Skip to main content
Log in

Flexibility and Reusability in the Digital Front-End of Cognitive Radio Terminals

  • Cognitive Radio-based Wireless Communication Devices
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Emerging communication paradigms like the cognitive radio require extremely flexible physical layer functional units that can be parameterized at runtime for supporting multiple modes. Parameterizing the hardware accelerators in the cognitive radio baseband incurs a latency penalty, which is a function of the amount of reconfiguration data required by the accelerators. In an opportunistic spectrum access scenario, the cumulative latency required to reconfigure all the physical layer units when switching to a new channel reduces the useful time available for transmission, leading to a lower system throughput. Against this background, this paper gives an overview of the amount of reconfiguration data required by different candidate accelerator architectures for performing the computationally intensive channelization function, in the digital front-end of the cognitive radio terminal. The paper also identifies opportunities for reusing hardwired stages of a channelization accelerator across multiple modes, while minimizing the reconfiguration overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Andriamisaina et al., Synthesis of multimode digital signal processing systems, in Proc. Second NASA/ESA Conference on Adaptive Hardware and Systems (2007), pp. 318–325

    Chapter  Google Scholar 

  2. C.J. Barrett, Low-power decimation filter design for multi-standard. Technical Report No. UCB/ERL M97/88, University of California, Berkeley (1997)

  3. J. Becker et al., Dynamic and partial FPGA exploitation. Proc. IEEE 95(2), 438–452 (2007). Special Issue: Advanced Automobile Technologies

    Article  Google Scholar 

  4. G. Bellile, O. Dujardin, Architecture of a programmable FIR filter co-processor, in Proc. IEEE International Symposium on Circuits and Systems (1998), pp. 433–436

    Google Scholar 

  5. K.V. Berkel et al., Vector processing as an enabler for software-defined radio in handheld devices. EURASIP J. Appl. Signal Process. 2005(1), 2613–2625 (2005)

    Article  Google Scholar 

  6. D. Cabric, S.M. Mishra, R.W. Brodersen, Implementation issues in spectrum sensing for cognitive radio, in Proc. Asilomar Conf. on Signals, Syst., and Comput. (2004), pp. 772–776

    Google Scholar 

  7. C. H Chang, J. Chen, A.P. Vinod, Information theoretic approach to complexity reduction of FIR filter design. IEEE Trans. Circuits Syst. I 55(8), 2310–2321 (2008)

    Article  MathSciNet  Google Scholar 

  8. K. Chapman, Fast integer multipiers fit in FPGA’s. EDN 1993 Design Idea Winner, EDN May 12th (1994)

  9. K.H. Chen, T.D. Chiueh, A low-power digit-based reconfigurable FIR filter. IEEE Trans. Circuits Syst. II, Express Briefs 53(8), 617–621 (2006)

    Article  MATH  Google Scholar 

  10. L. Chiou et al., Synthesis of application-specific highly-efficient multi-mode systems for low-power applications. ACM Trans. Embed. Comput. Syst. 4(1), 168–188 (2005)

    Article  MathSciNet  Google Scholar 

  11. X. Chong et al., Order-configurable programmable power-efficient FIR filters, in Proc. Third International Conference on High-Performance Computing (1996), p. 357

    Chapter  Google Scholar 

  12. C.T. Chou et al., What and how much to gain by spectral agility? IEEE J. Sel. Areas Commun. 25(3), 576–588 (2007)

    Article  Google Scholar 

  13. S. Chu, C. Burrus, Multirate filter designs using comb filters. IEEE Trans. Circuits Syst. 31(11), 913–924 (1984)

    Article  Google Scholar 

  14. C. Corderio et al., IEEE802.22: An introduction to the first wireless standard based on cognitive radios. J. Commun. 1(1), 38–47 (2006)

