Skip to main content

Semi-parametric methods for system identification

  • Part I Identification For Robust Control
  • Conference paper
  • First Online:
  • 98 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 245))

Abstract

This paper is concerned with identification problems in general, structured interconnected models. The elements to be identified are of two types: parametric components and non-parametric components. The non-parametric components do not have a natural parameterization that is known or suggested from an analytical understanding of the underlying process. These include static nonlinear maps and noise models.

We suggest a novel procedure for identifying such interconnected models. This procedure attempts to combine the best features of traditional parameter estimation and non-parametric system identification. The essential ingredient of our technique involves minimizing a cost function that captures the “smoothness” of the estimated nonlinear maps while respecting the available input-output data and the noise model. This technique avoids bias problems that arise when imposing artificial parameterizations on the nonlinearities. Computationally, our procedure reduces to iterative least squares problems together with Kalman smoothing.

Our procedure naturally suggests a scheme for control-oriented modeling. The problem here is to construct uncertainty models from data. The essential difficulty is to resolve residual signals into noise and unmodeled dynamics. We are able to do this using an iterative scheme. Here, we repeatedly adjust the noise component of the residual until its power-spectral density resembles that supplied in the noise model. Our computations again involve Kalman smoothing. This scheme is intimately related to our procedure for semi-parametric system identification.

Finally, we offer illustrative examples that reveal the promise of the techniques developed in this paper.

Supported in part by an NSF Graduate Fellowship, by NASA-Dryden under Contract NAG4-124, and by NSF under Grant ECS 95-09539.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. A. Billings, S. Y. Fakhouri, “Identification of a Class of Non-linear Systems Using Correlation Analysis,” Proc. IEE, v.125, pp. 691–7, 1978.

    MathSciNet  Google Scholar 

  2. M. Boutayeb, M. Darouach, H. Rafaralahy, G. Krzakala, “A New Technique for Identification of MISO Hammerstein Model,” Proc. American Control Conf., San Francisco, CA, v.2, pp. 1991–2, 1993.

    Google Scholar 

  3. C. Chen, S. Fassois, “Maximum likelihood identification of stochastic Wiener-Hammerstein-type non-linear systems,” Mech. Syst. Sig. Proc., vol. 6, no. 2, pp. 135–53, 1992.

    Article  Google Scholar 

  4. J. E. Dennis, Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, 1983.

    Google Scholar 

  5. R. Deutsch, Estimation Theory, Prentice-Hall, 1965.

    Google Scholar 

  6. D. K. De Vries, Identification of Model Uncertainty for Control Design, Ph.D. thesis, Delft University of Technology, Delft, the Netherlands.

    Google Scholar 

  7. D. K. De Vries and P. M. J. Van den Hof, “Quantification of uncertainty in transfer function estimation: a mixed probabilistic — worst-case approach,” Automatica, vol. 31, no. 4, pp. 543–557, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Wemhoff, “A Nonparametric Method for the Identification of a Static Nonlinearity in a Structured Nonlinear System,” M.S. Thesis, Department of Mechanical Engineering, University of California, Berkeley, August 1998.

    Google Scholar 

  9. A. H. Falkner, “Identification of the system comprising parallel Hammerstein branches,” Int. J. Syst. Sci., vol. 22, no. 11, pp. 2079–87, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Francis, A course in H control theory, Springer-Verlag, 1987.

    Google Scholar 

  11. P. E. Gill, W. Murray, and M. H. Wright, Practical optimization, Academic Press, 1981.

    Google Scholar 

  12. G. Golub and C. F. Van Loan, Matrix Computations, 2nd edition, The Johns Hopkins University Press, 1989.

    Google Scholar 

  13. G. C. Goodwin, M. Gevers and B. Ninness, “Quantifying the error in estimated transfer functions with application to model order selection,” IEEE Trans. Autom. Control, vol. 37, no. 7, pp. 913–928, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Greblicki, “Non-parametric orthogonal series identification of Hammerstein systems,” Int. J. Syst. Sci., vol. 20, no. 12, pp. 2355–67, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. S. Grewal, Kalman filtering: theory and practice, Prentice-Hall, 1993.

