Skip to main content
Log in

FPGA-Implementation of Parallel and Sequential Architectures for Adaptive Noise Cancelation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a FPGA-based rapid prototyping of an adaptive noise canceller (ANC) using XUP Virtex-II Pro development board and Xilinx System Generator. New parallel and sequential architectures of the ANC are proposed and successfully applied to remove noise from electrocardiogram and speech signals. The pipelined architecture were evaluated and compared to existing high-speed systems using objective measurement tests. By providing comparable filtering performances that of the parallel architectures, the proposed sequential system required fewer material resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Azadet, C.J. Nicole, Low-power equalizer architectures for high-speed modems. IEEE Commun. Mag. 36(10), 118–126 (1998)

    Article  Google Scholar 

  2. M. Bahoura, H. Ezzaidi, FPGA-implementation of a sequential adaptive noise canceller using Xilinx system generator, in Proceedings of the 21th IEEE International Conference on Microelectronics (ICM’09), 19–22 Dec. 2009, pp. 213–216

    Chapter  Google Scholar 

  3. M. Bahoura, J. Rouat, Wavelet speech enhancement based on time-scale adaptation. Speech Commun. 48(12), 1620–1637 (2006)

    Article  Google Scholar 

  4. J.V. Berghe, J. Wouters, An adaptive noise canceller for hearing aids using two nearby microphones. J. Acoust. Soc. Am. 103(6), 3621–3626 (1998)

    Article  Google Scholar 

  5. E. Berti, F. Chiaraluce, N.E. Evans, J.J. McKee, Reduction of Walsh-transformed electrocardiograms by double logarithmic coding. IEEE Trans. Biomed. Eng. 47(11), 1543–1547 (2000)

    Article  Google Scholar 

  6. J. Chen, S. Itoh, A wavelet transform-based ECG compression method guaranteeing desired signal quality. IEEE Trans. Biomed. Eng. 45(12), 1414–1419 (1998)

    Article  Google Scholar 

  7. J.S. Garofolo, L.F. Lamel, W.M. Fisher, J.G. Fiscus, D.S. Pallett, N.L. Dahlgren, DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus, CD-ROM, NTIS edition, 1993

  8. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.Ch. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  9. G.C. Hawkes, DSP: Designing for Optimal Results. Advanced Design Guide. Xilinx Inc, 1.0 edition, 2005

  10. T. Kimijima, K. Nishikawa, H. Kiya, An effective architecture of the pipelined LMS adaptive filters. IEICE Trans. Fundam. E82-A(8), 1428–1434 (1999)

    Google Scholar 

  11. G. Long, F. Ling, J.G. Proakis, LMS algorithm with delayed coefficient adaptation. IEEE Trans. Acoust. Speech Signal Process. 37(9), 1397–1405 (1989)

    Article  MATH  Google Scholar 

  12. K. Matsubara, K. Nishikawa, H. Kiya, Pipelined adaptive filters based on look-ahead-based delayed LMS algorithm. Electron. Commun. Jpn., Part II, Electron. 82(1), 55–62 (1999)

    Article  Google Scholar 

  13. U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 3rd edn. (Springer, Berlin, 2007)

    Google Scholar 

  14. K. Murano, S. Unagami, F. Amano, Echo cancellation and applications. IEEE Commun. Mag. 28(1), 49–55 (1990)

    Article  Google Scholar 

  15. K. Nishikawa, H. Kiya, Pipeline implementation of gradient-type adaptive filters. Electron. Commun. Jpn., Part III, Fundam. Electron. Sci. 84(5), 33–42 (2001)

    Google Scholar 

  16. R. Ramos, A. Mànuel-Làzaro, J. Del Río, G. Olivar, FPGA-based implementation of an adaptive canceller for 50/60-Hz interference in electrocardiography. IEEE Trans. Instrum. Meas. 56(6), 2633–2640 (2007)

    Article  Google Scholar 

  17. A. Suzuki, C. Sumi, K. Nakayama, M. Mori, Real-time adaptive cancelling of ambient noise in lung sound measurement. Med. Biol. Eng. Comput. 33(5), 704–708 (1995)

    Article  Google Scholar 

  18. B. Widrow, J.R. Glover Jr., J.M. McCool, Adaptive noise cancelling: principles and applications. Proc. IEEE 63(12), 1692–1716 (1975)

    Article  Google Scholar 

  19. J. Wouters, J.V. Berghe, J.B. Maj, Adaptive noise suppression for a dual-microphone hearing aid. Int. J. Audiol. 41(7), 401–407 (2002)

    Article  Google Scholar 

  20. Y. Yi, R. Woods, L.K. Ting, C.F.N. Cowan, High speed FPGA-based implementations of delayed-LMS filters. J. VLSI Signal Process. 39(1–2), 113–131 (2005)

    MATH  Google Scholar 

  21. V. Zarzoso, A.K. Nandi, Noninvasive fetal electrocardiogram extraction: Blind separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng. 48(1), 12–18 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bahoura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahoura, M., Ezzaidi, H. FPGA-Implementation of Parallel and Sequential Architectures for Adaptive Noise Cancelation. Circuits Syst Signal Process 30, 1521–1548 (2011). https://doi.org/10.1007/s00034-011-9310-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9310-0

Keywords

Navigation