Skip to main content
Log in

Quadrature ΣΔ Modulators for Cognitive Radio—I/Q Imbalance Analysis and Complex Multiband Principle

  • Cognitive Radio-based Wireless Communication Devices
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This article discusses the applicability of quadrature ΣΔ modulator (QΣΔM) based analog-to-digital (A/D) conversion in cognitive radio (CR) receivers. First, unavoidable in-phase/quadrature (I/Q) mismatch effects, limiting the dynamic range, are analyzed in closed-form in the case of a first-order modulator. In addition, using the derived analytical converter model, it is shown that notching the signal transfer function (STF) of the modulator at the mirror frequencies of the desired signals will effectively cancel the I/Q imbalance induced mirror-frequency interference in case of the modulator feedback mismatch. In practice, such STF design is easy to implement within the existing converter circuitry, as will be demonstrated in this article. The latter part of the article proposes a novel complex multiband QΣΔM scheme, particularly aimed for the CR receivers. This multiband scheme allows parallel reception of scattered frequency chunks in the CR context and is stemming from the additional degrees of freedom in noise transfer function (NTF) design, provided by the QΣΔM principle. Here multiple noise shaping notches on distinct frequencies are effectively realized through proper design of complex NTF. The modulator structure also allows flexible reconfigurability of the notches with straightforward parameterization of the modulator transfer functions. When combined with the above mirror-frequency rejecting STF design, the concept is demonstrated and proved effective and robust against I/Q imbalances using practical radio signal simulations in realistic received signal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D. Ariananda, M.K. Lakshmanan, H. Nikoo, A survey on spectrum sensing techniques for Cognitive Radio, in Proc. 2nd Int. Workshop Cognitive Radio and Advanced Spectrum Manage (2009), pp. 74–79

    Chapter  Google Scholar 

  2. P.A. Aziz, H.V. Sorensen, J. Van der Spiegel, Multi band sigma delta analog to digital conversion, in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process. (1994), pp. III-249–III-252

    Google Scholar 

  3. P.A. Aziz, H.V. Sorensen, J. van der Spiegel, Performance of complex noise transfer functions in bandpass and multi band sigma delta systems, in Proc. IEEE Int. Symp. Circuits and Syst. (1995), pp. 641–644

    Google Scholar 

  4. P.A. Aziz, H.V. Sorensen, J. van der Spiegel, An overview of sigma-delta converters: how a 1-bit ADC achieves more than 16-bit resolution. IEEE Signal Process. Mag. 13, 61–84 (1996)

    Article  Google Scholar 

  5. R. Bagheri, A. Mirzaei, M.E. Heidari, S. Chehrazi, M. Lee, M. Mikhemar, W.K. Tang, A.A. Abidi, Software-defined radio receiver: dream to reality. IEEE Commun. Mag. 44, 111–118 (2006)

    Article  Google Scholar 

  6. L.J. Breems, E.C. Dijkmans, J.H. Huijsing, A quadrature data-dependent DEM algorithm to improve image rejection of a complex ΣΔ modulator. IEEE J. Solid-State Circuits 36, 1879–1886 (2001)

    Article  Google Scholar 

  7. J. Crols, M.S.J. Steyaert, Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45, 269–282 (1998)

    Article  Google Scholar 

  8. R.M. Gray, Quantization Noise in ΔΣ A/D Converters, in Delta-Sigma Data Converters (Wiley/IEEE Press, Hoboken, 1995), pp. 44–74, Chap. 2

    Google Scholar 

  9. M. Ismail, D. González (eds.), Radio Design in Nanometer Technologies (Springer, Dordrecht, 2006)

    Google Scholar 

  10. S. Jantzi, Quadrature bandpass delta-sigma modulation for digital radio. Ph.D. dissertation, Univ. Toronto, Toronto, Canada (1997)

  11. S. Jantzi, K.W. Martin, A.S. Sedra, The effects of mismatch in complex bandpass ΔΣ modulators, in Proc. IEEE Int. Symp. Circuits and Syst. (1996), pp. 227–230

    Google Scholar 

  12. S. Jantzi, K.W. Martin, A.S. Sedra, Quadrature bandpass ΔΣ modulation for digital radio. IEEE J. Solid-State Circuits 32, 1935–1950 (1997)

    Article  Google Scholar 

  13. N. Jouida, C. Rebai, A. Ghazel, Built-in filtering for out-of-channel interferers in continuous-time quadrature bandpass delta sigma modulators, in Proc. 14th IEEE Int. Conf. Electronics, Circuits and Syst (2007), pp. 947–950