    Google Scholar 

  15. G. De Micheli, Synthesis and Optimization of Digital Circuits (McGraw-Hill, New York, 1994)

    Google Scholar 

  16. J. Delorme et al., New OPBHWICAP interface for real-time partial reconfiguration of FPGA, in Proc. of the International Conference on ReConFigurable Computing and FPGAs (2009), pp. 386–391

    Chapter  Google Scholar 

  17. A.G. Dempster, M.D. Macleod, Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 42(9), 569–577 (1995)

    Article  MATH  Google Scholar 

  18. A.T. Erdogan, T. Arslan, Low power FIR filter implementations based on coefficient ordering algorithm, in Proc. of IEEE Computer Society Annual Symposium on VLSI: Emerging Trends in VLSI Systems Design (2004), p. 226

    Google Scholar 

  19. D.D. Gajski et al., Essential issues for IP reuse, in Proc. of Asia and South Pacific Design Automation Conference (2000), pp. 37–42

    Google Scholar 

  20. B.L. Gal et al., HLS design flow for the synthesis of multimode systems under multiple constraints, in Proc. IEEE International Conference on Electronics, Circuits and Systems (2007), pp. 314–317

    Chapter  Google Scholar 

  21. G. Ganesan, Y. Li, Cooperative spectrum sensing in cognitive radio networks, in Proc. of IEEE Dyspan (2005), pp. 137–143

    Google Scholar 

  22. K. Gentile, Digital pulse-shaping filter basics. Appl. Note, AN-992, Analog Devices, 1–12 (2007)

  23. A. Ghasemi, E.S. Sousa, Collaborative spectrum sensing for opportunistic access in fading environments, in Proc. of IEEE Dyspan (2005), pp. 131–136

    Google Scholar 

  24. R. Hartenstein, Basics of Reconfigurable Computing. Embedded Computing—A Low Power Perspective (Springer, Berlin, 2007)

    Google Scholar 

  25. T. Hentschel, G.P. Fettweis, Sample rate conversion for software radio. IEEE Commun. Mag. 38(8), 142–150 (2000)

    Article  Google Scholar 

  26. T. Hentschel, G.P. Fettweis, Continuous-time digital filters for sample-rate conversion in reconfigurable radio terminals. Frequenz 55, 185–188 (2001)

    Article  Google Scholar 

  27. T. Hentschel et al., The digital front-end of software radio terminals. IEEE Pers. Commun. 6(4), 40–46 (1999)

    Article  Google Scholar 

  28. S. Huang et al., Opportunistic spectrum access in cognitive radio networks, in Proc. IEEE INFOCOM (2008), pp. 1427–1435

    Google Scholar 

  29. E.B. Hogenauer, An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust. Speech Signal Process. 29(2), 155–162 (1981)

    Article  Google Scholar 

  30. Intersil, Serial I/O Filter, Datasheet, HSP43124 (2007)

  31. F.K. Jondral, Software defined radio—basics and evolution to cognitive radio. EURASIP J. Wirel. Commun. Netw. 2005(3), 275–283 (2005)

    Article  MATH  Google Scholar 

  32. Z. Junchao et al., Parameterized IP core design, in Proc.of the 4th International Conference on ASIC (2001), pp. 744–747

    Google Scholar 

  33. K.Y. Khoo et al., A programmable FIR digital filter using CSD coefficients. IEEE J. Solid-State Circuits 31(6), 869–874 (1996)

    Article  Google Scholar 

  34. N.S. Kim et al., Leakage current: Moore’s law meets static power. Computer 36(12), 68–75 (2003)

    Article  Google Scholar 

  35. V. Kumar, J. Lach, Highly flexible multimode digital signal processing systems using adaptable components and controllers. EURASIP J. Appl. Signal Process. 2006 (2006)

  36. A. Kwentus et al., Application of filter sharpening to cascaded integrator comb decimation filters. IEEE Trans. Signal Process. 45, 457–467 (1997)

