Skip to main content
Log in

Bulk-Driven Current Differencing Transconductance Amplifier

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Low-voltage (LV) low-power (LP) integrated circuit design is becoming a leading trend in VLSI technology, particularly in special portable applications. In this paper, the principle of a bulk-driven MOS transistor is employed in the design of a novel LV LP current differencing transconductance amplifier (CDTA). Designs in the 0.25 μm CMOS technology have been verified via PSpice simulation. The supply voltages are only ±0.6 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Acar, S. Õzoguz, A new versatile building block: current differencing buffered amplifier. Microelectron. J. 30, 157–160 (1999)

    Article  Google Scholar 

  2. D. Biolek, CDTA—building block for current-mode analog signal processing, in Proc. ECCTD’03, Krakow, Poland (2003), pp. 397–400

    Google Scholar 

  3. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17, 15–32 (2008)

    Google Scholar 

  4. D. Biolek, E. Hancioglu, A.Ü. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEÜ, Int. J. Electron. Commun. 62(2), 92–96 (2008)

    Article  Google Scholar 

  5. D. Biolek, V. Biolková, Allpass filter employing one grounded capacitor and one active element. Electron. Lett. 45(16), 807–808 (2009)

    Article  Google Scholar 

  6. B.J. Blalock, P.E. Allen, G.A. Rincon-Mora, Designing 1V Op Amps using standard digital CMOS technology. IEEE Trans. Circuits Syst. II 45(7), 769–780 (1998)

    Article  Google Scholar 

  7. J.M. Carrillo, G. Torelli, R. Perez-Aloe, F. Duque-Carrillo, 1-V rail-to-rail bulk-driven CMOS OTA with enhanced gain and gain-bandwidth product, in Proc. ECCTD 2005, Cork, Ireland (2005), pp. 261–264

    Google Scholar 

  8. J.J. Chen, H.W. Tsao, C. Chen, Operational transresistance amplifier using CMOS technology. Electron. Lett. 28(22), 2087–2088 (1992)

    Article  Google Scholar 

  9. L.H. Ferreira, An ultra low-voltage ultra low power rail-to-rail CMOS OTA Miller, in Proc. 2004 IEEE Asia-Pacific Conference on Circuits and Systems, Taiwan (2004), pp. 953–956

    Chapter  Google Scholar 

  10. G. Ferri, N.C. Guerrini, Low-Voltage Low-Power CMOS Current Conveyors (Kluwer Academic, Dordrecht, 2003)

    Google Scholar 

  11. Y. Haga, I. Kale, Bulk-driven flipped voltage follower, in Proc. IEEE ISCAS. Taipei, Taiwan (2009), pp. 2717–2720

    Google Scholar 

  12. W. Jaikla, M. Siripruchyanun, J. Bajer, D. Biolek, A simple current-mode quadrature oscillator using single CDTA. Radioengineering 17(4), 33–40 (2008)

    Google Scholar 

  13. A.Ü. Keskin, D. Biolek, Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc., Circuits Devices Syst. 153(3), 214–218 (2006)

    Article  Google Scholar 

  14. A.Ü. Keskin, D. Biolek, E. Hancioglu, V. Biolková, Current-mode KHN filter employing current differencing transconductance amplifiers. AEÜ, Int. J. Electron. Commun. 60(6), 443–446 (2006)

    Article  Google Scholar 

  15. A. Khateb, Low-voltage low-power bulk-driven CMOS current conveyors. J. Electron. Horizon. 61(3), 7–10 (2005)

    Google Scholar 

  16. A. Kumar, G.K. Sharma, Bulk driven circuits for low voltage applications. J. Act. Passive Electron. Device 8, 237–245 (2009)

    Google Scholar 

  17. A. Lahiri, New current mode quadrature oscillators using CDTA. IEICE Electron. Express 6(3), 135–140 (2009)

    Article  Google Scholar 

  18. A. Lahiri, Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 32(2), 199–203 (2009)

    Article  Google Scholar 

  19. K.R. Laker, W. Sansen, Design of Analog Circuits and Systems (McGraw-Hill, New York, 1994), pp. 1–12

    Google Scholar 

  20. K. Lasanen, E. Räisänen-Ruotsalainen, J. Kostamovaara, A 1-V 5 μW CMOS-Opamp with bulk-driven input transistors, in Proc. IEEE MWSCAS’00, Lansing, MI (2000), pp. 1038–1041

    Google Scholar 

  21. G.K. Lim, T.H. Teo, A low-power low-voltage amplifier for heart rate sensor, in Proc. APCCAS 2006, Singapore (2006), pp. 502–505

    Google Scholar 

  22. L. Yu-Lung, Y. We-Bin, C. Ting-Sheng, C. Kuo-Hsing, Designing an ultralow-voltage phase-locked loop using a bulk-driven technique. IEEE Trans. Circuits Syst. II 56(5), 339–343 (2009)