    Chapter  Google Scholar 

  14. N. Jouida, C. Rebai, G. Ghazel, D. Dallet, Comparative study between continuous-time real and quadrature bandpass delta sigma modulator for multistandard radio receiver, in Proc. Instrumentation and Measurement Technology Conf. (2007), pp. 1–6

    Google Scholar 

  15. B. Le, T.W. Rondeau, J.H. Reed, C.W. Bostian, Analog-to-digital converters. IEEE Signal Process. Mag. 22, 69–77 (2005)

    Article  Google Scholar 

  16. P.-I. Mak, S.-P. U, R.P. Martins, Transceiver architecture selection: review, state-of-the-art survey and case study. IEEE Circuits Syst. Mag. 7(2), 6–25 (2007)

    Article  Google Scholar 

  17. J. Marttila, M. Allén, M. Valkama, I/Q imbalance effects in quadrature ΣΔ modulators—analysis and signal processing, in Proc. IEEE Int. Microwave Workshop Series RF Front-ends for Software Defined and Cognitive Radio Solutions (2010), pp. 1–4

    Chapter  Google Scholar 

  18. J. Marttila, Quadrature sigma-delta ADCs: modeling and signal processing. M.Sc. Thesis, Tampere Univ. of Technol., Tampere, Finland (2010)

  19. J. Mitola III, Cognitive radio—an integrated agent architecture for software defined radio. Ph.D. Dissertation, Royal Inst. of Technol., Stockholm, Sweden (2000)

  20. J. Mitola, Cognitive radio architecture evolution. Proc. IEEE 97, 626–641 (2009)

    Article  Google Scholar 

  21. K. Muhammad, R.B. Staszewski, D. Leipold, Digital RF processing: toward low-cost reconfigurable radios. IEEE Commun. Mag. 43, 105–113 (2005)

    Article  Google Scholar 

  22. K.-P. Pun, C.-S. Choy, C.-F. Chan, J.E. da Franca, An I/Q mismatch-free switched-capacitor complex sigma–delta modulator. IEEE Trans. Circuits Syst. I, Express Briefs 51, 254–256 (2004)

    Article  Google Scholar 

  23. B. Razavi, Design considerations for direct-conversion receiver. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 44, 428–435 (1997)

    Article  Google Scholar 

  24. B. Razavi, RF Microelectronics (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  25. S. Reekmans, P. Rombouts, L. Weyten, Mismatch insensitive double-sampling quadrature bandpass ΣΔ modulation. IEEE Trans. Circuits Syst. I, Regul. Pap. 54, 2599–2607 (2007)

    Article  Google Scholar 

  26. A. Rusu, B. Dong, M. Ismail, Putting the “flex” in flexible mobile wireless radios. IEEE Circuits Devices Mag. 22, 24–30 (2006)

    Article  Google Scholar 

  27. R. Schreier, An empirical study of high-order single-bit delta-sigma modulators. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 40, 461–466 (1993)

    Article  Google Scholar 

  28. R. Schreier, G.C. Temes, Understanding Delta-Sigma Data Converters (Wiley, Hoboken, 2005)

    Google Scholar 

  29. M. Valkama, J. Pirskanen, M. Renfors, Signal processing challenges for applying software radio principles in future wireless terminals: an overview. Int. J. Commun. Syst. 15, 741–769 (2002)

    Article  MATH  Google Scholar 

  30. N. Vun, A.B. Premkumar, ADC systems for SDR digital front-end, in Proc. 9th Int. Symp. Consumer Electronics (2005), pp. 14–16

    Google Scholar 

  31. J. Yang, R.W. Brodersen, D. Tse, Addressing the dynamic range problem in cognitive radios, in Proc. IEEE Int. Conf. Commun. (2007), pp. 5183–5188

    Google Scholar 

  32. L. Yu, W.M. Snelgrove, A novel adaptive mismatch cancellation system for quadrature IF radio receivers. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 46, 789–801 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Marttila.

Additional information

This work is supported by the Academy of Finland, the Finnish Funding Agency for Technology, Innovation (Tekes), Technology Industries of Finland Centennial Foundation, HPY Research Foundation and Nokia Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marttila, J., Allén, M. & Valkama, M. Quadrature ΣΔ Modulators for Cognitive Radio—I/Q Imbalance Analysis and Complex Multiband Principle. Circuits Syst Signal Process 30, 775–797 (2011). https://doi.org/10.1007/s00034-011-9302-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9302-0

Keywords

Navigation