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circuits, making the topic of the nonlinearity of such circuits simpler.  This approach 
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1.  Introduction 
 
1.1.  General 
 

     As is well known, linear and nonlinear systems possess different properties. 

Switching circuits and systems are no exception to this view [5], and the study of the 

conditions for their linearity and nonlinearity is interesting and timely because, being 

suitable technologically, such systems have become a common performance/design 

tool.    

     The "switching nonlinearity" can be obtained without any typical "analytical 

nonlinearity" overstress of the magnetic or ferroelectric, etc., material.  The elements 

being switched can be the usual linear time invariant (LTI) elements, specified for 

voltage and current stresses that are much higher than the stresses actually appearing 

in the switched unit, even if this unit exhibits a strong nonlinearity in its functioning.  

That is, there is no problem of reliability of the elements, which is not so for a 

ferromagnetic-core inductor or a ferroelectric-layer capacitor for which any exhibition 

of a strong nonlinearity (usually needed for a not-too-weak nonlinearity of the whole 

circuit) means an overstress as regards the specification of the element. 

    The "switching nonlinearity" is obtained just by proper control of the switching, 

and is exhibited in each time interval in which at least one such properly controlled 

switching occurs.  Thus, it is technologically no more difficult to obtain nonlinear 

switched circuits than linear (LTV) switched circuits.  This circumstance positively 

influences both the applications and the theoretical role of the nonlinear circuits. 
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1.2.  The state-space outlook of [5]  
 

     Let us first recall the position of [5] which the outlook developed in the present 

work methodologically completes.   

     The general situation is [5] that the switching operation leads either to a nonlinear 

(NL), or a linear time-variant, (LTV) circuit.  If the instances of switching are defined 

by state-variables x ={xk}, i.e. by the functions (voltages or currents) that have to be 

determined, then the system is NL, and if the switching instances are prescribed, i.e. 

known a priori, then the system is LTV.  One readily sees this distinction 

equationally.   

     In the first case, the space-state equations for the state vector x(t) can be presented  

as     

                                        dx/dt = [A(t*(x))]x + [B(t*(x))]u(t) ,                         (1) 

 

where t* are the switching instants, here defined by the state variables (x � t*), and u 

are the inputs.  More simply written, (1) becomes 

 

                                              dx/dt = [A(x)]x + [B(x)]u(t)                                 (1a)                

 

and is obviously nonlinear. 

    In the second case, each moment of singularity t* is actually defined by some 

known time function f(t);  f(t) � t*,  or  t* = t*(f(t)), simply written as t*(t), and we 

have  

                                         dx/dt = [A(t*(t))]x + [B(t*(t))]u(t)                            (2) 

or 

                                              dx/dt = [A(t)]x + [B(t)]u(t)                                   (2a) 

which is obviously linear.  

     When considering the very fact that we deal with a switching system, both (1) and 

(2) can be written as 

 

                                           dx/dt = [A(t*(.))]x + [B(t*(.))]u(t) ,                         (3) 

 

which means that the situation of linearity or nonlinearity depends on the control of 

the switching instants.  It may be said that leaving in (3), i.e. in the notation t*(.), the 

possibility of  x � t*  is the essence of the outlook on linearity and nonlinearity of 

switched systems developed in [5] and references given there. 

     The point is not so much to obtain an analytical solution for t*(.); the numerical 

values t* are some easily electronically "on line"-measurable (detectable) functionals 

of the functions x(t), and as is explained below, the very map x � t*, i.e. a 

dependence of t* on x can be easily stated (created) in the switched system.    

     In some circuit situations the nonlinear case can be named "feedback control" of 

the switching instants or of the values of the switched elements, which are included in 

the matrices in (1) (see [5] for more details), but it is important to see that the 

components of x controlling the switching can be any state variables of the system, 

not necessarily its intended outputs.  

     This classification of dynamic equations with time singularities as linear or 

nonlinear can be relevant to different fields of science.  As a somewhat informal 

example, being closest to operational research, consider the state (of the blood 

pressure, or simply the mood, etc.) of a patient in a hospital as a time function x(t), 
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and assume first that giving medicines for all the patients (x denotes their states) in 

the hospital is done at prescribed time instances t*, i.e. independently of x.  Then the 

system (process) is of the type "[A(t)]", i.e.  linear, as (2,2a). 

     Assume now that the medicines are given each time when it is individually 

requested by the patients.  This obviously means x � t*, or "[A(x)]" in terms of 

(1,1a), and the system/process is nonlinear.  Only in the latter case can a "chaos" (or, 

rather, some critical complexity that can lead to a dangerous or even a catastrophic 

disorder in the hospital) occur. 

