Systems & Software Limited. The DOORS
product has an international customer base that uses the tool to manage large and
complex projects. For the prototype, DOORS provides a number of important features
that we can exploit:
• Manages all project documents in a single, navigatable repository
• Paragraphs in a document are stored in a structured hierarchy.
• Allows additional information to be associated with documents and paragraphs, by

associating attributes.
• Allows document and paragraph association through links.
• User events are generated.
• An internal programming language DXL (Doors eXtension Language [7]), is

available. This allows custom interfaces to be written, access to the DOORS
database and interaction with the external environment.

2.2.2 FLEA
FLEA (Formal Language for Expressing Assumptions) is an event monitoring system
developed by Martin Feather as part of a research project. FLEA uses AP5 [1], which is
an extension to common lisp and provides a mechanism to program common lisp at a
‘specification level’ [1]. The important features that FLEA provides include:
• High level specification of document properties
• Relationships between policies, properties and document contents
• Event monitoring mechanism
• Verification that the information stored in the clisp repository complies with the

specification

2.3 Architecture
The architecture of the prototype adheres to the model, as described above (Figure 1)
and has a physical architecture, as shown below.

Figure 2 illustrates the communication channels between the two applications, with the
direction of flow of information.

2.4 Implementation
The properties and policies are entered into a DOORS module (Figure 3) and exported to
FLEA as rules and relationships. The property described in Figure 3 relates to the user-
requirement paragraphs in the URD document (user requirements document). The
property checks that the user requirement paragraphs (par_set column – paragraph type)
in the URD (document column) have an attribute named ‘Priority’ and that the value is
greater than zero (Property wff (Well Formed Formula) column).

pr
op

er
ty

de
sc

ri
pt

io
n

po
lic

y
de

sc
ri

pt
io

n

ev
en

t
bu

s

no
tif

ic
at

io
n

do
cu

m
en

t
up

da
te

s

DOORS

FLEA

AP5

Figure 2. Physical Architecture of Prototype 1[2]

Associated with the property is a policy (Figure 4) that defines when the property is
checked. In the example in Figure 4, the property is checked when the URD module is
closed (Event wff column). The check is applied in ‘Warning’ mode (i.e. the user
warned of a non-compliance, but is allowed to continue). If there are non-compliant
paragraphs, the user is given a diagnosis of the problem in Stat. (Statistical) mode
(Diagnosis column).

Figure 3. Property Definition

Figure 4. Policy Definition

The documents held in DOORS modules are exported to the lisp database so that the
FLEA rules can be applied. The user would use the DOORS interface to add, edit and
delete documents, as usual. When specific events occur in DOORS (i.e. open a module
in edit mode, edit an attribute and baseline a module), an update message is sent to
FLEA, via the event bus file. The example, given in Figure 5, shows two events. The
first event identifies that an open module event has occurred. In this case, the user has
opened the ICD document in edit mode. The second event shows that a paragraph with

identity ‘1’ in the ‘ICD’ document has had the title added or edited with the new value of
“Facilities for the disabled”.

Figure 5. Event Notification

DOORS would then wait for a response from the notification file. FLEA takes the
information from the bus file and inserts it into the database. AP5 examines the data to
verify that it satisfies the rules. Should any parts of the document no longer comply with
the rules, a list of non-compliances are sent to the notification file. If a ‘continue’
message is present, no further action is take. Otherwise, the user is presented with the
non-compliances in the appropriate diagnosis mode. Figure 6 shows that two
notifications have been generated when the user has closed the URD. The first is a
notification for the ‘Priority Existence’ property. The rules have identified that the
paragraphs listed are non-compliant. The non-compliant paragraphs are identified with
the module name and their unique identifier.

Figure 6. Non-compliance Notification Output

To get an overview of the compliance of the project, a property viewer has been
developed (Figure 7). This provides an overview of the status of the properties applied to
the whole project. The colours of the branches in the hierarchy relate to the status of the
properties and are filtered up the hierarchy, in a ‘worse case’ manner.