    Article  Google Scholar 

  23. F. Maloberti, Analog Design for CMOS VLSI Systems (Kluwer Academic, Dordrecht, 2003)

    Google Scholar 

  24. S.-W. Pan, C.-C. Chuang, C.-H. Yang, Y.-S. Lai, A novel OTA with dual bulk-driven input stage, in Proc. ISCAS 2009, Taipei, Taiwan (2009), pp. 2721–2724

    Google Scholar 

  25. D. Prasad, A.K. Singh, Universal current-mode biquad filter using dual output current differencing transconductance amplifier. AEÜ, Int. J. Electron. Commun. 63(6), 497–501 (2009)

    Article  MathSciNet  Google Scholar 

  26. D. Prasad, D.R. Bhaskar, A.K. Singh, Realisation of single-resistance-controlled sinusoidal oscillator: a new application of the CDTA. WSEAS Trans. Electron. 5(6), 257–259 (2008)

    Google Scholar 

  27. G. Raikos, S. Vlassis, 0.8 V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 63(3), 425–432 (2010)

    Article  Google Scholar 

  28. J. Rosenfeld, M. Kozak, E.G. Friedman, A bulk-driven CMOS OTA with 68 dB DC gain, in Proc. ICECS 2004, Tel Aviv, Israel (2004), pp. 5–8

    Google Scholar 

  29. W. Sansen, Analog design challenges in nanometer CMOS technologies, in Proc. IEEE Asian Solid-State Circuits Conference, Jeju, Korea (2007), pp. 5–9

    Chapter  Google Scholar 

  30. A. Sedra, K.C. Smith, A second generation current conveyor and its application. IEEE Trans. Circuit Theory CT-17, 132–134 (1970)

    Article  Google Scholar 

  31. M. Siripruchyanun, W. Jaikla, CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEÜ, Int. J. Electron. Commun. 62(4), 277–287 (2008)

    Article  Google Scholar 

  32. M. Siripruchyanun, W. Jaikla, A current-mode analog multiplier/divider based on CCCDTA. AEÜ, Int. J. Electron. Commun. 62(3), 223–227 (2008)

    Article  Google Scholar 

  33. W. Tangsrirat, W. Surakampontorn, Systematic realization of cascadable current-mode filters using current differencing transconductance amplifiers. Frequenz 60(11–12), 241–245 (2006)

    Article  Google Scholar 

  34. W. Tangsrirat, T. Dumawipata, W. Surakampontorn, Multiple-input single-output current-mode multifunction filter using current differencing transconductance amplifiers. AEÜ, Int. J. Electron. Commun. 61(4), 209–214 (2007)

    Article  Google Scholar 

  35. W. Tangsrirat, W. Tanjaroen, Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circuits Syst. Signal Process. 27, 81–93 (2008)

    Article  Google Scholar 

  36. W. Tangsrirat, W. Tanjaroen, T. Pukkalanun, Current-mode multiphase sinusoidal oscillator using CDTA-based allpass sections. AEÜ, Int. J. Electron. Commun. 63(7), 616–622 (2009)

    Article  Google Scholar 

  37. W. Tangsrirat, T. Pukkalanun, Structural generation of two integrator loop filters using CDTAs and grounded capacitors. Int. J. Circuit Theory Appl. (2009). doi:10.1002/cta.616. Published online 10 Jul 2009

    Google Scholar 

  38. W. Tanjaroen, T. Dumawipata, T.S. Unhavanich, W. Tangsrirat, W. Surakampontorn, Design of current differencing transconductance amplifier and its application to current-mode KHN biquad filter, in Proc. ECTI-CON 2006, Thailand (2006)

    Google Scholar 

  39. C. Toumazou, F.J. Lidgey, D.G. Haigh, Analogue IC Design: The Current Mode Approach (Peter Peregrinus Ltd., Stevenage, 1990)

    Google Scholar 

  40. A. Uygur, H. Kuntman, Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs. AEÜ, Int. J. Electron. Commun. 61(5), 320–328 (2007)

    Article  Google Scholar 

  41. A. Uygur, H. Kuntman, A. Zeki, Multi-input multi-output CDTA-based KHN filter, in Proc. ELECO 2005, Bursa, Turkey (2005), pp. 46–50

    Google Scholar 

  42. A. Uygur, H. Kuntman, Low-voltage current differencing transconductance amplifier in a novel allpass configuration, in Proc. MELECON’06, Spain (2006), pp. 23–26

    Google Scholar 

  43. S. Vlassis, G. Raikos, Bulk-driven differential voltage follower. Electron. Lett. 45(25), 1276–1277 (2009)

    Article  Google Scholar 

  44. Z. Zhu, J. Mo, Y. Yang, A low voltage bulk-driving PMOS cascode current mirror. J. Circuits Syst. Comput. 12(2), 30–33 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Biolek.

Additional information

This research has been supported by the Grant Agency of the Czech Republic under grant No. 102/09/1628, and by the research programs of BUT MSM0021630503 and UD Brno MO FVT0000403.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khateb, F., Biolek, D. Bulk-Driven Current Differencing Transconductance Amplifier. Circuits Syst Signal Process 30, 1071–1089 (2011). https://doi.org/10.1007/s00034-010-9254-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9254-9

Keywords

Navigation