     Looking around, one can observe different examples of linearity and nonlinearity 

through such "singular system thinking", i.e. through analysis of the nature of the 

points of singularity of the physical processes.  Work [5] even explains the tendency 

to chaotic movement in a statistical ensemble of particles by a dynamic nonlinearity 

of the "switching type".   That is, this type of nonlinearity is clamed to be typical in 

many natural processes.  

 
1.3. How can one create the switching nonlinearity in an electronic circuit?  
  

    Work [5] and references there explain that the most suitable method of creating the 

dependences t*(x) is by using electronic comparators having at least one of their 

inputs as an x(t).  The outputs of the comparators are some pulses triggering the 

switches at the instants t*, and thus a circuit realization of the nonlinear map x � t* 

is obtained.  See Fig. 1. 

 

                     

Comparator

x (t)
t*

operated
Switch

 at t*

The switched
element

f ( t)  
 
 

Fig. 1:  A switching subsystem somewhere inside a system under study.  The comparator's input x(t) 

causes nonlinearity of the whole system, because the switching instant t* and the switched at t* 

element (e.g. a capacitor, and thus also the matrix [A] in (1), which includes the capacitance) depend 

on x(t) as in (1).   The switching instant t* appears as the instant of the crossing by x(t) the reference 

function f(t) for which the options ((a)-(c)) are given in the main text.  Some switching pulse (not 

shown in the figure) is generated at t* to operate the switch.     

 

     In such a system, a switch can be operated at the instant when a state variable x(t) 

(graphically) crosses some level (the other input of the comparator) that can be: 
 

   (a)  a constant level (most usually),  
 

   (b)  a known (prescribed) function f(t), 
 

   (c)  another state variable. 
 

In each of these cases, the instant of switching is defined by x(t), and in case (c) even 

by two state variables. 

     We thus create nonlinearity by means of directly comparing some x(t) to a fixed 

level or to another function. 

     In [14] another way is found; namely some functionals of the state variables are 

created (calculated on line), and the switching instances are defined when these 
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functionals reach some prescribed levels.  This is, of course, also a form of the map x 

� t*, i.e. the t*(x)-nonlinearity, though this nonlinearity of the whole system in which 

some linear subsystems are thus switched is not observed in the analysis in [14].  

Work [6] makes this basic point clear, making it possible to refer to the system of [14] 

as to a nonlinear system, and seeing the chaotic state obtained there as a result of the 

switching nonlinearity, i.e. just in view of (1,1a). 

     It is interesting to know how to create the t*(x)-nonlinearity in different ways, and 

many other switching circuits and systems, e.g. those also appearing in [2-4] and 

references cited there, should be considered in terms of the "t*(.)-outlook". 

     The method of dimensional analysis of the "switching nonlinearity" to which we 

now pass on cannot compete with the described t*(.)-outlook in its generality, but 

completes it by introducing some methodological simplicity.  

 

 

2.  The nonlinearity of a switched circuit in terms of dimensional argument 
             

    Let us speak about an "analytically compact" circuit in which all state variables are 

mutually connected.  For such a circuit any switching causes a singularity in any of 

the state variables (though these singularities may be very different), and we can 

speak about any x(t).   

    Let us consider, for such a circuit, the operationally simplest nonlinear case of a 

state variable x(t) crossing a constant (critical) level xcr , i.e. item (a) in Section 1.3.  

This crossing defines the instance t* at which a switch has to be operated (Fig.1), as a 

solution of the equation  

 

                                                            x(t*)  =  xcr .                                   (4) 
 

Thus found, t* obviously depends on the parameters defining x(t), which is the sense 

of the map x � t*. 

     The physical dimension of  xcr is as that of x(t), and if x(t) contains an amplitude-

type parameter xo (acquired from an initial condition, or an input function, -- below 

we give examples for both cases) of the same dimension, then we have to consider the 

non-dimensional ratio o

cr

x

x
 and the inevitable, in view of (4), dependence of t* on this 

ratio. 

     While for a linear system, for which no component of x is involved in any 

switching control, it must simply be 

 

                                                               x(t) ~ xo , 

 

when crx is involved, the dependence of x(t) on xo (and thus the whole system under 

study) becomes nonlinear.  Indeed, considering the physical dimensions, we have to 

write  

                                    1 2,
1 2

( ) ( ; , ...; , ,...)o
o

cr

x t t
x t x F

x
λ λ

τ τ
=  ,                 (5) 
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having included in the appearing function F: the ratio /o crx x  that interests us, some 

non-dimensional constant parameters 1 2, , ...λ λ  characterizing a circuit's structure in 

some relative or proportional units, and the circuit's time-constants 1 2, , ... .τ τ .  In 

general, F includes all the influencing non-dimensional parameters.        