    Article  Google Scholar 

  37. W.Y. Lee, I. Akyildiz, Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(10), 3845–3857 (2008)

    Article  Google Scholar 

  38. P. Lysaght, J. Dunlop, Dynamic reconfiguration of field programmable gate arrays, in Proc. Int. Workshop on Field Programmable Logic and Applications (1993), pp. 82–94

    Google Scholar 

  39. R. Mahesh, A.P. Vinod, A new common subexpression elimination algorithm for realizing low-complexity higher order digital filters. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(2), 217–229 (2008)

    Article  Google Scholar 

  40. R.P. Mahesh, A.P. Vinod, New reconfigurable architectures for implementing FIR filters with low complexity. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(2), 275–288 (2010)

    Article  Google Scholar 

  41. J. Mitola III, Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. dissertation, Computer Communication System Laboratory, Department of Teleinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden (2000)

  42. J. Mitola III, G.Q. Maguire, Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  43. N. Moreano, G. Araujo, C.C. de Souza, CDFG merging for reconfigurable architectures. Tech. Rep. IC-03-18, Institute of Computing, University of Campinas SP, Brazil (2003)

  44. A. Nilsson, E. Tell, An accelerator structure for programmable multi-standard baseband processors, in Proc. International conference of Wireless Networks and Emerging Technologies (2004)

    Google Scholar 

  45. M. Potkonjak et al., Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common subexpression elimination. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(2), 151–165 (1996)

    Article  Google Scholar 

  46. L.R. Rabiner, Multirate Digital Signal Processing (Prentice-Hall, New York, 1996)

    Google Scholar 

  47. S. Ramanathan et al., Reconfigurable filter coprocessor architecture for DSP applications. J. VLSI Signal Process. 26(3), 333–359 (2000)

    Article  MATH  Google Scholar 

  48. J. Reed, Software Radio—A Modern Approach to Radio Engineering (Prentice-Hall, New York, 2002), pp. 443–444

    Google Scholar 

  49. T. Rissa et al., Adaptive FIR filter architectures for run-time reconfigurable FPGAs, in Proc. IEEE International Conference on Field-Programmable Technology (2002), pp. 52–59

    Chapter  Google Scholar 

  50. H. Samueli, An improved search algorithm for the design of multiplierless FIR filters with power-of-two coefficients. IEEE Trans. Circuits Syst. 36, 1044–1047 (1989)

    Article  Google Scholar 

  51. K.G. Smitha, A.P. Vinod, A reconfigurable low complexity architecture for channel adaptation in cognitive radio, in Proc. of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2008), pp. 1–5

    Google Scholar 

  52. Synopsys Inc, DW_fir. High-Speed Digital FIR Filter (2009)

  53. A. Tkacenko, Variable sample rate conversion techniques for the Advanced Receiver, in Interplanetary Network (IPN) Progress Report (2007), pp. 42–168

    Google Scholar 

  54. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, New York, 1993)

    MATH  Google Scholar 

  55. J. Vankka, Digital Synthesizers and Transmitters for Software Radio (Springer, New York, 2005)

    Google Scholar 

  56. H. Wang et al., A Survey on MAC protocols for opportunistic spectrum access in cognitive radio networks, in Proc. of International Conference on Computer Science and Software Engineering (2008), pp. 214–218

    Chapter  Google Scholar 

  57. Xilinx Inc.Virtex-4 Configuration Guide, UG071, v1.1 (2004)

  58. T. Zhangwen et al., A high-speed, programmable CSD coefficient FIR filter, in Proc. 4th Int. Conf. ASIC (2001), pp. 397–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Michael.

Additional information

This work is supported in part by the Motorola Foundation and the Merlion Ph.D. Grant 2007, France-Singapore Cooperation Platform for Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael, N., Vinod, A.P., Moy, C. et al. Flexibility and Reusability in the Digital Front-End of Cognitive Radio Terminals. Circuits Syst Signal Process 30, 799–821 (2011). https://doi.org/10.1007/s00034-011-9306-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9306-9

Keywords

Navigation