2.5 Outcome
From this initial prototype, we learnt the following:

2.5.1 Configuring Checks
After implementing a selection of practices, as specified in PSS-05 [5], we found that
there was a group of common rules, which had slightly different configurations. A more
usable mechanism would be to allow the user to configure these basic checks in a
template.

2.5.2 Optimising Communications
Because of the very different ways that DOORS and FLEA worked, it became important
that no more than the minimum of data should be sent between the applications. The
most straightforward way to limit the communications is to have a single source for the
project data.

2.5.3 Tool Limitations
DOORS only supports a limited number of user events, but for our model, other events
such as baselining are important and need to be captured. Workarounds were found by

(Notification (PRIORITY-EXISTENCE@@CLOSE-URD "16:20:24" (URD$686 URD$503 URD$88)))
(Notification (EI-DESCRIPTION@@CLOSE-URD "16:20:24" (URD$772 URD$733 URD$732)))
END-NOTIFICATION

(open-module ICD edit)
(++ has-title 'ICD$1 "Facilities for the disabled")

adding our own event call into the baseline function. There is also no mechanism to
trigger DOORS when FLEA/AP5 returned a response. This caused file access problems
and was only cured by adding a large wait time between the read cycles in DOORS.

Figure 7. Property Viewer

2.6 Problems with this Approach
With the approach taken, a number of implementation issues arose which needed to be
addressed, to allow the project to have the greatest change of commercial success.

2.6.1 Performance
There were a number of performance issues associated with the prototype. These were
mainly centred around the interface with DOORS and FLEA. DOORS appends an event
to the bus file and waits until an entry is inserted into the notification file. FLEA reads
the bus file, checks that the data conforms to the compliance rules and outputs an
appropriate notification. This activity however would take up to 30 seconds, in which
time the user would not be able to perform any function. This wait time is acceptable for
some events, such as opening and closing modules, but for editing objects was too long.

2.6.2 Portability
DOORS is available on a wide range of operating systems. Currently FLEA and AP5 are
only available on Microsoft Windows and SUN Solaris.

2.6.3 Duplication of Data
The source data that is modified by the user is held in the DOORS repository. Both
FLEA and AP5 need access to this data. To overcome this problem, the documents were
exported in a format compatible with FLEA/AP5. The problem with data duplication is
compounded by the user being able to modify the data without the compliance manager
being enabled. This causes the data to become unsynchronised and therefore
inconsistent.

2.6.4 Interfacing
There were a number of issues that arose while interfacing DOORS with FLEA/AP5.
The primary problem was sharing information between the two applications. ASCII files
were used for this purpose. This lead to further problems involving synchronising file
access.

Another interfacing issue included starting FLEA/AP5 automatically. This could not be
achieved, as start-up commands need to be entered through the text interface.

2.6.5 Complexity
The properties are defined as a FLEA specification. These are reasonably readable, but
require some training in first-order logic and clisp to create effective property
definitions. This is the traditional trade-off with complexity, that of power vs. simplicity.

2.6.6 Schema Definition
To allow a specific type of data to be identified, a document schema is required. The
document schema defines the structure of the document, attributes that are required, and
paragraph types. For example, in a system requirements document, the third section
contains requirement paragraphs. These paragraphs have specific attributes, which are
not relevant to other parts of the document (i.e. priority, clarity, verifiability, etc.).

DOORS does not support such a schema definition directly. I.e. you can define a class of
document, such a System Requirements Document, which contains a specification of
attributes and structure. The problem arises after instantiation, when the document
structure can be modified and will no longer conform to the class. Attributes can be used
to specifically set the type of a paragraph, but these can easily become invalid if
paragraphs are moved or copied to other documents.

3 Prototype 2

3.1 Purpose
After reviewing the first prototype, we decided to create a second prototype, with a
modified architecture. This addressed the following issues, arising from the first
prototype and new requirements for the system, to allow external evaluation of the
concept.

3.1.1 Performance
By implementing the compliance manager entirely in DXL, the problems with waiting
for external sources to compute should be reduced. However, we needed to verify that
the checks can still be executed in DOORS with a similar or improved efficiency.