     Considering that  

                                                   2 1 1 3 2 1; ,...τ ξ τ τ ξ τ= =  

where  

                                                       32
1 2

1 1

, , ...
ττ

ξ ξ
τ τ

= =  

 

are non-dimensional parameters of the type 1 2, ,...λ λ , we can include 1 2, ,...ξ ξ  into 

1 2, ,...λ λ , rewriting (5) as: 

                                          1 2
1

( ) ( ; , ,...; )o
o

cr

x t
x t x F

x
λ λ

τ
=  ,                    (6) 

 

having only one non-dimensional variable containing time.  One may find such 

inclusion of the time variable more physical.   

     When wishing to check (6), one can use it in (4), obtaining 

 

                                             1 2
1

*
( ; , ,...; )o cr

cr o

x xt
F

x x
λ λ

τ
=  ,                       (4a) 

                                         

which obviously yields (requires) * *( / )o crt t x x= , in agreement with the initial point 

of the argument. 

     Mutual connection of the time- (here, t*) and the amplitude- (here, ox ) type 

parameters is typical for nonlinear systems, and since many oscillators exhibit 

nonlinearity via the amplitude-time dependencies in their dynamics, it can be 

expected that the dimensional argument can be applied, in particular, to the theory of 

oscillators.   

     The amplitude-type parameter xo plays a very important role below.  First of all, it 

is obvious from (6) that if crx  is (as we generally assume) an independent parameter, 

then any influence of crx  in (6) means a nonlinear dependence of x(t) on the input 

(initial) parameter xo, that is, x(t) and the whole process, or system, are nonlinear. 

     Furthermore, (6) also simply shows linearity of a system, and not only in the trivial 

cases of no crx  existing, or for crx →∞  (i.e. crx  becoming so large that no level-

crossing and resultant switching can occur), but also in the nontrivial case when 

~cr ox x  (i.e. crx  is not independent) when, in (6), F ceases to be dependent on ox .  

The importance of the latter case will be illustrated later. 

     In general, the dimensional argument can classify the systems as linear or 

nonlinear very simply, but some nontrivial points associated with a commonly used 

circuit over-idealization can arise, as will be discussed in Section 3.  
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2.1.  The first circuit example 
 

   The circuit shown in Fig. 2 appears in [5].  Switch S1 is closed at  t = t1 = 0,  and 

then S2 is closed at some moment t2. 

 

                                 

S
2

+
C

v
c

S
1

t
1
 = 0 t

2
 > 0

R
1

R
2

 
 

 
Fig. 2:  A circuit considered for two modes of its operation.  Switch S1 is closed at t = 0, and 

then S2 is closed either at some (any) prescribed/independent moment, or when vc reaches a 

certain level vcr.  In the first case, t2 is independent of vC, and the circuit is linear (LTV).  In 

the second case, t2 depends on vcr and thus inevitably on vC (which, in the terms of (1-4) is our 

'x'), and the circuit is nonlinear. 

 

 

   Based on the "t*(.)-argument", we can expect that: 
 

  1.  If t2 is prescribed, then the circuit is linear, and vc(t) is directly proportional to vo 

over the whole time axis.   
 

  2.  If the switching of S2 occurs when vC(t) decreases to a certain level vcr < vo, i.e. 

when the instant of switching t2 depends on vC, then the circuit is nonlinear, which is 

simply seen from the fact that for  t > t2,  vC(t) is not directly proportional to vo.   

 

    Indeed, by direct analysis of the circuit, work [5] shows that in the second case 

 

                                                             2 1 ln o

cr

v
t

v
τ=                                          (7) 

and 

                                           

1

2 2

1

2 2
2

( )

~ , .

t

o
c cr

cr

t

o

v
v t v e

v

v e t t

τ
τ τ

τ
τ τ

−

−

 
=  

 

>

  ,                        (8) 

           

where τ1 = R1C,  and  τ2 = R1R2(R1+R2)
-1

C < τ1. 

     Since τ1 ≠ τ2, the dependence of vC(t) on vo, given by (8), is nonlinear for any time 

interval including t2 (for instance 0 < t < ∞ ), and thus it is concluded that for the 

second case/mode the circuit is nonlinear. 
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2.2.  Application of the dimensional argument to the circuit of Fig.2  
 

     Let us now, not using the precise solution, just by making (6) and the associated 

arguments less abstract, explain why when t2 is prescribed the above circuit is linear, 

and in the opposite case – nonlinear.   

