Skip to main content
Log in

Calculation of the Second Order Settling Time in SISO Linear Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper clearly defines the second order settling time as a special and most important case of the generalized settling time. A new calculation procedure for second order settling time determination is developed, based on a decomposition of deterministic, random or mixed non-stationary signals in steady-state and transient components. A worked out example illustrates the computation procedure. The derived relations can be implemented in the form of computer programs. Although restricted to SISO linear systems, the procedure developed in this paper covers a lot of practical situations like those encountered in sensors and transducers modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Aminzadeh, K. Mafinezhad, R. Lotfi, Design of three-stage nested-miller compensated operational amplifiers based on settling time. Circuits Syst. Signal Process. 3, 164–172 (2009)

    Google Scholar 

  2. L. Arnold, Stochastic Differential Equations: Theory and Applications (Wiley, New York, 1974)

    MATH  Google Scholar 

  3. K. Dutton, S. Thompson, B. Barraclough, The Art of Control Engineering (Addison Wesley Longman, Harlow, 1997)

    Google Scholar 

  4. W.M. Haddad, S.G. Nersesov, D. Liang, Finite-time stability for time-varying nonlinear dynamical systems, in American Control Conference (2008), pp. 4135–4139

    Chapter  Google Scholar 

  5. A.R. Hambley, Electrical Engineering. Principles and Applications (Pearson Education, Upper Saddle River, 2005)

    Google Scholar 

  6. R. Ionel, V. Tiponuţ, S. Ionel, I. Lie, On settling time in electrical circuits with deterministic and random inputs, in Proceedings of the 12th WSEAS International Conference on Circuits. New Aspects of Circuits, vol. 1 (2008), pp. 206–209

    Google Scholar 

  7. S. Ionel, V. Tiponuţ, C. Căleanu, I. Lie, A unified treatment of deterministic and random transients in electrical circuits. WSEAS Trans. Circuits Syst. 7, 87–95 (2008)

    Google Scholar 

  8. S. Ionel, Über die Berechnung Statistischer Mittelwerte für Ausgleichvorgänge. Rev. Roum. Sci. Tech., Sér. Électrotech. Énerg. 36, 215–223 (1991)

    Google Scholar 

  9. D. Joseph, S. Collins, Transient response and fixed pattern noise in logarithmic CMOS image sensors. IEEE Sens. J. 7, 1191–1199 (2007)

    Article  Google Scholar 

  10. B.Y. Kamath, R.G. Meyer, P.R. Gray, Relationship between frequency response and settling time of operational amplifiers. IEEE J. Solid-State Circuits 9, 347–352 (1974)

    Article  Google Scholar 

  11. A. Lecchini, M. Gevers, Explicit expression of the parameter bias in identification of Laguerre models from step responses. Syst. Control Lett. 52, 149–165 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. B.K. Mishra, S. Save, S. Patil, Design and analysis of second and third order PLL at 450 MHz. Int. J. VLSI Des. Commun. Syst. 2, 97–114 (2011)

    Article  Google Scholar 

  13. N.E. Nwaiwu, B. Lingmu, Studies on the effect of settling time on coliform reduction using Moringa Oleifera seed powder. J. Appl. Sci. Environ. Sanit. 6, 279–286 (2011)

    Google Scholar 

  14. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1991)

    Google Scholar 

  15. A. Pugliese, F. Amoroso, G. Cappuccino, G. Cocorullo, Settling-time-oriented design procedure for two-stage amplifiers with current-buffer miller compensation. Rev. Roum. Sci. Tech., Sér. Électrotech. Énerg. 54, 375–384 (2009)

    Google Scholar 

  16. G. Rizzoni, Principles and Applications of Electrical Engineering (McGraw-Hill, Boston, 2004)

    Google Scholar 

  17. H. Schreiber, Zur Berechnung von Schaltvorgängen zufälliger Prozesse bei linearen Systemen. Nachrichtentechnik 17, 361–363 (1967)

    Google Scholar 

  18. P. Schwarz, Die Berechnung von Schaltvorgängen zufälliger Prozesse mit Hilfe der zweiseitigen Laplace-Transformation. Nachrichtentechnik 17, 363–366 (1967)

    Google Scholar 

  19. M.B.B. Sharifian, R. Rahnavard, H. Delavari, Velocity control of DC motor based intelligent methods and optimal integral state feedback controller. Int. J. Comput. Theory Eng. 1, 81–84 (2009)

    Google Scholar 

  20. R.D. Strum, D.E. Kirk, Contemporary Linear Systems Using MATLAB ® 4.0 (PWS, Boston, 1996)

    Google Scholar 

  21. K. Talukdar, A.K. Mitra, A simulation study on the performance of various label-free electronic biosensors. Int. J. Nano Dim. 2(1), 49–54 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the strategic Grant POSDRU/89/1.5/S/57649, Project ID 57649 (PERFORM-ERA), co-financed by the European Social Fund – Investing in People, within the Sectoral Operational Programme Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Ciprian Ionel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionel, R.C., Ionel, S. & Ignea, A. Calculation of the Second Order Settling Time in SISO Linear Systems. Circuits Syst Signal Process 32, 375–385 (2013). https://doi.org/10.1007/s00034-012-9456-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9456-4

Keywords

Navigation