3.1.2 Portability
With the move to implementing the compliance manager in DXL, the portability issues
are solved. This would remove the problems with having to create versions of
FLEA/AP5/clisp, which executed in a similar manner on all operating systems.

3.1.3 Duplication of Data
This is no longer an issue with the compliance manager being totally supported by
DOORS. There is now only one source of the data, which removes the problems of
keeping two databases synchronised.

3.1.4 Interfacing
As there are no external interfaces from the DOORS tool, interfacing is no longer an
issue.

3.1.5 Complexity
We attacked the issue of complexity from two angles. By improving the interface to the
property definitions, the user is able to create complex rules, but the complexity of their
implementation is hidden. A template mechanism for creating rules has also been
developed to aid the user in creating rules. This has culminated in the creation of a
wizard-style interface.

Figure 8. Prototype 2 Physical Architecture

DOORS

Document POLICY

PROPERTY

Event

entails

assesses

user
actions

DOORS

Document POLICY

PROPERTY

Event

entails

assesses

user
actions

3.1.6 Schema Definition
The schema definition is no longer required to the same extent as with the previous
prototype. This is primarily due to the assumptions, as detailed below.

3.2 Architecture
By eliminating the external interface, the architecture is greatly simplified, as shown in
Figure 8. Because there is no longer an external link from DOORS, the messaging files
can be discarded and there is no longer a need for a duplicate external copy of the data.

There are a number of important assumptions that the second prototype of the
compliance manager makes:
• All paragraphs under a given point in the hierarchical tree have a property, as

defined by the property specification. This is an important difference to the previous
prototype, which relied on tagging paragraphs in a document with their type, and
ignored the document structure.

• If a parent paragraph in the document structure has the correct value, then it is
assumed that this is inherited by the child paragraphs.

By making these assumptions, the checking for compliance can be made more powerful.
This is because the point in the hierarchy where the data is stored is no longer limited to
the leaf paragraphs.

3.3 Implementation

3.3.1 Properties
The property definition in the first prototype was a complicated first-order logic
definition. This was deemed too complicated and could be simplified by using a template
mechanism for property definition. For property descriptions that fall beyond the bounds
of the template, DOORS’ internal programming language DXL, can be used. To aid in
creating the property descriptions, a form was created, as shown in Figure 9. The
template defines the part of the document which will be checked for the property, in this
case the ‘Specific Requirements’ section of the ‘SRD’ document. The check makes sure
that the attribute ‘Priority’ has a value, which is greater than zero. Any paragraphs not
meeting that specification are marked as non-compliant.

Figure 9. Property Specification

Figure 10 shows an example DXL specification. A number of features have been
included to make the DXL rules consistent with those defined using the template. For

example, if the author wishes to identify a paragraph as non-compliant, they can call the
function nonCompliantAttribute(Object o), which sets the paragraph defined by ‘o’ to non-
compliant.

Figure 10. DXL Rule Specification

Figure 11. Policy Definition

3.3.2 Policies
The definition of policies has remained very similar to the previous prototype, but are
now written more efficiently. This has been done by creating a single instance of each

execution policy and linking it to the associated properties. Figure 11 shows an example
of a policy. The policies are composed of an associated event, document name,
execution mode and diagnosis option. In the example, the rules column shows the
properties, which the execution policy is linked to.

3.3.3 Event Monitor
The event monitor is written in DXL. This provides us with a number of important
advantages over the previous prototype, as detailed above. While the user performs
certain functions, they are presented with feedback, as show in Figures 12 and 13. Figure
12 shows the optional display that is only shown if there are properties, which are to be
checked in ‘guideline’ mode. In guideline mode, the user is allowed to select which rules
are applied to the project data. Figure 13 shows the diagnosis screen, with a list of non-
compliant properties. In the bottom panel is a textual ‘reason’ for the failure.