     When t2 is prescribed, i.e. no vcr is introduced; among the given parameters only vo 

gives the unit of volt that is necessary for the resulting vC(t).  Thus, by the dimensional 

reasons, it must be that 

                                                 

1 2
( ) ( , )c o

t t
v t v F

τ τ
= ,  t∀ ,                           (9) 

 

with non-dimensional function F(.), or, using, in the spirit of (6), the fact that 

1

2 2 1

t tτ
τ τ τ

= ⋅ , and somewhat changing the structure of 'F', we have 

                                                    1

2 1
( ) ( , )c o

t
v t v F

τ
τ τ

=  .                                (9a)  

 

This case is linear since ( ) ~c ov t v .                                                       

     In the case when vcr is introduced, having both vo and vcr measured in volts, we 

have one more non-dimensional parameter, 
vo

vcr
.  When this parameter is not too 

small, i.e. when the equation ( )c crv t v=  has a solution t*, i.e. the switching actually 

occurs (otherwise existence of the parameter vcr cannot be verified), it influences the 

process, and we have to modify (9a) to  

 

                                                 1

2 1
( ) ( ; , )o

c o
cr

v t
v t v F

v

τ
τ τ

=  .                          (10) 

 

According to (10), the (any) influence of vcr makes ( )v tc  nonlinear by vo, and this 

case is nonlinear.  The dimensional argument immediately makes the nonlinearity 

obvious. 

     We turn now to a popular, but not quite simple circuit.  First, the idealizations 

leading to δ-functions and thus hiding the realistic possibility of obtaining a 

nonlinearity, will be considered.  Then the case of linearity, mentioned regarding (6), 

i.e. given by means of the proportion ~cr ox x , will be illustrated.   

 

 

3.  The dimensional argument and circuits' over-idealizations 

 

In some idealized cases, when δ-type current spikes, caused by sources of finite 

voltages, are allowed to occur (think about x(t) in view of (4)), it is impossible to 

directly use comparators of the time functions for creating t*(x).  The resistors are 

necessary since we need a finite slope of the function x(t) at the level-crossing with 
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crx , for the dependence of t* on the parameters included in x(t), i.e. x � t*, be 

determined from (4). 

     In a special form, this problem is also seen in the above circuit analysis, namely, if 

we let both R1 and R2 be zero in the nonlinear by vo factor included in (8),  

  

                                                      

1 1

2 2

(1 )
R

R
o ov v

τ
τ

+
=  ,                                (11) 

 

having R1/R2 ≥  0 undefined, perhaps even zero, then the very fact of nonlinearity 

becomes vague. 

 
3.1.  The second circuit 
 

The idea of taking zero resistances in the previous circuit is, however, not practical 

from any point of view, but if we turn to the circuit in Fig. 3, then we have to face its 

common interpretation as an SCC modeling a resistor, just for R1 and R2 zero.  

R1
S1

C

E

+

S2 R2

+
vc

 
Fig 3:  A circuit with a dc source.  1S  and 2S  act alternatively, ( , )↑ ↓  and ( , )↓ ↑ , with the 

same frequency, providing charging and discharging of the capacitor.  Usually, one sets 

1R and 2R zero (which is unrealistic for several reasons, even formally prohibited [5] for 

lumped circuits by basic circuit theory, concerned with the frequency ranges of the signals, 

but accepted for the analysis of some applications of this well-known SCC), obtaining δ-type 

current spikes, making it impossible, in view of (4), to use any voltage levels to influence the 

moments of starting the charging and/or discharging of the capacitor.  The over-idealization 

of zero 1R  and 2R , not allowing us to introduce any vcr and a nonlinearity according to (4) 

and (6), cannot be accepted here.  

 

     In the usual version of the circuit, when the resistors are assumed be zero and all 

the processes are infinitely quick, the switches are operated with the prescribed 

frequency f which can be "any", and in terms of the average current taken from the 

battery, one is able to obtain model of the averaged linear frequency-controllable 

resistor R(f) = (fC)
-1

.  The switching instances are ("externally") prescribed here.  

     This usual case is an idealized one, and there is no place for introducing any vcr , in 

this case.  However, being interested in setting our conditions for linearity and 



Emanuel Gluskin, "Physical units analysis .." arXiv:1008.2825v4 [nlin.SI] posted 16 June, 2011 

 
9 

nonlinearity in this switching realization of the resistor, we have to use some vcr for 

the operation of at least one of the switches.  

