Skip to main content
Log in

Comparative Analysis of Tunable Q-Enhancement Filter Cell Topologies in a 2.4 GHz LNA

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The special LNA topologies resulting from loading a simple LNA with a set of Q-enhanced inductors are analyzed and compared. The Q of the on-chip spiral inductors that form the LNA load is enhanced by using a negative resistance realized with a cross-coupled differential pair degenerated and biased in various ways. The performance of the LNA is presented for the following types of Q-enhancement circuit: ideal negative resistor (ideal cell), tail-biased non-degenerated cross-coupled differential pair (classic cell), tail-biased resistively degenerated cross-coupled differential pair (resistive cell), tail-biased LC degenerated cross-coupled differential pair (B-cell), self-biased LC degenerated cross-coupled differential pair (BB-cell). The analysis focuses on the benefits of each cell related to s-parameter response, noise and linearity and the interdependency of Q vs. center frequency during tuning. Low voltage design challenges are addressed by presenting the advantages of the novel self-biased LC degenerated cross-coupled differential pair (BB-cell).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. V. Aparin, P. Katzin, Active GaAs MMIC band-pass filters with automatic frequency tuning and insertion loss control. IEEE J. Solid-State Circuits 10, 1068–1073 (1995)

    Article  Google Scholar 

  2. C. Barth, I.R. Linscott, U.S. Inan, A double notch RF filter architecture for saw-less GPS receivers, in Circuits and Systems (ISCAS), IEEE International Symposium on (2011), pp. 1804–1807. doi:10.1109/ISCAS.2011.5937935

    Chapter  Google Scholar 

  3. D. Bormann, T. Werth, S. Kaehlert, C. Schmits, S. Heinen, A fully integrated q-enhanced notch filter LNA for TX blocker suppression in FDD systems, in Radio-Frequency Integration Technology, 2009. RFIT 2009. IEEE International Symposium on (2009), pp. 154–157. doi:10.1109/RFIT.2009.5383699

    Chapter  Google Scholar 

  4. D. Bormann, T. Werth, N. Zimmermann, R. Wunderlich, S. Heinen, A comparison of bandwidth setting concepts for q-enhanced lc-tanks in deep-sub micron CMOS processes, in Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on (2008), pp. 726–729. doi:10.1109/ICECS.2008.4674956

    Chapter  Google Scholar 

  5. K. Christensen, T. Lee, E. Bruun, A high dynamic range programmable CMOS front-end filter with a tuning range from 1850–2400 MHz, in Analog Integrated Circuits and Signal Processing (Kluwer Academic, Norwell, 2005)

    Google Scholar 

  6. Freescale Semiconductors, MBC13916 general purpose SiGe: C RF cascode low noise amplifier (2006). http://www.freescale.com/

  7. B. Georgescu, I. Finvers, F. Ghannouchi, 2 GHz Q-enhanced active filter with low passband distortion and high dynamic range. IEEE J. Solid-State Circuits 9, 2029–2039 (2006)

    Article  Google Scholar 

  8. X. He, W.B. Kuhn, A 2.5-GHz low-power, high dynamic range self-tuned Q-enhanced LC filter in SOI. IEEE J. Solid-State Circuits 8, 1618–1628 (2005)

    Google Scholar 

  9. W.B. Kuhn, Design of integrated, low power, radio receivers in BiCMOS technologies. PhD dissertation, Virginia Polytechnic Institute and State University (1995). http://scholar.lib.vt.edu/theses/available/etd-81197-164118/unrestricted/KUHN.PDF

  10. W.B. Kuhn, A. Elshabini-Riad, F.W. Stephenson, Centre-tapped spiral inductors for monolithic bandpass filter. Electron. Lett. 1, 625–626 (1995)

    Article  Google Scholar 

  11. W.B. Kuhn, D. Nobbe, D. Kelly, A.W. Osborn, Dynamic range performance of on-chip RF bandpass filters. IEEE Trans. Circuits. Syst. II, pp. 685–694 (2003)

  12. T.H. Lee, The Design of CMOS Radio-frequency Integrated Circuits (Cambridge Univ. Press, New York, 1998)

    Google Scholar 

  13. D. Li, Y. Tsividis, A 1.9 GHz Si active LC filter with on-chip automatic tuning, in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers (2001), pp. 368–369

    Google Scholar 

  14. D. Li, Y. Tsividis, Design techniques for automatically tuned integrated gigahertz-range active LC filters. IEEE J. Solid-State Circuits, pp. 967–977 (2002)

  15. J. Nakaska, J. Haslett, 2 GHz automatically tuned Q-enhanced CMOS bandpass filter, in Microwave Symposium, 2007. IEEE/MTT-S International (2007), pp. 1599–1602. doi:10.1109/MWSYM.2007.379991

    Chapter  Google Scholar 

  16. H. Pekau, J. Kulyk, J.W. Haslett, L. Belostotski, Linearization techniques for cross-coupled transconductor circuits used in integrated q-enhanced lc filters, in Electrical and Computer Engineering, 2006. CCECE ’06. Canadian Conference on (2006), pp. 541–546. doi:10.1109/CCECE.2006.277739

    Chapter  Google Scholar 

  17. W.M. Sansen, Analog Design Essentials (Springer, Berlin, 2006)

    Google Scholar 

  18. C. Schmits, T. Werth, J. Hausner, A new q-enhancement architecture for saw-less communication receiver in 65-nm CMOS, in Radio-Frequency Integration Technology, 2009. RFIT 2009. IEEE International Symposium on (2009), pp. 158–161. doi:10.1109/RFIT.2009.5383743

    Chapter  Google Scholar 

  19. C. Schultz, H. Doppke, M. Hammes, R. Kreienkamp, L. Lemke, S. van Waasen, An l-band receiver-front-end-architecture using adaptive q-enhancement techniques in 65nm CMOS as enabler for single-saw GPS receivers, in Radio Frequency Integrated Circuits Symposium (RFIC) (IEEE, New York, 2011), pp. 1–4. doi:10.1109/RFIC.2011.5940615

    Google Scholar 

  20. P. Wambacq, W.M. Sansen, Distortion Analysis of Analog Integrated Circuits (Kluwer Academic, Norwell, 1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Alberta Informatics Circle of Research Excellence, the University of Calgary, and the Canadian Microelectronics Corporation. Thanks are due to the reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Georgescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgescu, B., Nakaska, J., Finvers, I. et al. Comparative Analysis of Tunable Q-Enhancement Filter Cell Topologies in a 2.4 GHz LNA. Circuits Syst Signal Process 31, 1577–1597 (2012). https://doi.org/10.1007/s00034-012-9398-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9398-x

Keywords

Navigation