Figure 12. Selecting Guidelines

3.3.4 Document Overview
The rule viewer gives information about the status of the rules, but does not provide any
feedback about the state of the documentation. The document viewer allows the rules to
be viewed from the viewpoint of the documents. Figure 14 shows a screen snapshot of
the prototype tool. On the left side are the documents in the project. The contents of the
documents can be expanded, as shown with the ‘Requirements’ document. In the centre
are the non-compliant and unsafe rules that are relevant to the currently selected part of
the document. If a rule is selected, the rationale and reason for failure is shown in the
right hand area. The user has the option to navigate to the non-compliant paragraphs via
the ‘Display Errors’ button.

Figure 13. Diagnosis Display

Figure 14. Document Overview

4 Conclusion

4.1 Current Status
The prototype of the compliance manager forms a tool suite. This consists of:
• A Rule Wizard – to create the rules and associate execution policies
• An Event monitor – to wait for events and execute the appropriate checks
• A Document Overview Tool – displays the status of the project from the viewpoint

of the documentation
• A Rule Overview Tool –displays the status of the project from the viewpoint of the

rules.

This toolkit provides the basic functionality for a project to manage compliance. The tool
suite is starting to be used inside QSS to help enforce quality in their product
development.

4.2 Further work
Before the Compliance Manager is marketed as a product, an industrial evaluation is
required. This, along with the identified requirements will put the tool suite in a better
market position.

4.2.1 Industrial Trial
To really gauge the appropriateness of such a project support environment we are asking
current users of DOORS to evaluate the tool suite. The outcome of this evaluation will
be an industrial evaluation of the usefulness of such a tool and new requirements for
future enhancements.

4.2.2 Manual Application
While writing a document, the user may wish to verify the quality of work completed,
without causing an event that activates the compliance manager. This mechanism will
allow the user to apply the rule at any time.

4.2.3 Compliance Waiver
During the project there needs to be a mechanism, where the project manager can allow
a non-compliant items to remain. This flexible approach allows a project to continue
after positively accepting that it will deviate from the standards. Once a property has
been ‘waived’, it will be ignored by the property checking mechanism.

4.2.4 Property and Role Association
There is currently no mechanism, to verify only those properties, for which the
developer is responsible. In addition, for large projects, there is the possibility of being
overwhelmed by a large amount of data, which the developer has no power to rectify.
There should be a mechanism to associate development roles to developers and
properties.

4.2.5 Selective Property Application
The current system applies all of the properties whenever the associated event occurs.
This can be optimised by intelligently running those rules that only apply to items in the
project that have changed.

5 Acknowledgements
The authors would like to thank Wolfgang Emmerich for his contribution in defining and
supporting the Compliance Manager project. We are also grateful to Ken McDonald and
Anthony Brigginshaw for their suggestions and feedback during the review process.

6 References

[1] Cohen. D., AP5 Reference Manual. http://www.isi.edu/software-
sciences/relab/ap5/refman.html. 1992.

[2] Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S., Armitage, S.,
Stevens, R., Managing Standards Compliance.
http://www.cs.ucl.ac.uk/staff/w.emmerich/publications/TSE/stdscompl.html.
Submitted for publication in 1998

[3] Fagan, M., Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 15(3), 182-211, 1976.

[4] Feather, M., FLEA: Formal Language for Expressing Assumptions. Private
communication, 1997

[5] Mazza, C., Fairclough, J., Melton, B., De Pablo, D., Scheffer, A., Stevens, R.,
Software Engineering Standards. Prentice Hall, 1994. ISBN 0-13-106568-8

[6] Quality Systems and Software, Ltd., Oxford Science Park, Oxford. UK. DOORS
Reference Guide (v4.0), 1998.

[7] Quality Systems and Software, Ltd., Oxford Science Park, Oxford. UK. DXL
Reference (v4.0), 1998.

[8] Sommerville, I., Software Engineering. 5th ed. Wokingham, England: Addison-
Wesley, 1995. ISBN: 0-201-42765-6

[9] Stevens, R., Brook, P., Jackson, P., Arnold, S., Systems Engineering. Hemel
Hempstead, England: Prentice Hall, 1998. ISBN: 0-13-095085-8