    Thus we assume -- for both the linear and nonlinear versions thus appearing, -- 

some small realistic nonzero resistors R1 and R2, and using some vcr, consider 

different cases of operation of 1S  and 2S , which give linear and nonlinear versions of 

the changed circuit. 

    This time let us use only the dimensional argument, starting from the nonlinear 

case. 

 
3.2.  The dimension analysis of the circuit of Fig. 3 
 

    For this circuit, E plays the role of  xo in (6), and according to (6) if the moment of 

closing of, e.g., S2 depends on some critical level vcr, then vc(t) must depend on E 

nonlinearly, 

                                                 

1
( ) ( , ,....)c

cr

E t
v t E F

v τ
= ⋅  .                           (12) 

 

This nonlinearity means, in particular, that the equivalent resistor, "seen" by the 

battery, is nonlinear. 

     The introduced resistors strongly change the conditions for the circuit operation. 

There is no infinitely quick time process now, but we have the usual exponential 

processes that continue, in principle, for an infinite time, if full charging or full 

discharging of the capacitor is required.  For obtaining a periodic process, we must 

limit the charging and discharging to certain voltage levels, which are reached by 

( )v tc .  This can be associated with some operational requirements as follows, which 

can, as well, make the linear case not quite trivial, but the dimensional argument 

demonstrates its effectiveness in this case too. 

     Let us choose the criterion for the switching of S1, which starts (in a periodic 

process) the charging, when 1( )cv t k E= , and the criterion for switching S2, which 

starts the discharging, when 2( )cv t k E= .  For instance, taking 1 0.1k =  and 

2 0.9k = , we have good use of the battery range/voltage for any E, which is a 

practical point.  In order to simply see that in the case when each vcr is only thus, and 

not independently, involved, we have a linear circuit we substitute the chosen levels 

of vcr(E), 1k E  and 2k E , into (12) rewritten for this case as 

                                         
1 2 1

( ) ( , , ,....)c
cr cr

E E t
v t E F

v v τ
= ⋅  .                     (12a) 

 

The substitution of  1 1crv k E=   and  2 2crv k E=   eliminates E in F(.): 

 

                                          
1 2 1

1 1
( ) ( , , ,....) ~c

t
v t E F E

k k τ
= ⋅ ,                     (13) 

 

making it obvious that for such operation of the switches the system is linear. 

     Of course, the same conclusion is obtained if we first rewrite (12) not as (12a), but 

as 
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                                          1

1 1 2
( ) ( , , ,...)cr

c
cr cr

vE t
v t E F

v vτ
= ⋅ .                       (12c) 

 

     When using such 1crv  and 2crv  in addition to the independent crv appearing in 

(12), we have a nonlinear circuit. 

     Thus, equation (6) appears to be useful in both proving nonlinearity and linearity 

in the different possible cases.  

 

 

4.  Conclusions 
 

We have compared two new outlooks, a state-space one [5] and the new dimensional 

one, on the nonlinearity of switched systems.  Hopefully, these outlooks can make the 

classification of systems as linear and nonlinear easier and more physically interesting 

for many readers, while a system theorist may find some research aspects here.  

Works [7-11] may be recommended for further reading regarding the t*(.)-outlook, 

including (see, especially, [9,11]) the topic of sampling circuits.  The problem of 

determination and classification of different possible ways of obtaining the "switching 

nonlinearity" t*(x) seems to be important for a theoretician and a designer.   

    Equation (6) allows one to simply see the nonlinearity, but the sometimes present 

"over-idealization" of circuits should be avoided.  The systematic use of scaling 

factors (as vo and E) in the dimensional analysis is emphasized.   

     Sources [13,15,16] present a general introduction to switched circuits, and the 

classical pedagogical work [1] should not be missed. 

     It is worth noting that the use of dimensional argument is better known in physics 

than in circuit-theory literature, and for instance, in the many-volume "Course of 

Theoretical Physics" by L.D. Landau and E.M. Lifshitz many interesting examples 

can be found.  However, the traditional use of the dimension argument reveals the 

qualitative dependence of a solution on all the given parameters, while here, focusing 

on the scaling factors, we specifically orient this argument to revealing the 

nonlinearity (or linearity) of a system, to increase the understanding of switched 

systems.  As far as we know, this approach is novel. 