    Google Scholar 

  16. H. Hjalmarsson, Aspects on Incomplete Modeling in System Identification, Ph.D. thesis, Electrical Engineering, Linköping University, Linköping, Sweden, 1993.

    Google Scholar 

  17. T. A. Johansen, “Identification of Non-linear Systems using Empirical Data and Prior Knowledge-An Optimization Approach,” Automatica, vol.32, no.3, pp. 337–56, 1997.

    Article  MathSciNet  Google Scholar 

  18. A. Juditsky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung, J. Sjöberg, and Q. Zhang, “Nonlinear Black-box Models in System Identification: Mathematical Foundations,” Automatica, vol.31, no.12, pp. 1752–1750, 1995.

    Article  Google Scholar 

  19. M. V. P. Krüger and K. Poolla, “Validation of uncertainty in the presence of noise,” Sel. Topics in Identification, Modeling and Control, vol. 11, Delft University Press, pp. 1–8, 1998.

    Google Scholar 

  20. A. Kryzak, “Identification of discrete Hammerstein systems by the Fourier series regression estimate,” Int. J. Syst. Sci., vol. 20, no. 9, pp. 1729–44, 1989.

    Article  Google Scholar 

  21. L. Ljung, System Identification, Theory for the User, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.

    MATH  Google Scholar 

  22. K. S. Narendra, P. G. Gallman, “An Iterative Method for the Identification of Nonlinear Systems Using the Hammerstein Model,” IEEE Trans. Autom. Control, vol. 11, no. 7, pp. 546–50, 1966.

    Article  Google Scholar 

  23. A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, Prentice-Hall, 1989.

    Google Scholar 

  24. A. Poncet and G. S. Moschytz, “Selecting inputs and measuring nonlinearity in system identification,” Proc. Int. Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, Venice, pp. 2–10, 1996.

    Google Scholar 

  25. K. Poolla, P. Khargonekar, A. Tikku, J. Krause and K. Nagpal, “A time-domain approach to model validation,” IEEE Trans. Autom. Control, vol. 39, no.5, pp. 951–959, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Pawlak, “On the series expansion approach to the identification of Hammerstein systems,” IEEE Trans. Auto. Contr., vol. 36, no. 6, pp. 763–7, 1991.

    Article  MathSciNet  Google Scholar 

  27. R. Sen, P. Guhathakurta, “On the solution of nonlinear Hammerstein integral equation in L 2(0,1),” Trans. Soc. Comp. Simu., vol. 8, no. 2, pp. 75–86, 1991.

    Google Scholar 

  28. J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Y. Glorennec, H. Hjalmarsson, and A. Juditsdy, “Nonlinear Black-box Modeling in System Identification: a Unified Overview,” Automatica, vol.31, no.12, pp. 1691–1724, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Smith, G. Dullerud, S. Rangan and K. Poolla, “Model validation for dynamically uncertain systems,” Mathematical Modelling of Systems, vol. 3, no. 1, pp. 43–58, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Stoica, “On the Convergence of an Iterative Algorithm Used for Hammerstein System Identification,” IEEE Trans. Autom. Control, vol. 26, no. 4, pp. 967–69, 1981.

    Article  MathSciNet  Google Scholar 

  31. G. Vandersteen and J. Schoukens, “Measurement and Identification of Nonlinear Systems consisting out of Linear Dynamic Blocks and One Static Nonlinearity,” IEEE Instrumentation and Measurement Technology Conference, vol.2, pp. 853–8, 1997.

    Google Scholar 

  32. G. Wolodkin, S. Rangan, and K. Poolla, “An LFT approach to parameter estimation,” Proc. American Control Conf., Albuquerque, NM, pp. 2088–2092, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kameshwar Poolla .

Editor information

A. Garulli (Assistant Professor)A. Tesi (Assistant Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Krüger, M., Wemhoff, E., Packard, A., Poolla, K. (1999). Semi-parametric methods for system identification. In: Garulli, A., Tesi, A. (eds) Robustness in identification and control. Lecture Notes in Control and Information Sciences, vol 245. Springer, London. https://doi.org/10.1007/BFb0109859

Download citation

  • DOI: https://doi.org/10.1007/BFb0109859

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-179-5

  • Online ISBN: 978-1-84628-538-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics