Skip to main content
Log in

Floating Immittance Function Simulator and Its Applications

  • Published:
Circuits, Systems & Signal Processing Aims and scope Submit manuscript

Abstract

A new floating immittance function simulator circuit is proposed using two different active elements, a dual-output second generation current conveyor (DO-CCII) and an operational transconductance amplifier (OTA). The presented circuit can realize a positive and negative floating inductor, capacitor and resistor depending on the passive component selection. Since the passive elements are all grounded, this circuit is suitable for fully integrated circuit design. The circuit does not require any component matching conditions, and it has a good sensitivity performance with respect to tracking errors. Moreover, the proposed positive and negative inductance, capacitor and resistor simulator can be tuned electronically by changing the biasing current of the OTA or can be controlled through the grounded resistor or capacitor. The proposed floating inductor simulator circuit is demonstrated by using a SPICE simulation for 0.35 μm TSMC CMOS technology. The proposed circuit consumes an average power of 1 mW using ±1.5 V supply voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.T. Bruton, RC Active Circuits: Theory and Design (Prentice-Hall, Englewood Cliffs, 1997)

    Google Scholar 

  2. C.-M. Chang, H.-Y. Wang, C.-C. Chien, Realization of series impedance functions using one CCII+. Int. J. Electron. 76, 83–85 (1994)

    Article  Google Scholar 

  3. O. Cicekoglu, A. Toker, H. Kuntman, Universal immittance function simulators using current conveyors. Comput. Electric. Eng. 27, 227–238 (2001)

    Article  MATH  Google Scholar 

  4. M. Higashimura, Y. Fukui, Novel method for realizing lossless floating immittance using current conveyors. Electron. Lett. 23, 498–499 (1987)

    Article  Google Scholar 

  5. K. Kaewdang, W. Surakampontorn, On the realization of electronically current-tunable CMOS OTA. Int. J. Electron. Commun. (AEÜ) 61, 300–306 (2007)

    Article  Google Scholar 

  6. S. Minaei, O. Cicekoglu, H. Kuntman, S. Turkoz, Electronically tunable active floating inductance simulation. Int. J. Electron. 89(12), 905–912 (2002)

    Article  Google Scholar 

  7. S. Minaei, E. Yuce, O. Cicekoglu, A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter. Analog Integr. Circuits Signal Process. 47, 199–202 (2006)

    Article  Google Scholar 

  8. P.V. Mohan, Current-Mode VLSI Analog Filters: Design and Applications (Birkhäuser, Boston, 2003)

    MATH  Google Scholar 

  9. P.V.A. Mohan, Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electron. Lett. 34(11), 1037–1038 (1998)

    Article  Google Scholar 

  10. H.J. Orchard, Inductorless filters. Electron. Lett. 2, 224–225 (1966)

    Article  Google Scholar 

  11. H. Sedef, C. Acar, A new floating inductor circuit using differential voltage current conveyors. Frequenz 54(5–6), 123–125 (2000)

    Google Scholar 

  12. R. Senani, Novel higher-order active filter design using current conveyors. Electron. Lett. 21, 1055–1056 (1985)

    Article  Google Scholar 

  13. R. Senani, J. Malhotra, Minimal realizations of a class of operational mirrored amplifier-based floating impedances. Electron. Lett. 30, 1113–1114 (1994)

    Article  Google Scholar 

  14. W. Surakampontorn, K. Kumwachara, V. Riewruja, C. Surawatpunya, CMOS-based integrable electronically tunable floating general impedance inverter. Int. J. Electron. 82(1), 33–44 (1997)

    Article  Google Scholar 

  15. C. Toumazou, F.J. Lidgey, Universal current-mode analogue amplifiers, in Analogue IC Design the Current-Mode Approach (Peter Peregrinus, London, 1990), pp. 127–128

    Google Scholar 

  16. D.C. Wandsworth, Accurate current conveyor integrated circuits. Electron. Lett. 25, 1251–1252 (1989)

    Article  Google Scholar 

  17. H.-Y. Wang, C.-T. Lee, Systematic synthesis of R-L and C-D immittances using single CCIII. Int. J. Electron. 87, 293–301 (2000)

    Article  Google Scholar 

  18. B. Wilson, Recent developments in current mode circuits. Proc. IEE Ser. G 137, 63–67 (1990)

    Google Scholar 

  19. E. Yuce, O. Cicekoglu, S. Minaei, CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integr. Circuits Signal Process. 46, 287–291 (2006)

    Article  Google Scholar 

  20. E. Yuce, S. Minaei, O. Cicekoglu, Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electr. Eng. 88, 519–525 (2006)

    Article  Google Scholar 

  21. E. Yuce, S. Minaei, O. Cicekoglu, Novel floating inductance and FDNR simulators employing CCII+s. J. Circuits Syst. Comput. 15(1), 75–81 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. E. Ayten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagbas, M., Ayten, U.E., Sedef, H. et al. Floating Immittance Function Simulator and Its Applications. Circuits Syst Signal Process 28, 55–63 (2009). https://doi.org/10.1007/s00034-008-9057-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-008-9057-4

Keywords

Navigation