     Informally, the basic motivation for the research presented in [5-11] and here 

includes the wish to start to speak about system theory in heuristically useful, simple 

terms having general educational importance.  According to this motivation, the 

Appendix focuses on some conceptual and logical problems whose proposed 

discussion should be helpful for the heuristic axiomatization.  Hopefully, the 

constructive line of thought of the Appendix might be accepted by the supporters of a 

more formal approach, because it is just mathematics that gives us the inspiring 

example of a theory in the foundation of which an axiomatization is found. 
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 Appendix:  Some material for a heuristic axiomatization of system theory 
 

This Appendix considers some problematic points related to the very foundation of 

system theory.  Our opinion is that system theory cannot rely on only some purely 

mathematical system of axioms, because the importance of the linear, or any other 

mathematical space cannot be postulated; it is an empirical fact.  For instance, the 

linear superposition of forces, acting on the same body, is an empirical fact, and even 

inside mathematics per se, the role of the axiomatic concepts and schemes was 

gradually revealed via many "empirical" (analytical and logical) investigations and 

the development of concrete theories.  Historically, the practice has often led 

mathematical thought, and system theory can also thus contribute.   

 
A.1. Nonlinearity as a basic, independent concept 
 

     Sometimes a "nonlinear system" is defined as "not a linear one".  This seemingly 

(philologically) perfect definition is logically wrong, because one cannot define 

anything via something not given.  In the context of our equations, this definition 

possesses the unacceptable form of the definition of [A(x)] as "not [A(t)]", and in the 

terms of the characteristics of circuit elements, it becomes the not more attractive 

definition of a curve as not a straight line. 

     The use of the expression "not a linear one" arises from the historical role of the 

relatively simple linear systems that defined the language of electrical engineering.  

However, the technological situation has changed; it is similarly easy today to create 

linear and nonlinear switched and sampling systems, and it is unclear why, when 

starting to think about a nonlinear effect, we have to recall (by using the words "not a 

linear") linearity at all with its irrelevant ad hoc features. 

     We thus suggest that the term "nonlinear system" be replaced by the terms "x-

system", or "u-system" (Section A.3), or "x-u-system", according to the actual system 

situation.  "Nonlinear x-system", etc., is also acceptable; the point just is that a 

definition has to be constructive.  

 
A.2. System structure and dynamic equations 
 

    The equational form that we use in the main text, 

 

                                            dx/dt  = [A(x)]x + [B(x)]u(t) ,                              (A1)   

 

is preferred to the more usual (and even somewhat more general) normal-form 

  

                                                       dx/dt = F(x,u(t)) ,                                       (A2) 

 

because of some inherent connection of the concept of switching with the concept of 

structure.  This connection is generally (phenomenalogically) seen in (A1), but not in 

(A2).  

     Indeed, one can come to (A1) ([5] for more details) starting from an LTI system 

without any switching, and then introducing the switching which changes the 

elements of this system at t*, thus obtaining [A(x)] as [A(t*(x))].  This derivation of 

(A1) preserves the matrices that in the LTI case directly (even if incompletely) reflect 

the system's structure.  One can thus understand system's nonlinearity as a dependence 
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of the parameters of the system's elements (or of it's structure) on the state variables, 

i.e. on the physical processes occurring in the system.  The heuristically useful (see 

examples in [10]) structural interpretation of an equation, or a system, and its 

nonlinearity is less natural for (A2).    

    The structural point of view should be attractive for a designer to whom the form 

(A1) can give ideas for structural generalizations relevant to modern multi-element 

nonlinear systems.  See also [12].   

 
A.3. System inputs and the nonlinear "u-systems" 
 

    One agrees that for a mathematical formulation of a system, its "inputs", -- a part of 

its structure, -- have to be given.  However, one should not act under the assumption 

that this always is a simple point.  The following example shows how easily a 

nonlinear system can be wrongly classified as a linear one, because of ignorance the 

physical role of a given function.   

    Consider the scalar equation 

 

                                                    dx/dt  +  a(f(t)) x(t)  = 0                            (A3) 

 

in which f(t) (as well as a(.)) is a known function.  Let us assume that f(t) is the input 

(or one of the inputs) of the system that is associated with (A3).  This assumption is 

unusual, because just the right-hand side of an equation is usually considered as the 

input function given directly, or via some known operator.  However we cannot rely 

on the nonmathematical concepts of right and left.              

    If f(t) is the input, then if this system is a linear one, the linear scaling test  

 

                                    ( ( ) ( )) ( ( ) ( ))f t k f t x t k x t→ ⇒ → ,                 (A4) 

 

where k is a constant, has to succeed.  However, if a(.) is not constant, this test 

obviously does not pass in (A3).  (Note that it is possible, and sometimes more 

suitable, to see (A4) thus: the simultaneous substitutions f kf→  and x kx→  do not 

change the equation.)  Thus, if  f(t) is the (an) input, (A3) is a nonlinear equation.  

    Assume now that the known function f(t) is not any input, i.e. it does not belong to 

a set (a linear space over the numerical field) of some known functions from which 

we freely pick up  f(t), or kf(t), or some  k1f1(t) + k2f2(t), etc., but is a fixed function, 

inherent for such a system/device.  Then, we can assume, as is usually done, that the 

right-hand side of (A3) is the input function that, in this particular case, is identically 

zero, i.e. we have the usual LTV equation of the type 

                          

                                                  dx/dt  +  a(f(t)) x(t)  = u(t),                         (A5) 

 

where u(t), and not f(t), is the input.  (An inclusion of u(t) into a(.) would create 

nonlinearity as in (A3).)  

    This argument is easily generalized to vector equations.  The equation 

  

                                                   dx/dt  = [A(u)]x + [B]u(t)                            (A5a) 

 

is nonlinear (and not LTV), despite the fact that the input-vector u(t) may include 

only known functions.  (Again, the freedom in the choice of u(t) is important.) This is 

the "u-nonlinearity", or the "u-system". 
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     The rule here is that an equational term of the type 

 

                                                                x(t)f(t) ,                                            (A6) 

 

in which x(t) is the unknown to be found, and f(t) is a known function, is linear if f(t) 

is not an input, and is nonlinear if f(t) is an input.   

     Thus, without careful analysis of the system's macroscopic structure, which reveals 

what are the 'inputs', one can easily make a mistake in considering the linearity or 

nonlinearity of a system or equation. 

     The fact that modern electronics technology creates systems with very complicated 

multi-element structures that can be seen as some mutually connected subsystems 

with numerous inputs involved, requires that the logical system description, preceding 

the analytical investigation, be done very carefully.  One sees that the concept of 

structure becomes a basic, perhaps axiomatic, concept of modern system theory.   

 
A.4.  Engineering realization, and the proposed symbol 1 2( ) ( )rf f+ ⋅ .  
 

     Another concept worth discussing in the axiomatic sense is the engineering 

concept of realization, especially in its connection with mathematical notations.  We 

shall conduct the relevant discussion around the very basic mathematical notation 

1 2( )( )f f+ ⋅  for 1 2( ) ( )f f⋅ + ⋅ .  There is no objection here to the wide use of the symbol 

1 2( )( )f f+ ⋅  that both makes the writing of the sum more compact, and also overviews 

the whole function as a function of the same argument, by mathematicians.  The point 

is just to legitimize seeing this "whole function" more as if by an empirical scientist or 

engineer, than by a mathematician.  This leads to some necessary stresses, and can 

encourage an engineer to indeed use, -- which is not natural for him as it stands now, -

- the symbol 1 2( )( )f f+ ⋅ .  

     For any mathematician, the expression 1 2( )( )f f+ ⋅  is just a notation for 1 2( ) ( )f f⋅ + ⋅ .  

Still the physical nature of objects is ignored and no other heuristic arguments appear; 

this symbol indeed cannot be anything but the notation for the sum.  However, let us 

consider the fact that the equality 

 

                                                   1 2( )( )f f+ ⋅  = 1 2( ) ( )f f⋅ + ⋅                                   (A7) 

 

also represents the important property of linearity of the sampling ("evaluating") 

operator acting on physical functions.  (In the present context, it is important that we 

speak about time functions.)   

     Indeed, the δ-function's sampling action 

 

                                        
*

*

( *) ( ) ( *) , 0
t a

t a

f t f t t t dt aδ
+

−
∫= − > ,                     (A8) 

is the operator of the map 

                                                T:  t �t*  (or ( ) ( *)f t f t→ )                            (A9) 

 

applied to the f(t).  Because of the linearity of the integral, taking in it 1 2( ) ( )f fα β⋅ + ⋅ , 

with 1α =  and 1β = , (this is sufficient for the argument), we have 

   

                                                      1 2 1 2( )T f f Tf Tf+ = +  ,                                  (A10) 
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i.e.  we obtain, using (A8), that 

 

                                                1 2 1 2( )( *) ( *) ( *)f f t f t f t+ = + .                            (A11) 
 

Since we can perform the sampling at each point of the range of the functions' 

definition (i.e. t* is as arbitrary as t ), (A7) is the same as (A11). 

     The context of the sampling operator shows that 1 2( )( )f f+ ⋅  is not just a notation 

or a definition, because any notation (definition) can be, in principle, given 

arbitrarily, and by itself cannot lead to any essential conclusion, in this case that of 

the linearity of an operator.  One should agree that the feature of linearity of a real 

sampling device, or any other device, is something important.  

      Using now the physical terms, let us interpret 1 2( )( )f f+ ⋅  not as a notation for the 

purely mathematical form 1 2( ) ( )f f⋅ + ⋅ , but as a symbol for the realized summation.   

Then, the left- and the right-hand sides of (A7) obtain different meanings: '+' in 

1 2( ) ( )f f⋅ + ⋅  is the "mathematical order", while '+' in 1 2( )( )f f+ ⋅  is this "order" having 

been realized already.   

      To make the point feasible, let us assume that the linearity of a real electrical 

circuit is checked for the principle of superposition, using two input voltage 

generators, generating some known voltages v1(t) and v2(t).  In order to observe/check 

superposition of the circuit response, we have to perform three independent 

experiments: one with v1(t), one with v2(t), and the third with  v1(t) + v2(t),  as the 

input functions of the system. 

    For the third experiment, we have to build (realize) a generator of the summed 

voltages, this generator to be applied to our system.  Such a generator can (actually, 

will, in order to be sure in correctness of the numerical side) be a series connection of 

the given generators of v1(t) and v2(t), i.e. we create, -- by connecting the plus of one 

generator to the minus of the other (a series connection), -- an electrical circuit, 

whose output voltage is 1 2( )( )v v t+ . 

     However when seeing 1 2( )( )v v t+  just as a notation for v1(t) + v2(t), we have not 

created a circuit.    

     This physically reasonable understanding of 1 2 1 2( )( ) ( ) ( )f f f f+ ⋅ = ⋅ + ⋅  as an equality 

connecting the characteristics of three physical objects appears to be useful in [11] 

where (A7) (see eq. (2) in [11]) is considered for formulating the distinction between 

linear and nonlinear samplings, which is the constructive point of [11].  Namely, 

when the sampling instants are dependent on the function being sampled, then (A11), 

i.e. (A7), ceases to be correct, and for analysis of the (nonlinear) sampling a special 

point of view is developed.    

     Thus, both the sampling operator and the hardware points of view suggest 

understanding of the symbol 1 2( )( )f f+ ⋅  not in the sense of some compactly written 

1 2( ) ( )f f⋅ + ⋅ , but in the sense of realization of the sum. 

     In order to avoid contradiction between the classical and the present 

interpretations, introducing the special notation  

 

                                                            1 2( ) ( )rf f+ ⋅  

 

where the subscript 'r' means "realized", is suggested here. 
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     Of course, the calculated sum is some 1 2( ) ( )rf f+ ⋅  too.  In particular, since the 

result of a numerical calculation occupies some special locations in the computer's 

memory, it is a physically independent object, according to our interpretation of (A7). 

 
A.5. The singular switched and sampling systems and the "real-valued" mathematics   
 

    Let us observe that though complex-plane methods are widely used in the theory of 

switched systems, this theory is more inherently connected with the classical theory of 

the real variable.  The use of electronic comparators (Fig.1) means the use of the 

mathematical comparisons ">" and "<" (here ( ) ( )x t f t> , or ( ) ( )x t f t< ), which are 

defined for real, and not for complex values and functions.  (Just see the comparator's 

action as a realization of Dedekind's "golden cut" A|B that defines the real number via 

the concepts of ">" and "<").  We detect and directly use only the zeros (or level-

crossings, our t*) of real time-functions, and the same can be said about the also very 

important sampling systems ([11] and references there devoted to "Lebesgue's 

sampling").   

     It is also important to note that the theory of chaotic systems, with its numerous 

arithmetical constructions, also basically belongs to the theory of the real variable, 

and even is historically leading in changing the traditional focus (over more than a 

century) of the circuit theory on only the methods of complex analysis.  From the 

present general point of view, this circumstance defines the importance of chaos 

theory even more than its skilful analytical developments do.  

 
A.6. The pedagogical aspect  
 

     The fact that system theory became more "real-valued" should be helpful in 

developing its popularization.  Considering system theory as an independent science, 

one can follow the example of mathematicians and physicists who have written not a 

few well-known excellent popular books, making basic mathematics and physics a 

part of one's general culture. 

      Today, no such parallel is observed in system theory literature.  However, Laplace 

called his famous book "The System of the World", and such possible titles of popular 

books as, for instance, "System theory for everybody", "'Systems' around you", 

"Instabilities and robustness in society", "You as your system", and "The curve that 

wants to be beautiful at each of its points" might motivate system specialists to write 

popular educational texts.  Already the example of the hospital situation, from which 

we started, can lead one to many other relevant examples.  See also [12].  


